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Abstract: The prediction of vessel trajectories plays a crucial role in ensuring maritime safety and
reducing maritime accidents. Substantial progress has been made in trajectory prediction tasks by
adopting sequence modeling methods, containing recurrent neural networks (RNNs) and sequence-
to-sequence networks (Seq2Seq). However, (1) most of these studies focus on the application of
trajectory information, such as the longitude, latitude, course, and speed, while neglecting the impact
of differing vessel features and behavioral preferences on the trajectories. (2) Challenges remain
in acquiring these features and preferences, as well as enabling the model to sensibly integrate
and efficiently express them. To address the issue, we introduce a novel deep framework VEPO-
S2S, consisting of a Multi-level Vessel Trajectory Representation Module (Multi-Rep) and a Feature
Fusion and Decoding Module (FFDM). Apart from the trajectory information, we first defined the
Multi-level Vessel Characteristics in Multi-Rep, encompassing Shallow-level Attributes (vessel length,
width, draft, etc.) and Deep-level Features (Sailing Location Preference, Voyage Time Preference,
etc.). Subsequently, Multi-Rep was designed to obtain trajectory information and Multi-level Vessel
Characteristics, applying distinct encoders for encoding. Next, the FFDM selected and integrated the
above features from Multi-Rep for prediction by employing both a priori and a posteriori mechanisms,
a Feature Fusion Component, and an enhanced decoder. This allows the model to efficiently leverage
them and enhance overall performance. Finally, we conducted comparative experiments with several
baseline models. The experimental results demonstrate that VEPO-S2S is both quantitatively and
qualitatively superior to the models.

Keywords: deep learning; vessel trajectory prediction; sequence-to-sequence network; maritime
accidents; risk assessment; vessel portrait

1. Introduction

The shipping industry has become more important in the global economy, accounting
for over 90% of global freight in recent decades [1]. Consequently, ensuring maritime
safety and enhancing sailing efficiency has become even more urgent. The use of an
automatic identification system (AIS) for predicting ship trajectories can prevent collisions
and provide risk assessment for regulators. Specifically, this task involves forecasting future
paths based on historical trajectory points. Some algorithms [2,3], such as the Kalman
filter and support vector machines, enable relatively accurate predictions. However, these
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models are often constrained by simplifications and exhibit mediocre performance when
confronted with more complex situations [4].

Today, deep learning has made significant progress and has found broad application
across diverse domains. Recurrent neural networks (RNNs), as time series prediction mod-
els, have been widely applied in trajectory prediction, but they suffer from issues such as
gradient vanishing and exploding. In recent years, researchers have consistently improved
trajectory prediction approaches based on RNNs and achieved noteworthy results. The au-
thors of [5,6] proposed a GRU-based model to capture the temporal dynamics of trajectory
sequences. This model can learn the nonlinear and complex relationships between inputs
and outputs, encoding the historical motion patterns of vessels. The authors of [7] proposed
a trajectory model based on long-short-term memory (LSTM) that learns vessel movement
patterns from the current environment and time. The authors of [8] proposed a trajectory
prediction method combining bidirectional long short-term memory (BiLSTM) and density-
based spatial clustering of applications with noise (DBSCAN). This method integrates
vessel trajectory patterns detected using DBSCAN to further enhance the performance.
The authors of [9,10] attempted to incorporate attention mechanisms to capture crucial
information. However, these methods can only predict one point sequentially, resulting in
rapid error accumulation in multi-step predictions. The emergence of Seq2Seq models has
significantly alleviated this issue. Seq2Seq is a type of encoder–decoder neural network
that is initially used in the field of machine translation, and it has been widely applied to
trajectory prediction. It supports multi-point output in a single iteration, effectively reduc-
ing the error accumulation. The authors of [11] developed a model based on ConvLSTM
and Seq2Seq, enhancing the ability to capture global temporal dependencies. The authors
of [12] divided the sea area using a spatial grid based on the Seq2Seq model and achieved
good results in long-term prediction. The authors of [13] proposed the METO-S2S model,
which employs a multi-semantic decoder, taking into account the effects of various ship
semantic data on trajectory forecasting. In addition to methods based on RNNs that utilize
temporal information, another explored approach involves utilizing spatial information for
modeling, with graph convolutional networks (GCNs) being the most representative. To ad-
dress the issue of spatiotemporal dependencies, [14] combined a k-GCN with LSTM, using the
GCN to capture spatial correlations between nodes and the LSTM to handle spatiotemporal
correlations of nodes, enabling the prediction of vessel speeds. The authors of [15] introduced
a DAA-SGCN model, utilizing an ST-GCN to extract spatial social interaction features and
an RT-CNN to extract temporal features, fully considering the social interactions between
vessels. The authors of [16] not only considered the vessel’s own intentions but also took
into account the impact of the static environment and surrounding dynamically interacting
agents. This research largely focused on applying trajectory information for prediction and
achieved noteworthy achievements. However, due to the intricate dependencies in historical
information and the strong influence of spatial correlations, only relying on trajectory
information makes it difficult to attain precise predictive outcomes. Moreover, Multi-level
Vessel Characteristics, such as vessel attributes and Sailing Location Preferences, also play
a crucial role in trajectory prediction. According to ship maneuverability standards [17],
course stability and turning ability are crucial metrics for maneuverability, dependent on
the block coefficient, which is determined by a vessel’s attributes. Variations in a vessel’s
attributes significantly impact maneuverability, thereby affecting decisions regarding ports,
fairways, and routes. Furthermore, Sailing Location Preferences reveal their tendencies
toward specific maritime areas, which should receive more attention in predictions. As de-
picted in Figure 1, two types of vessels exhibit distinct motion trajectories. Compared
to trawlers, cargo ships typically have larger volumes and higher block coefficients, re-
sulting in a larger turning radius and poorer course stability. To mitigate the potential
risks, cargo ships tend to select broader shipping lanes and fairways, strictly adhering
to established schedules to ensure punctual cargo delivery and enhance overall logistical
efficiency, resulting in smoother and more regular sailing trajectories. Conversely, trawlers
operate within specific fishing areas, constrained by the distribution of fishery resources
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and relevant regulatory policies, often resulting in irregular and concentrated navigation
paths. Therefore, it is crucial to investigate the behavioral patterns of different vessels and
conduct tailored predictive analyses based on vessel attributes and operational areas.

MMSI: 563001700
Type: Container
Length: 299 m
Width: 48 m
Draft: 10.7 m

Fishing Area

MMSI: 367008020
Type: Trawler
Length: 34 m
Width: 13 m
Draft: 2.3 m

Figure 1. Trajectory examples for various vessel types, illustrate significant differences in navigation
trajectories under the influence of various vessel attributes and types.

For this reason, challenges still persist in obtaining more comprehensive characteristics,
along with their advisable selection and implementation. Inspired by user personas [18],
we incorporated Shallow-level Attributes and Deep-level Features, defining Multi-level
Vessel Characteristics to construct a comprehensive vessel portrait. Considering the afore-
mentioned challenges, we propose a vessel trajectory prediction model VEPO-S2S based on
the Seq2Seq architecture, comprising a Multi-level Vessel Trajectory Representation Module
(Multi-Rep) and a Feature Fusion and Decoding Module (FFDM). Multi-Rep serves the
function of acquiring and expressing features, consisting of two components: the Feature
Acquisition Component and the Feature Expression Component. In the Feature Acquisi-
tion Component, we first specify the trajectory information that includes the longitude,
latitude, speed, course, and sailing distance. Then, Multi-level Vessel Characteristics are
defined, covering Shallow-level Attributes (such as the length, width, draft, etc.) as well as
Deep-level Features (Sailing Location Preference, Voyage Time Preference, etc.). All of these
are acquired through the Feature Acquisition Component and then encoded separately
using three independent encoders within the Feature Expression Component.

Apart from that, despite the incorporation of trajectory information and vessel char-
acteristics into the model, basic Seq2Seq models encounter challenges in discerning and
leveraging them efficiently. Therefore, it is imperative to select and integrate the trajectory
information and vessel characteristics before applying them. To achieve this purpose,
we propose the FFDM module that consists of a Portrait Selection Component, Feature
Fusion Component, and Multi-head Decoding Component. At first, the Portrait Selection
Component discerns the most relevant vessel characteristics for the current prediction
environment via analyzing the encoded characteristics. Then, the Feature Fusion Compo-
nent is designed to merge trajectory information from the Multi-Rep module with relevant
vessel characteristics. Finally, the output serves as the input for the Multi-head Decoding
Component, which is designed based on the traditional Seq2Seq decoder. The Multi-head
Decoding Component consists of two distinct GRU blocks, each controlling the proportion
of trajectory information and vessel characteristics during prediction, providing more
precise output results.

In summary, the main contributions of this paper can be summarized as follows:

• We propose a vessel trajectory prediction framework VEPO-S2S, which encompasses
the multi-level vessel trajectory representation (Multi-Rep) module and Feature Fusion
and Decoding Module (FFDM). This framework fully takes into account trajectory
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information and vessel characteristics, ensuring their sensible integration and efficient
expression to achieve more accurate results.

• We propose the Multi-Rep module, which integrates trajectory information with Multi-
level Vessel Characteristics and employs multiple encoders for encoding. This module
has the ability to capture temporal representations of the trajectories as well as the
detailed portrait of the vessels.

• To address the challenge of effectively fusing and representing multiple character-
istics within our model, we propose the FFDM. This module selects and integrates
characteristics by employing a priori and a posteriori mechanisms, a Feature Fusion
Component, and an enhanced decoder. The FFDM can better represent the spatiotem-
poral correlation among historical trajectories.

• We conducted comparative experiments on several baseline models. The experimental
results demonstrated that the VEPO-S2S outperformed other baseline models in both
quantitative and qualitative aspects, producing more robust and accurate prediction re-
sults https://github.com/AIR-SkyForecast/AIR-SkyForecast-VEPO-S2S/new/main
(accessed on 15 July 2024).

2. Related Works
2.1. Vessel Trajectory Prediction

Traditional trajectory prediction methods have achieved favorable results in fore-
casting trajectories for vehicles, ships, and pedestrians. The authors of [19] proposed a
dynamically assisted inertial navigation method for estimating observed values. The au-
thors of [20] introduced a mathematical modeling-based Kalman filtering method for
long-range surface tracking, enabling the direct prediction of the target position and head-
ing without requiring coordinate system conversion. To improve ship motion prediction
accuracy under environmental disturbances, ref. [21] proposed a ship motion recognition
algorithm based on the least squares method. However, those methods exhibited limited
predictive accuracy when faced with complex situations.

In recent years, the development of deep learning methods for vessel trajectory pre-
diction has progressed rapidly, and significant advancements have been made in this task.
Most research adopts the RNN structure. Some research is based on an LSTM [22] or a GRU [6].
Moreover, to investigate ship prediction under varying trajectory densities, ref. [23] proposed a
model based on an LSTM and the K-nearest neighbor (KNN). The authors of [24] introduced
the MP-LSTM model, which integrates the strengths of TPNet and LSTM, addressing the
shortcomings of existing methods in terms of both the accuracy and model complexity.

Meanwhile, some scholars attempted to use Seq2Seq architecture to address prediction
problems. The authors of [25] introduced a neural network model based on an LSTM and
Seq2Seq, utilized to capture long-term dependencies in historical data within trajectories.
The authors of [26] proposed the ST-Seq2S2q model based on GRU architecture. The authors
of [27] proposed a trajectory prediction model based on BiGRU and Seq2Seq, which fully
considers the interactions among ships. Furthermore, several other trajectory prediction
models have been proposed. The authors of [13] introduced the METO-S2S model based on
a multi-semantic decoder, considering the influence of various ship semantic information
on trajectory prediction. They also used semantic vectors (SLV) to guide model predictions
in PESO [28], achieving outstanding results on the open-source AIS dataset in the United
States. In addition to the Seq2Seq model, [29] applied the Transformer framework combined
with LSTM to capture historical trajectories in time series and overcome issues related to
distant information decay. To express the interdependence between ships, [30] proposed
the spatiotemporal multi-graph convolutional neural network (STMGCN) model, which
models both spatiotemporal data and ship types separately. The authors of [31] combined
graph attention convolution (GAT) with an extended causal convolution structure and
designed the GAGW model. The graph attention convolution network is responsible for
extracting interaction information between different ships in space.

https://github.com/AIR-SkyForecast/AIR-SkyForecast-VEPO-S2S/new/main
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The majority of the aforementioned studies primarily focus on the utilization of
shallow-level trajectory information. These studies typically use speed, course, and po-
sition as model inputs. However, this is insufficient for guiding ship avoidance in an
intricate situation. Acquiring richer and deeper characteristics, as well as their sensible
application, is crucial for guiding ship avoidance and overall route planning. Therefore,
current research on vessel trajectory prediction will pay more attention to excavating the
abundant characteristics and understanding the dynamics of real-world environments.

2.2. Seq2Seq Model

The Seq2Seq model has been widely applied in the field of machine translation [32],
which consists of an encoder and a decoder, where the encoder embeds the input infor-
mation and generates a high-dimensional semantic vector, while the decoder decodes it
and outputs the result. We mainly present the related research in regression tasks based on
Seq2Seq, including power prediction, runoff prediction, and stock prediction.

In power forecasting, ref. [33] proposed a Seq2Seq model based on an LSTM that
takes into account the inherent correlation within the data, effectively capturing the se-
quential relationships in time series. To address the problem of low accuracy in short-term
temperature predictions, a Seq2Seq-based model was proposed by [34]. In the domain
of runoff prediction, ref. [35] made improvements to the Seq2Seq by replacing the RNN
structure with a linear layer to handle historical data. In addition, the introduction of
an attention mechanism led to a higher prediction accuracy. In [36], TEN-Seq2Seq was
introduced for handling tabular data and well depths, which exhibited better robustness
compared to LSTM and FCNN. The authors of [37] proposed a novel method to predict a
reservoir level using LSTM and attention mechanism-based Seq2Seq modeling. The authors
of [38] proposed a structure for stock price predictions based on Seq2Seq networks.

The Seq2Seq model has also made significant progress in the field of sea surface tem-
perature (SST). The authors of [39] applied the Seq2Seq model with two-module attention
(TMA-Seq2Seq) for long-term time series SST prediction, receiving superior performance
compared to data-driven methods. In [40], a novel Seq2Seq network was proposed to
achieve the k-step-ahead prediction based on the characteristics of sea clutter. The authors
of [41] utilized the Seq2Seq model to provide a spatiotemporal forecast of the probability of
sea ice, leading to higher accuracy.

2.3. User Personas

User personas are a product of internet development, which allows the discovery of
differences among individuals within groups. The authors of [42] proposed an employee
user persona model based on neural networks, which establishes personas according to
employee skill levels and mental states, enabling personalized job recommendations for
enterprise employees. The authors of [43] proposed a method for web service hybrid
recommendations based on user personas to address the cold start problem for new users,
improving both the accuracy and recommendation quality.

Recently, predicting future behavior based on user profiles has become a popular di-
rection. The authors of [44] transformed users’ emotional preference features into attention
information and combined them with LSTM models to predict the personality traits of
online users. The authors of [45] proposed the T-LSTM model for user occupation predic-
tion, overcoming challenges in predictive performance which offers a novel and effective
approach for accurate user occupation prediction. The authors of [46] introduced a method
for predicting impulsive rewards in minors using user profiles, facilitating accurate fore-
casts of impulsive reward behaviors in underage users. The authors of [47] applied persona
prediction in the field of academic warnings for university students. Constructing student
personas to explore the relationship between student factors and academic performance
provides strong guidance for teachers and administrators to adjust teaching plans.

In this work, we created a profile for each ship and introduced a novel Seq2Seq-based
model, which proves to be more suitable in practice for collision detection and risk warning.
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3. Proposed Method

We present the method in three parts. First, we provide definitions and the problem
statement. Next, we provide a comprehensive overview of the data processing. Then,
we describe the detailed process of constructing the vessel portrait. Finally, we provide a
comprehensive description of our proposed model VEPO-S2S including the Multi-level
Vessel Trajectory Representation Module and the Feature Fusion and Decoding Module.

4. Definitions and Problem Statement

The objective of VEPO-S2S is to predict the future trajectory of a vessel based on AIS
data. To articulate our approach more clearly, we provide the following definitions:

[Vessel Trajectory] A trajectory point is defined as a tuple xt = (lont, latt, sogt, cogt, distt,
l, w, d, t, α, β, γ) at time t, in which xt is composed of longitude lont, latitude latt, speed
sogt, course cogt, sailing distance distt, length l, width w, draft d, type t, Sailing Location
Preference α, Voyage Time Preference β, and Anchoring Time Preference γ, respectively.
A vessel trajectory X = (xt0 , xt1 , ..., xtn) is defined as a chronological sequence, where
{ti, i = 0, 1, 2, ..., n} is a set of timestamps.

[Position Sequence] The position of the ship at time t is defined as a tuple
yt = (lont, latt), and the sequence of positions of the vessel at time (1, 2, ..., t) is defined as
Y = (y1, y2, ..., yt).

[Vessel Trajectory Prediction] Given an observed trajectory X = (x1, x2, ..., xt) at times-
tamp (1, 2, 3, ..., t), the objective is to predict the trajectory Y = (yt+1, yt+2, ..., yt+k) at the
following timestamps (t + 1, t + 2, ..., t + k).

4.1. Data Preprocessing

AIS data preprocessing is essential for training deep learning models, especially for
models that require trajectory information and vessel characteristics. In VEPO-S2S, we
selected AIS data from southwestern and southeastern coastal waters in the US for training,
validation, and testing. The dataset includes static attributes such as the Maritime Mobile
Service Identity (MMSI), vessel length, and width. Additionally, it encompasses dynamic
information of vessel navigation such as the longitude, latitude, speed, and course. The
original AIS data may experience adverse weather conditions during the reception process,
leading to signal transmission delays and reception errors [48]. Moreover, the performance
of deep learning models could be adversely affected by data loss resulting from technical
issues and equipment maintenance. Therefore, we conducted comprehensive preprocessing
of the AIS data before training (see Figure 2).

Ship1

Ship2

……

Sort and Classify

Raw AIS Data

Denoise
Ship1

……

Ship1

……

Ship1

……

InterpolationSegment

Calculation

Clean track point

Noise track point

Interpolated track point

Clean track point

Noise track point

Interpolated track point

Ship1

……COG,SOG

Ship1

……COG,SOG

Normalization

Figure 2. The process of data preprocessing.

The process is shown in the following steps:
(1) Sort and Classify: We filtered vessels with complete information on the length,

width, draft, and type, then separated the trajectory data of each vessel based on the
Maritime Mobile Service Identity (MMSI) number, and sorted them in ascending order
of timestamps.



Appl. Sci. 2024, 14, 6344 7 of 28

(2) Denoise: We removed points with duplicate timestamps and unreasonable longi-
tude and latitude.

(3) Segment: We separated the trajectory into different segments when the time interval
between two adjacent trajectory points exceeded 60 min or when the distance between
three consecutive trajectory points was less than 100 m.

(4) Interpolate: We employed cubic spline interpolation to ensure a 10-min interval
between consecutive trajectory points.

(5) Compute: We computed the course and speed for each trajectory point.
(6) Normalize: We normalized the longitude, latitude, speed, course, length, width,

and draft using the min–max normalization method, as expressed in Equation (1)

xnorm =
x− xmin

xmax − xmin
(1)

where x is the original data, xmin and xmax represent the minimum and maximum value in
the trajectory data, respectively. xnorm is the normalized data.

4.2. Vessel Portrait Construction

This chapter accomplishes the construction of vessel user portraits based on AIS data,
including the establishment of a label system and the creation of vessel portraits.

4.2.1. Label System Construction

As shown in Figure 3, we established a label system based on Shallow-level Attributes
and Deep-level Features. The Shallow-level Attributes included a series of fundamental
attributes of a vessel (such as the length, width, draft, and type). These attributes signifi-
cantly impact the maneuvering performance of vessels. According to ship maneuverability
standards [17], both course stability and turning ability are pivotal indicators of maneuver-
ability and are affected by the ship’s block coefficient. The block coefficient is defined as
the displacement of a ship divided by the product of its length, width, and draft. Moreover,
different types of ships have different block coefficients due to variations in the shape of
their underwater hulls. For vessels of the same displacement, ships with smaller block
coefficients (such as container ships) exhibit better course stability but poorer turning ability
than those with larger block coefficients (such as tankers). Therefore, they require wider
navigational fairways to reduce the risk of collisions with other vessels. In addition, these
attributes (length, width, draft, and type) also play a crucial role in the selection of fairways,
ports, and routes. According to coastal engineering manuals [49], the fairway width is
typically two to five times the ship’s breadth. Vessels must consider both the width and
depth when navigating to ensure safety and efficiency. In port selection, according to the
PIANC [50], large vessels need to choose ports with sufficient berth and maneuvering space
to ensure safe berthing. In route planning, vessels must consider their turning radius and
draft, choosing suitable routes to avoid the risk of grounding or collision. Consequently,
these attributes are crucial for feasibility and must be thoroughly considered to ensure
more accurate predictions of different vessels.

To model trajectory information and Multi-level Vessel Characteristics more effectively,
we take into account not only Shallow-level Attributes but also Deep-level Features. The
Deep-level Features are defined as the Sailing Location Preference, the Voyage Time Pref-
erence, and the Anchoring Time Preference. The Sailing Location Preference reflects the
behavioral pattern of the ship. For example, container ships engaged in liner shipping,
typically operate on fixed routes and within port areas for cargo handling and transport [51].
The fixed routes and regular schedules of liner shipping ensure logistics timeliness, re-
ducing losses and enhancing revenue. Meanwhile, trawlers primarily operate in specific
fishing areas [52], where their Sailing Location Preferences are influenced by the distribu-
tion of fisheries resources. Unlike liner shipping, trawlers have a more flexible navigation
pattern, often adjusting their fishing locations based on the season, to comply with regula-
tory constraints and to increase revenue. This preference provides a more comprehensive



Appl. Sci. 2024, 14, 6344 8 of 28

understanding of vessel behavior and improves the accuracy of trajectory prediction. Re-
garding the Voyage Time Preference and Anchoring Time Preference, container ships tend
to minimize the anchorage time [53], strictly adhering to schedules to optimize operational
efficiency. This operational mode not only ensures the timely transportation of goods but
also helps to reduce the operating costs. In contrast, trawlers’ Voyage Time Preferences
are more influenced by fisheries management regulations and market demands. This
temporal information contributes to a deeper understanding of vessel behavior patterns
and empowers prediction models to precisely capture fluctuations in vessel movements
over time.

AIS Data

Shallow-
level 

Attributes Length Width

DraftType

Sailing 
Location 

Preference

Voyage 
Time 

Preference

Anchoring 
Time 

Preference

AIS Data AIS Data

Deep-
level 

Features

Original 
Data

Figure 3. Label-level modeling and analysis process.

4.2.2. Vessel Portrait Construction

A vessel portrait consists of Shallow-level Attributes and Deep-level Features. Regard-
ing the processing of Shallow-level Attributes, we employ the following approach: firstly,
select AIS data with non-empty attributes (such as length, width, draft, and type). And then
we randomly select 100 data points based on the Maritime Mobile Service Identity (MMSI).
For each attribute, consider the value with the highest frequency as the current vessel’s
attribute to construct the vessel’s shallow profile. This process can be expressed in the
formula as Equation (2)

Y = {yi|yi = {x∗1 , x∗2 , ..., x∗m}, Dk ⊂ X, ∀x∗j , P(x∗j |Dk)→ max} (2)

where Y represents the Shallow-level Attributes of all vessels, and each element yi denotes
those of the i-th vessel. Dk represents the AIS data collection with complete attributes,
X denotes the attribute set of all AIS data, and each element x∗j represents the highest
frequency value for Dk.

After obtaining Shallow-level Attributes, we focused on the process of acquiring
Deep-level Features, which include the Sailing Location Preference, the Voyage Time
Preference, and the Anchoring Time Preference. For the Sailing Location Preference, due
to the difference in the quantity and distribution of ship trajectory points, we employed
HDBSCAN (hierarchical density-based spatial clustering of applications with noise) [54] for
cluster analysis. The clustering results are shown in Figure 4. Different colors represent
different clusters, and the black labels denote the clustering centers. Meanwhile, to capture
the Voyage Time Preference and the Anchoring Time Preference, we divided a day into
24 segments and assigned each vessel’s trajectory points to the corresponding periods.
The distribution of trajectory points in each period reflects the temporal preferences of the
vessels. After processing, each vessel’s profile can be expressed as Equation (3)

Smmsi = {lmmsi, wmmsi, dmmsi, tmmsi, αmmsi, βmmsi, γmmsi} (3)
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where lmmsi, wmmsi, dmmsi, and tmmsi, respectively, represent the Shallow-level Attributes
of the length, width, draft, and type, αmmsi represents the Voyage Time Preference, βmmsi
stands for the Anchoring Time Preference, and γmmsi is the Sailing Location Preference.
Whereas αmmsi and βmmsi are transformed into two 24-dimensional features, γmmsi is con-
verted into a 114-dimensional feature. The utilization of the vessel portrait is elaborated in
Section 4.3.1.

Figure 4. The trajectory cluster result. Different colors represent different clusters, and the black
labels indicate cluster centers.

4.3. VEPO-S2S Model

We propose a novel trajectory prediction model VEPO-S2S based on the Seq2Seq
model, and the structure is shown in Figure 5. As the figure shows, VEPO-S2S consists
of the Multi-level Vessel Trajectory Representation Module (Multi-Rep) and the Feature
Fusion and Decoding Module (FFDM). The Multi-Rep is targeted to acquire trajectory
information and Multi-level Vessel Characteristics, encoding them with several encoders.
The FFDM is designed to select and merge the above information and characteristics from
Multi-Rep for prediction.

Multi-head Decoder

Trajectory Encoder

Portrait Encoder

Y

Portrait
 Selection 

Component

Label 
Encoder

… … …

… … …

… …

…

… …

… … …

… …

…

Ship Portrait 

+++

+++

Ship Trajectory 

+++

Ship Trajectory 

+

1st~10th

…

1st~10th

…

1st~10th

…

++

MLPEmbeding
GRU

BLOCK
GRU

BLOCK

MLPEmbeding
GRU

BLOCK
GRU

BLOCK

MLPEmbeding
GRU

BLOCK
GRU

BLOCK

MLPEmbeding
GRU

BLOCK
GRU

BLOCK

prior

prior

H

*h

k

tc

Multi-level Vessel Trajectory  Representation Module

 Feature Fusion and Decoding Module

por

Figure 5. The structure of VEPO-S2S comprises the Multi-level Vessel Trajectory Representation Mod-
ule (Multi-Rep) and the Feature Fusion and Decoding Module (FFDM). The Multi-Rep is designed
to obtain trajectory information and Multi-level Vessel Characteristics, applying distinct encoders
for encoding. The FFDM is targeted to select and integrate the above characteristics from Multi-Rep
for prediction.
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4.3.1. Multi-Level Vessel Trajectory Representation Module

The Multi-level Vessel Trajectory Representation Module is designed to acquire tra-
jectory information and Multi-level Vessel Characteristics and apply distinct encoders for
encoding. In this subsection, we introduce the Multi-level Vessel Trajectory Representation
Module, which consists of the Feature Acquisition Component and the Feature Repre-
sentation Component. For the Feature Acquisition Component, we obtained trajectory
information and Multi-level Vessel Characteristics through data preprocessing, as described
in Section 4.1, and vessel portrait construction, as described in Section 4.2. Simultaneously,
building on the RNN and Seq2Seq models, we introduced the Feature Representation
Component, consisting of three distinct encoders. Those encoders are designed to sep-
arately handle different input characteristics from the Feature Acquisition Component.
The trajectory encoder is responsible for encoding the trajectory information (including the
longitude, latitude, speed, course, and navigation distance). This process can be expressed
by the following Equation (4)

Xtraj = (x1, x2, ..., x10)

xn = (lonn, latn, sogn, cogn, disn)

H, h, h∗ = Enctraj(Xtraj)

(4)

where Xtraj represents the trajectory information, including the normalized longitude,
latitude, speed, course, and navigation distance for ten trajectory points. H = [h1, h2, ..., h10]
signifies the hidden state at each time step, h∗ denotes the hidden state at the final time
step, and h represents the ultimate hidden state. Similar to the trajectory encoder, the task
of the label encoder Enclabel is to encode the gold trajectory and output the encoded state
Hy, where Ylabel represents five trajectory points containing the longitude and latitude.

Ylabel = (x11, x12, ..., x15)

yn = (lonn, latn)

Hy = Enctraj(Ylabel)

(5)

The task of the Portrait Feature Encoder is to embed Multi-level Vessel Characteris-
tics into a high-dimensional vector. First, the normalized continuous numerical values
(including the length, width, and draft) were concatenated and embedded into an eight-
dimensional semantic vector. Second, the discrete vessel type was transformed into a
continuous value for model input and individually embedded into another semantic vector.
Third, we encoded two 24-dimensional Deep-level Features to capture the Voyage Time
Preference and the Anchoring Time Preference (as mentioned in Section 4.2.2), while the
Sailing Location Preference was encoded separately. Finally, they were concatenated to
form a seven-dimensional feature vector, which was input into the Portrait Feature Encoder
for encoding. This process can be expressed by the following Equation (6)

sp = concat(l, w, d)

ŝp = embedsp(sp)

t̂ype = embedtype(type)

tim = concat(α, β)

t̂im = embedtim(tim)

γ̂ = embedγ(γ)

por = concat(Encpor(ŝp, t̂ype, t̂im, γ̂))

(6)

where por represents the portrait feature, and embedsp, embedtype, embedtim, and embedα are
the embedding layers. Encpor is the Portrait Feature Encoder. l, w, and d represent the
length, width, and draft, respectively, t is the type, α represents the Voyage Time Preference,



Appl. Sci. 2024, 14, 6344 11 of 28

β represents the Anchoring Time Preference, and γ is the Sailing Location Preference (as
mentioned in Equation (3)).

4.3.2. Feature Fusion and Decoding Module

Despite incorporating trajectory information and vessel characteristics into the model,
the basic Seq2Seq models still have difficulty efficiently discerning and leveraging. There-
fore, the Feature Fusion and Decoding Module was designed to select and integrate the
trajectory information with Multi-level Vessel Characteristics, applying a priori and a
posteriori mechanisms in the Portrait Selection Component, a Feature Fusion Component,
and a Multi-head Decoder Component. The goal of the Portrait Selection Component is to
identify and select suitable Multi-level Vessel Characteristics for prediction; hence, we use a
prior distribution and a posterior distribution together in the vessel characteristic selection,
and the framework is shown in Figure 6. The prior distribution selects the characteristics
based on the similarity between the vector h∗ from the trajectory encoder and the portrait
vector por, which helps to filter out the more relevant characteristics in the early stages
of the model, reducing the computational overhead. This process can be expressed as
Equation (7)

Zprior(por = pori|h∗) =
exp(pori ∗ h∗)

∑7
i=1 exp(pori ∗ h∗)

(7)

where pori ∈ (por1, por2, ..., por7), ∗ is the dot product, h∗ is the trajectory coding vector,
and por is the portrait vector. Specifically, the model assigns higher weights to vectors with
greater similarity by comparing the dot product results of different characteristics, reducing
the interference of redundant information and increasing the computational efficiency.

Y

Trajectory Encoder Portrait Encoder

MLP

KLD

Ship 1
Ship 2

por

Figure 6. The Portrait Selection Component consists of prior distribution and posterior distribution.
Prior distribution expresses the trajectory coding vector h∗ and portrait feature por, and the posterior
distribution incorporates the label y to improve the accuracy of selection. Meanwhile, the KLD is
designed to bridge the gap between the prior distribution and the posterior distribution, allowing the
prior distribution to benefit from the posterior distribution and generate more accurate results.

However, only relying on the prior distribution can not enable obtaining accurate
results, as it is typically based on assumptions or historical data, which do not fully reflect
the real situation; hence, it is impossible to select the appropriate characteristics to guide the
generation. In contrast, the characteristics used in label y can be obtained through posterior
distribution. Therefore, the posterior distribution, derived by combining the trajectory
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vector h∗ and label y, can more effectively guide the selection of the profile, which can be
expressed as

Zpost(por = pori|h∗, y) =
exp(pori ∗MLP([h∗; y])

∑7
i=1 exp(pori ∗MLP([h∗; y])

(8)

where MLP is a linear layer, ∗ is the dot product, and ; represents the vector splicing.
Simultaneously, there is a significant gap between the prior distribution and the

posterior distribution. To address this issue, the Kullback–Leibler Divergence (KLD) loss is
employed to compel their proximity. It can effectively correct errors in the prior distribution
and guide the profile selection to benefit the model. The stability of the KLD divergence
lies in its mathematical properties, ensuring convergence and reliability during training.
By minimizing the KLD loss, the system can strike a suitable balance between the prior and
posterior distributions. The formula for the KLD divergence is expressed as follows:

DKL(P‖Q) = ∑
i

P(i) log
(

P(i)
Q(i)

)
(9)

where P represents the posterior distribution, which comprises the characteristics required
under the guidance of real labels.

In general, a straightforward approach to leverage the selected characteristics for result
generation is to directly append these characteristics to the encoder’s input. However,
this approach usually fails to yield satisfactory results due to the lack of flexibility in
controlling the degree of characteristic involvement introduced. Therefore, we introduce
the Feature Fusion Component to optimize the utilization of the characteristics. Compared
with directly connecting those characteristics, we used a more flexible way to integrate
them. Here, we applied an LSTM to fuse the prior distribution prior and the historical
trajectory H, and the results of the LSTM took into account the continuity and correlation
between characteristics over time. Additionally, prior served as the initial hidden state of
the LSTM, and the trajectory representation H obtained by the trajectory encoder was used
as the input at each step. Finally, we obtained the fused semantic vector ck

t , and the process
can be expressed through the following following Equation (10)

ck
t = LSTM(prior, H) (10)

To regulate the involvement of Multi-level Vessel Characteristics in the prediction,
we introduced the Multi-head Decoding Component; the framework diagram is depicted
in Figure 7. This component comprises two GRU blocks and a fusion unit that efficiently
synthesizes the hidden states generated by the two GRU blocks to predict future trajectories.
The design is formulated to adjust the weighting between the trajectory information and
the vessel characteristics during the prediction process. The orange region is a standard
GRU module that receives the trajectory information h. Additionally, it takes the preceding
prediction value y− 1 as input, producing its hidden state Tn

i . Another GRU is dedicated to
adding the prior distribution por into the predictions; it also takes the fused semantic vector
ck

t , trajectory information h, and the preceding prediction value y− 1 as inputs, generating
the feature representation Tp

i . Ultimately, Tn
i and Tp

i are fused through the fusion gate to
produce the final trajectory. This process can be expressed by Equation (11):

Tn
i = GRUn(y− 1, h)

inpp = concat(y− 1, ck
t , prior)

Tp
i = GRUp(inpp, h)

Ot = σ(Wz ∗ [tanh(wy ∗ Tn); tanh(Wk ∗ Tp)])

Ti = Ot ∗ Tn + (1−Ot) ∗ Tp

(11)
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where i ∈ (11, 12, ..., 15), and Wz, Wy, and Wk correspond to weight matrices with different
coefficients. σ and tanh are the sigmoid activation function and tanh activation function,
respectively.
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Figure 7. The Multi-head Decoder Component consists of two GRU blocks and a fusion unit. It can
flexibly adjust the weighting between the trajectory information and the vessel characteristics during
the prediction process.

4.3.3. Loss Function

The VEPO adopts the root mean square error (RMSE) and the Kullback–Leibler Diver-
gence (KLD) (as mentioned in Equation (9)) as the loss function. The objective of this work
is to utilize the first m points denoted by Xk = (xk

1, xk
2, ..., xk

m) to predict the subsequent n
track points, where m and n are the hyperparameters. The prediction sequence and target

sequence are represented by Yk = (yk
m+1, yk

m+2, ..., yk
m+n), and Ŷk = (ŷk

m+1, ŷk
m+2, ..., ŷk

m+n),
respectively. The primary aim is to minimize the loss function during training, ensuring
greater accuracy in predicting the last n trajectory points. The expression for the loss
function is shown in the following Equation (12).

L =

√
1
n

n

∑
k=1

(Yk − Ŷk)2 + DKL (12)

5. Experiments

To validate the effectiveness of the VEPO model, we conducted a series of quantitative
and qualitative experiments. Specifically, we first introduce the experiment settings, includ-
ing the hyperparameter settings, experimental environments, datasets, baseline models,
and evaluation metrics. Subsequently, we present the quantitative comparison results of
our proposed method and other baseline models. Following this, we describe the ablation
experiments conducted to substantiate the effectiveness of different components of the
model. Finally, we depict the prediction results of VEPO-S2S through qualitative analysis.

5.1. Experiment Settings
5.1.1. Dataset

We adopted AIS data (https://marinecadastre.gov/accessais/) (accessed on 1 June
2024) from the coastal waters of the southeastern and southwestern United States for train-
ing, validation, and testing [13]. As shown in Table 1, there are 68 types of vessels and
28,645 vessels in this dataset. At the same time, due to the particularity of the portrait
construction (as mentioned in Section 4.2.2), we selected the vessel attributes (including the
length, width, draft, and type). After processing, we obtained 45 types with a total of 6194

https://marinecadastre.gov/accessais/
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vessels. The detailed distribution of the vessel types is shown in Figure 8. In our dataset,
the maximum number of ship types was 45, consisting of passenger ships, pleasure crafts,
sailing ships, etc. The distribution of ship types was uneven, and they were mainly classi-
fied into five categories: passenger ships, pleasure craft, sailing ships, tug tow, and fishing.
Passenger ships and pleasure craft together accounted for over 23% of the total. The re-
maining ships, mainly consisting of cargo ships, container ships, and tankers, collectively
constitute 21% of the dataset. To enhance the richness and comprehensiveness of the data,
we employed a sliding window approach, dividing the normalized data into groups of
15 trajectory points with a sliding step of 1 (see Figure 9). Subsequently, each vessel was
allocated to training, validation, and testing sets in a ratio of 8:1:1. This approach increased
the diversity of the data and ensured that each vessel received sufficient validation.

Table 1. The detail of our dataset.

Dataset Region Track Points Count Type Count Vessel Count

Total Coast of the United States 144,445,580 68 28,645
Ours Coast of the United States 4,930,061 45 6194

FishingFishing Tug TowTug Tow SailingSailing Pleasure CraftPleasure Craft Passenger ShipPassenger Ship OthersOthersFishing Tug Tow Sailing Pleasure Craft Passenger Ship Others

     Fishing: 15%     Fishing: 15%

    Others: 21%    Others: 21%

   Tug Tow: 7%   Tug Tow: 7%

     Sailing: 11%     Sailing: 11%

   Passenger Ship: 23%   Passenger Ship: 23%

   Pleasure Craft: 23%   Pleasure Craft: 23%

Figure 8. The distribution of vessel type in our processed dataset.

Figure 9. An example of dividing a dataset using the sliding window method, and the red dots
represent trajectory points.

5.1.2. Hyperparameters Settings and Experimental Environment

We utilized ten trajectory points as inputs to predict the last five trajectory points,
and those two hyperparameters can be flexibly adjusted to adapt to different tasks. Mean-
while, the epochs were set to 40 for model training, and the best valuation performance
was saved. The learning rate was 0.001 with a weight decay of 0.0, the optimizer was set
to Adam, and the batch size was set to 128. Moreover, the hidden sizes in the GRU were
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set to 64, and the hidden layer number was 2. In the above hyperparameters, we selected
two typical cases for visualization, which were the number of layers and the hidden sizes,
the details of which are shown in Figures 10 and 11. The experiments were all based
on Python 3.8 using the PyTorch framework. We trained the model using the Ubuntu
operating system and GTX 3090Ti on the server for experiments.

Figure 10. The influence of different GRU layers on the prediction of the VEPO-S2S model, according
to the RMSE. The X-axis represents the number of layers, and the Y-axis represents the RMSE
loss value.

Figure 11. The influence of different hidden sizes on the prediction of the VEPO-S2S model, according
to the RMSE. The X-axis represents the number of hidden sizes, and the Y-axis represents the RMSE
loss value.

5.1.3. Baselines

To better evaluate the performance of VEPO-S2S, we compared it with several baseline
models using the same dataset. In contrast to Seq2Seq, recurrent neural networks are limited
to predicting multiple consecutive track points. In our experiments, we continuously
predicted five trajectory points using an RNN, which was achieved through the sliding
window method. The baselines were as follows:

(1) Kalman: A linear optimal estimation model;
(2) VAR: A statistical model for multivariate time-series prediction;
(3) ARIMA: A statistical time-series forecasting model;
(4) LSTM: A type of recurrent neural network, which consists of two layers;
(5) BiLSTM: Similarly to LSTM, the BiLSTM is composed of two bidirectional LSTM

layers;
(6) GRU: Similar to an LSTM;
(7) BiGRU: Similar to a GRU but with two bidirectional GRU layers;
(8) LSTM–LSTM: A Seq2Seq model with a two-layer LSTM as the encoder and decoder;
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(9) BiLSTM–LSTM: A Seq2Seq model with a two-layer BiLSTM as the encoder and a
four-layer LSTM as the decoder;

(10) GRU–GRU: Similar to an LSTM–LSTM;
(11) BiGRU-GRU: Similar to a BiLSTM–LSTM;
(12) Transformer: A Seq2Seq model based on attention mechanism;
(13) METO-S2S: An S2S-based vessel trajectory prediction method with a multiple-semantic

encoder and a type-oriented decoder.

5.1.4. Evaluation Metrics

To evaluate the prediction performance of the proposed model, we used four evalua-
tion metrics, including the root mean square error (RMSE), the mean absolute error (MAE),
the average displacement error (ADE), and the final displacement error (FDE). The RMSE
focuses on measuring the stability of the result, while the MAE evaluates the prediction
ability of a model. The ADE stands for the average Euclidean distance error between
the predicted position and the actual position. Additionally, the FDE focuses on the final
accuracy of the predictions.

RMSE =

√
1
n

n

∑
k=1

(yk − ŷk)2

MAE =
1
n

n

∑
k=1
‖yk − ŷk‖1

ADE =
1
n

n

∑
k=1
‖yk − ŷk‖2

FDE = ‖y f inal − ŷ f inal‖2

(13)

where yk and ŷk represent the true position and the predicted position, n is the total number
of predicted track points, and ‖ · ‖1 and ‖ · ‖2 denote one norm and the Euclidean distance,
respectively. y f inal and ŷ f inal represent the final position of the actual trajectory and the
predicted trajectory, respectively. It is worth noting that the lower the evaluation index,
the better the generalization ability of the model.

5.2. Model Performance Comparison
5.2.1. Comparison Results

Through comparisons with the baselines using the evaluation metrics of the RMSE,
MAE, and ADE, our model demonstrated strong robustness, as shown in Tables 2–4. The
LSTM, BiLSTM, GRU, and BiGRU employ a sliding window approach for the prediction of
multiple points, while the other six Seq2Seq models do not. Our model outperformed the
baselines in the third to fifth trajectory points. However, the GRU achieved better results in
the MAE in Table 3 and the ADE in Table 4, regarding the first and second points. This is
mainly because the GRU has a structural advantage in predicting short-term sequences
due to its simplicity. However, VEPO-S2S experiences a slight decrease when handling
short-term predictions, as the portrait of the vessel may not be easily discernible. When the
prediction length increases, our model performs better than the baseline models, according
to the RMSE, MAE, and ADE.

Simultaneously, considering that trajectory prediction is also a time series forecasting
problem, we compared VEPO-S2S with several time series forecasting models, including
the ARIMA, Kalman Filter, and VAR. As Tables 2–4 show, our model was superior to
others; the three-time series prediction models performed well in short-term forecasting,
but the accuracy rapidly declined as the forecast horizon increased. Specifically, the VAR
model became ineffective after the third time step because it failed to capture long-term
complex nonlinear relationships. Different from time series models that only utilize position
sequences, VEPO-S2S benefits from additional prior information, such as the ship length
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and width, as well as its powerful ability to construct spatiotemporal correlations from
historical trajectory points, making it more advantageous in forecasting tasks.

Table 2. Comparison results of VEPO-S2S with various baselines under RMSE evaluation metric.
Here, 10->5 represents the RMSE value of the last 5 trajectories predicted by 10 historical trajectories.

Model Name 10-> 1 10->2 10->3 10->4 10->5

Kalman 2.42× 10−4 3.00× 10−4 4.22× 10−4 5.51× 10−4 6.71× 10−4

VAR 0.98× 10−4 2.80× 10−4 50.43× 10−4 - -
ARIMA 3.42× 10−4 5.30× 10−4 7.21× 10−4 9.15× 10−4 11.12× 10−4

LSTM 0.88× 10−4 1.16× 10−4 2.48× 10−4 3.46× 10−4 4.60× 10−4

BiLSTM 2.64× 10−4 2.65× 10−4 3.51× 10−4 4.41× 10−4 5.45× 10−4

GRU 0.86× 10−4 1.58× 10−4 2.41× 10−4 3.32× 10−4 4.30× 10−4

BiGRU 3.16× 10−4 3.24× 10−4 3.96× 10−4 4.71× 10−4 5.21× 10−4

LSTM-LSTM 1.22× 10−4 1.94× 10−4 2.76× 10−4 3.64× 10−4 4.58× 10−4

BiLSTM-LSTM 1.44× 10−4 2.21× 10−4 3.07× 10−4 3.99× 10−4 4.96× 10−4

GRU-GRU 0.98× 10−4 1.69× 10−4 2.49× 10−4 3.36× 10−4 4.29× 10−4

BiGRU-GRU 1.34× 10−4 2.21× 10−4 3.14× 10−4 4.11× 10−4 5.12× 10−4

Transformer 1.31× 10−4 1.74× 10−4 2.35× 10−4 3.07× 10−4 3.86× 10−4

METO-S2S 2.02× 10−4 2.03× 10−4 2.28× 10−4 2.73× 10−4 3.35× 10−4

Ours 0.74× 10−4 1.11× 10−4 1.71× 10−4 2.40× 10−4 3.17× 10−4

Table 3. Comparison results of VEPO-S2S with various baselines under MAE evaluation metric. Here,
10->5 means predicted through 10 historical trajectories.

Model Name 10-> 1 10->2 10->3 10->4 10->5

Kalman 1.73× 10−4 2.34× 10−4 3.27× 10−4 4.24× 10−4 5.16× 10−4

VAR 0.87× 10−4 2.12× 10−4 28.6× 10−4 - -
ARIMA 2.69× 10−4 3.99× 10−4 5.33× 10−4 6.69× 10−4 8.08× 10−4

LSTM 0.43× 10−4 0.77× 10−4 1.18× 10−4 1.66× 10−4 2.21× 10−4

BiLSTM 1.50× 10−4 1.52× 10−4 1.87× 10−4 2.35× 10−4 2.87× 10−4

GRU 0.36× 10−4 0.66× 10−4 1.01× 10−4 1.42× 10−4 1.87× 10−4

BiGRU 1.53× 10−4 1.65× 10−4 1.84× 10−4 2.15× 10−4 2.38× 10−4

LSTM-LSTM 0.70× 10−4 1.00× 10−4 1.34× 10−4 1.72× 10−4 2.13× 10−4

BiLSTM-LSTM 0.88× 10−4 1.20× 10−4 1.56× 10−4 1.94× 10−4 2.35× 10−4

GRU-GRU 0.51× 10−4 0.78× 10−4 1.10× 10−4 1.46× 10−4 1.85× 10−4

BiGRU-GRU 0.74× 10−4 1.10× 10−4 1.50× 10−4 1.92× 10−4 2.37× 10−4

Transformer 0.81× 10−4 0.95× 10−4 1.16× 10−4 1.42× 10−4 1.72× 10−4

METO-S2S 1.43× 10−4 1.46× 10−4 1.53× 10−4 1.70× 10−4 1.94× 10−4

Ours 0.53× 10−4 0.74× 10−4 0.99× 10−4 1.28× 10−4 1.60× 10−4
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Table 4. Comparison results of VEPO-S2S with various baselines under ADE evaluation metric. Here,
10->5 means predicted through 10 historical trajectories.

Model Name 10-> 1 10->2 10->3 10->4 10->5

Kalman 3.42× 10−4 4.62× 10−4 8.22× 10−4 11.52× 10−4 14.29× 10−4

VAR 1.38× 10−4 5.60× 10−4 123.53× 10−4 - -
ARIMA 4.83× 10−4 7.11× 10−4 9.42× 10−4 11.76× 10−4 14.14× 10−4

LSTM 0.68× 10−4 1.22× 10−4 1.87× 10−4 2.64× 10−4 3.51× 10−4

BiLSTM 2.37× 10−4 2.38× 10−4 2.99× 10−4 3.74× 10−4 4.56× 10−4

GRU 0.59× 10−4 1.05× 10−4 1.62× 10−4 2.27× 10−4 2.99× 10−4

BiGRU 2.42× 10−4 2.73× 10−4 4.00× 10−4 4.91× 10−4 5.20× 10−4

LSTM-LSTM 1.11× 10−4 1.59× 10−4 2.13× 10−4 2.73× 10−4 3.38× 10−4

BiLSTM-LSTM 1.39× 10−4 1.90× 10−4 2.47× 10−4 3.07× 10−4 3.72× 10−4

GRU-GRU 0.80× 10−4 1.23× 10−4 1.74× 10−4 2.31× 10−4 2.93× 10−4

BiGRU-GRU 1.16× 10−4 1.75× 10−4 2.38× 10−4 3.05× 10−4 3.76× 10−4

Transformer 1.28× 10−4 1.50× 10−4 1.83× 10−4 2.25× 10−4 2.73× 10−4

METO-S2S 2.26× 10−4 2.30× 10−4 2.41× 10−4 2.68× 10−4 3.07× 10−4

Ours 0.83× 10−4 1.17× 10−4 1.52× 10−4 2.01× 10−4 2.52× 10−4

5.2.2. Exploration on Seq2Seq Structure of VEPO-S2S

We conducted several experiments on the structure of the encoder and decoder in
VEPO-S2S to achieve optimal performance, including a VEPO–BiGRU–GRU, a VEPO–LSTM-
LSTM, a VEPO–BiLSTM–LSTM, and a VEPO–GRU–GRU. As shown in Table 5, the best
result was obtained with the VEPO-GRU-GRU. Therefore, in the subsequent experiments,
we utilized the VEPO-S2S with a GRU-GRU structure for further experimentation.

Table 5. Exploration results on different Seq2Seq structure.

Model Name Encoder Decoder RMSE MAE ADE FDE

VEPO-S2S BiGRU GRU 3.60× 10−4 1.99× 10−4 3.15× 10−4 5.28× 10−4

VEPO-S2S LSTM LSTM 3.46× 10−4 1.72× 10−4 2.72× 10−4 4.94× 10−4

VEPO-S2S BiLSTM LSTM 4.19× 10−4 2.48× 10−4 3.39× 10−4 5.97× 10−4

VEPO-S2S GRU GRU 3.17× 10−4 1.60× 10−4 2.52× 10−4 4.57× 10−4

5.2.3. Further Analysis

In contrast to the evaluation of continuous trajectory prediction tasks, we conducted in-
dividual points evaluation using the RMSE, MAE, and FDE. As we can see from Tables 6–8,
the prediction errors of all the models exhibited a noticeable increase from the first to the
fifth prediction point. This is attributed to a significant reduction in the available infor-
mation for each prediction, moving from the first to the last prediction. RNN baseline
models employ a sliding window approach for prediction and gradually accumulate inac-
curacies with each prediction. Conversely, the Seq2Seq baseline models have the ability
to simultaneously predict multiple points, which can reduce the tendency for error esca-
lation compared with the RNN baseline models. Additionally, time series models rely
on linear relationships between multiple time series; however, in long-term prediction
tasks, nonlinear features become more prominent, causing inaccuracies to increase rapidly
over time. Furthermore, our model almost outperforms all baselines. We also observe a
similar performance between METO-S2S and VEPO-S2S at the fourth and fifth points in
Figure 6, indicating that both VEPO and METO are excellent models for long sequence
prediction tasks.
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Table 6. The quantitative analysis results of each trajectory point under the RMSE evaluation index.

Model Name First Second Third Fourth Fifth

Kalman 2.42× 10−4 3.27× 10−4 5.81× 10−4 8.15× 10−4 10.11× 10−4

VAR 0.98× 10−4 3.74× 10−4 86.61× 10−4 - -
ARIMA 3.42× 10−4 6.63× 10−4 9.93× 10−4 13.28× 10−4 16.72× 10−4

LSTM 0.88× 10−4 2.10× 10−4 3.63× 10−4 5.43× 10−4 7.60× 10−4

BiLSTM 2.64× 10−4 2.65× 10−4 4.77× 10−4 6.39× 10−4 8.38× 10−4

GRU 0.86× 10−4 2.06× 10−4 3.52× 10−4 5.16× 10−4 6.96× 10−4

BiGRU 3.16× 10−4 2.42× 10−4 5.24× 10−4 6.44× 10−4 6.83× 10−4

LSTM-LSTM 1.22× 10−4 2.46× 10−4 3.90× 10−4 5.50× 10−4 7.20× 10−4

BiLSTM-LSTM 1.44× 10−4 2.77× 10−4 4.30× 10−4 5.95× 10−4 7.68× 10−4

GRU-GRU 0.98× 10−4 2.18× 10−4 3.59× 10−4 5.14× 10−4 6.84× 10−4

BiGRU-GRU 1.34× 10−4 2.82× 10−4 4.45× 10−4 6.17× 10−4 7.96× 10−4

Transformer 1.31× 10−4 2.08× 10−4 3.24× 10−4 4.59× 10−4 6.07× 10−4

METO-S2S 2.02× 10−4 2.03× 10−4 2.71× 10−4 3.76× 10−4 5.23× 10−4

Ours 0.74× 10−4 1.44× 10−4 2.47× 10−4 3.76× 10−4 5.22× 10−4

Table 7. The quantitative analysis results of each trajectory point under the MAE evaluation index.

Model Name First Second Third Fourth Fifth

Kalman 1.73× 10−4 2.94× 10−4 5.13× 10−4 7.13× 10−4 8.83× 10−4

VAR 0.87× 10−4 3.38× 10−4 81.62× 10−4 - -
ARIMA 2.69× 10−4 5.26× 10−4 7.99× 10−4 10.77× 10−4 13.62× 10−4

LSTM 0.43× 10−4 1.11× 10−4 2.01× 10−4 3.11× 10−4 4.40× 10−4

BiLSTM 1.50× 10−4 1.52× 10−4 2.60× 10−4 3.79× 10−4 4.94× 10−4

GRU 0.36× 10−4 0.95× 10−4 1.72× 10−4 2.63× 10−4 3.67× 10−4

BiGRU 1.53× 10−4 1.77× 10−4 2.53× 10−4 3.09× 10−4 3.26× 10−4

LSTM-LSTM 0.70× 10−4 1.30× 10−4 2.02× 10−4 2.85× 10−4 3.77× 10−4

BiLSTM-LSTM 0.88× 10−4 1.53× 10−4 2.28× 10−4 3.08× 10−4 3.98× 10−4

GRU-GRU 0.51× 10−4 1.04× 10−4 3.59× 10−4 5.14× 10−4 6.84× 10−4

BiGRU-GRU 1.34× 10−4 2.82× 10−4 4.45× 10−4 6.17× 10−4 7.96× 10−4

Transformer 0.81× 10−4 1.09× 10−4 1.58× 10−4 2.20× 10−4 2.93× 10−4

METO-S2S 2.02× 10−4 2.03× 10−4 2.21× 10−4 2.71× 10−4 2.92× 10−4

Ours 0.53× 10−4 0.96× 10−4 1.48× 10−4 2.13× 10−4 2.88× 10−4

Table 8. The quantitative analysis results of each trajectory point under the FDE evaluation index.

Model Name First Second Third Fourth Fifth

Kalman 3.42× 10−4 4.62× 10−4 8.22× 10−4 11.52× 10−4 14.29× 10−4

VAR 1.38× 10−4 5.30× 10−4 122.49× 10−4 - -
ARIMA 4.83× 10−4 9.38× 10−4 14.05× 10−4 18.79× 10−4 23.65× 10−4

LSTM 0.68× 10−4 1.76× 10−4 3.19× 10−4 4.93× 10−4 6.99× 10−4

BiLSTM 2.37× 10−4 2.38× 10−4 4.22× 10−4 6.00× 10−4 7.84× 10−4

GRU 0.59× 10−4 1.48× 10−4 2.75× 10−4 4.20× 10−4 5.86× 10−4

BiGRU 2.42× 10−4 2.84× 10−4 4.00× 10−4 4.91× 10−4 5.20× 10−4

LSTM-LSTM 1.11× 10−4 2.06× 10−4 3.21× 10−4 4.52× 10−4 5.98× 10−4

BiLSTM-LSTM 1.39× 10−4 2.41× 10−4 3.61× 10−4 4.89× 10−4 6.32× 10−4

GRU-GRU 0.80× 10−4 1.66× 10−4 2.76× 10−4 4.02× 10−4 5.42× 10−4

BiGRU-GRU 1.16× 10−4 2.23× 10−4 3.65× 10−4 5.06× 10−4 6.60× 10−4

Transformer 1.28× 10−4 1.72× 10−4 2.50× 10−4 3.50× 10−4 4.67× 10−4

METO-S2S 2.22× 10−4 2.30× 10−4 2.71× 10−4 3.49× 10−4 4.62× 10−4

Ours 0.83× 10−4 1.51× 10−4 2.34× 10−4 3.37× 10−4 4.57× 10−4

The proposed VEPO-S2S model consists of the Multi-level Vessel Trajectory Repre-
sentation Module (Multi-Rep) and the Feature Fusion and Decoding Module (FFDM). The
Multi-Rep is specifically designed not only to integrate trajectory information but also to
fully consider the vessel features and behavioral preferences, encoding them with distinct
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encoders to enrich the representation of features. Additionally, the FFDM selects and
integrates the above information and features based on the current prediction environment,
which allows the model to leverage them efficiently. These two advantages make VEPO-S2S
more accurate than the other baselines.

5.3. Ablation Study

To investigate the function of the Multi-level Vessel Characteristics in VEPO-S2S and
the Feature Fusion and Decoding Module, we designed several ablation experiments, which
are introduced in the following part:

1. w/o sa. Delete the input of the Shallow-level Attributes in the Multi-level Vessel
Trajectory Representation Module, including the vessel length, width, draft, and type
(see Section 4.3.1);

2. w/o k1. Delete the Sailing Location Preference in the Multi-level Vessel Trajectory
Representation Module (see Section 4.3.1);

3. w/o k2. Delete the Voyage Time Preference from the Multi-level Vessel Trajectory
Representation Module (see Section 4.3.1);

4. w/o k3. Delete the Anchoring Time Preference from the Multi-level Vessel Trajectory
Representation Module (see Section 4.3.1);

5. w/o p_s. Delete the Portrait Selection Component from the Feature Fusion and
Decoding Module (see Section 4.3.2);

6. w/o f _ f . Delete the Feature Fusion Component from the Feature Fusion and Decoding
Module (see Section 4.3.2);

7. w/o muti_d. Delete the Multi-head Decoder Component from the Feature Fusion and
Decoding Module, using a single GRU for decoding instead, which does not receive
trajectory information separately (see Section 4.3.2).

The results are shown in Table 9. We evaluated the performance using the RMSE, MAE,
ADE, and FDE. The results indicate that the deletion of the Portrait Selection Component
had the most significant impact on the RMSE metric, decreasing it from 3.17× 10−4 to
4.48× 10−4. This indicates that the Portrait Selection Component plays a crucial role in
the model. This is because the Portrait Selection Component is responsible for selecting
the vessel characteristics that are most suitable for the current environment. When the
Portrait Selection Component is removed, the model’s performance significantly declines.
Additionally, it is observed that the deletion of the Multi-head Decoder Component had the
least impact, with a decrease from 3.17× 10−4 to 3.32× 10−4. This is because enhancing
the decoder does not affect the overall structure. The model still has the ability to select
and learn how to use the corresponding characteristics to generate accurate predictions.
However, reinforcing the decoder leads to a slight improvement in model performance.
Consistent with the above analysis, the MAE, ADE, and FDE evaluation metrics exhibited
similar trends.

Table 9. Quantitative results on different ablation studies.

Ablation RMSE MAE ADE FDE

VEPO-S2S 3.17× 10−4 1.60× 10−4 2.52× 10−4 4.57× 10−4

w/o sa 3.53× 10−4 1.88× 10−4 2.96× 10−4 5.27× 10−4

w/o k1 3.50× 10−4 1.82× 10−4 2.88× 10−4 5.07× 10−4

w/o k2 3.50× 10−4 1.88× 10−4 2.96× 10−4 5.19× 10−4

w/o k3 3.55× 10−4 1.95× 10−4 3.07× 10−4 5.38× 10−4

w/o p_s 4.48× 10−4 1.99× 10−4 3.15× 10−4 5.84× 10−4

w/o f _ f 3.42× 10−4 1.81× 10−4 2.88× 10−4 5.13× 10−4

w/o muti_d 3.32× 10−4 1.76× 10−4 2.77× 10−4 4.87× 10−4
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After removing various innovations, the performance of the model decreased. Hence,
the model is equipped with all the characteristics and components to achieve optimal
results, demonstrating the effectiveness of our innovative points.

5.4. Qualitative Analysis

In order to better analyze the performance of VEPO-S2S, we selected several compara-
ble models for several qualitative analyses, as described in this subsection.

5.4.1. Baselines Comparing

As shown in Figure 12, our model achieved accurate predictions in both scenarios
compared to other baselines. The difficulty of the prediction increased from (a) to (b). In (a),
the cargo ship had a straight route. Most of the models produced satisfactory predictions,
especially VEPO and METO. However, the GRU deviated from the true trajectory. (b) shows
a container ship turning, where our model performs the best. Additionally, the METO-S2S
model accurately predicted the first four points, but it deviated from the actual trajectory in
the last point. The GRU-GRU model performs better than the GRU model; however, it still
struggles to achieve satisfactory prediction results. In practice, incorrect predictions can
easily lead to accidents. It can be observed that the results predicted by VEPO-S2S were
superior to others, which can avoid safety issues.

28.26

28.31

( a ) ( b )
Input trajectory pointsInput trajectory points Real trajectory pointsReal trajectory points VEPO-S2SVEPO-S2S METO-S2SMETO-S2S GRU-GRUGRU-GRU GRUGRU

-80.49 -80.42 -80.35

3km3km

38.06

38.12

-123.55 -123.45 -123.35

2.5km2.5km5km5km3.5km3.5km

Figure 12. The predictions of cargo ships and container ships under various models, with the
difficulty of predictions increasing from (a) to (b). Our model performs the best in both scenarios. In
(a), which involves straight-line navigation of cargo ships, all models except GRU achieve decent
prediction results. In (b), which involves container ship turning. Additionally, the METO-S2S model
is also able to accomplish the prediction tasks to some extent. However, other models struggle to
achieve satisfactory prediction performance.

5.4.2. Visual Result of the Seq2Seq Structure

As we can see from Figure 13, VEPO-GRU-GRU is more robust compared with VEPO-
BiGRU-GRU, VEPO-BiLSTM-LSTM, and VEPO-LSTM-LSTM. (a) depicts a smooth tra-
jectory, indicating the normal navigation of a cargo ship. (b) shows a curved trajectory,
possibly suggesting avoidance maneuvers by an oil tanker. Across various vessel types
and motion states, all structures of the VEPO-S2S model consistently exhibit satisfactory
performance. Notably, the VEPO-S2S model with the GRU-GRU structure shows better
robustness.
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Figure 13. The trajectory predictions of the cargo ship and oil tanker using different structures of the
VEPO-S2S model, with the predictive difficulty increasing gradually from (a) to (b). As depicted in
the graph, VEPO-GRU-GRU achieves the best predictive performance.

5.4.3. Qualitative Ablation Results

We conducted several detailed studies to better illustrate the changes in the experimen-
tal results before and after ablation. Seven figures display the results of the experiments on
the Shallow-level Attributes, the Sailing Location Preference, the Voyage Time Preference,
the Anchoring Time Preference, the Portrait Selection Component, the Feature Fusion
Component, and the Multi-head Decoder Component for a tugboat. More precisely, we
present four trajectories in each image, including the input track points, labels, and the
predictive results before and after ablation.

For each figure, it is evident that the green curve closely aligns with the actual trajectory.
We observe that if a vessel lacks any one of the Shallow-level Attributes, the Sailing Location
Preference, the Voyage Time Preference, or the Anchoring Time Preference, there are
significant biases in both the direction and distance in the predicted results.

Figure 14 illustrates the results with and without Shallow-level Attributes. In the
absence of Shallow-level Attributes, VEPO-S2S predictions deviate from the actual trajectory
at the fourth and fifth points. This is because Shallow-level Attributes determine the
vessel’s inertia and turning capabilities. Typically, larger vessels have more difficulty
in altering their current motion states. When there is a lack of Shallow-level Attributes,
the model struggles to accurately assess these abilities of the vessel. Therefore, in long-term
predictions, the model fails to provide effective guidance and leads to deviations from the
correct trajectory in later stages.

Input trajectory points Real trajectory points

VEPO-S2S VEPO-S2S without sa

Input trajectory points Real trajectory points

VEPO-S2S VEPO-S2S without sa

32.76

32.71

-79.85 -79.78 -79.71 -79.64

2km2km

Figure 14. The predicted trajectories of a tugboat, where the green and red lines are the prediction
results using VEPO-S2S with and without Shallow-level Attributes, respectively. The Shallow-level
Attributes are associated with the vessel’s inertia and turning capabilities. The model without
Shallow-level Attributes is not able to grasp this ability well, which may cause errors.

Figure 15 demonstrates the results with and without the Sailing Location Preference.
The Sailing Location Preference helps the model recognize a vessel’s adaptability to terrain.
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Vessels with varying degrees of adaptability to terrains choose different collision avoidance
routes. Without the Sailing Location Preference, the model struggles to capture details of
routes, which makes it difficult to generate corresponding choices and leads to oscillations
in the predicted trajectories.

Input trajectory points Real trajectory points

VEPO-S2S VEPO-S2S without k1

Input trajectory points Real trajectory points

VEPO-S2S VEPO-S2S without k1

-79.85 -79.78 -79.71 -79.64

32.76

32.71

2km2km

Figure 15. The predicted trajectories of a tugboat, where the green and red lines represent the predic-
tion results of VEPO-S2S with and without considering the Sailing Location Preference, respectively.
The Sailing Location Preference helps the model identify the adaptability of the vessel to the geo-
graphical environment. When the Sailing Location Preference is not considered, the VEPO-S2S model
is not correct.

Figure 16 displays the comparison results with and without the Voyage Time Pref-
erence. The Voyage Time Preference reflects the habits of the crews and vessel sailing
at various times. For instance, the collision avoidance maneuvers are different during
high and low vessel traffic periods. Without guidance from the Voyage Time Preference,
the predicted results exhibit considerable fluctuations.

2km2km
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Figure 16. The predicted trajectories of a tugboat, where the green and red lines represent the
prediction results of the VEPO-S2S model with and without considering the Voyage Time Preference,
respectively. The Voyage Time Preference is related to the habits of the crews. When the Voyage Time
Preference is not considered, the VEPO-S2S model may produce inaccurate predictions.

Figure 17 shows the results with and without the Anchoring Time Preference, which
is related to working and resting habits. The trajectory of the tugboat changes more
significantly when it is in working condition. Therefore, it is difficult for the model to
accurately determine the current movement of the tugboat without the Anchoring Time
Preference, which leads to deviations from the true trajectory points.
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Figure 17. The predicted trajectories of a tugboat, where the green and red lines represent the predic-
tion results of the VEPO-S2S model with and without considering the Anchoring Time Preference,
respectively. The Anchoring Time Preference helps the model identify the working and resting habits
of the vessel. In the absence of the Anchoring Time Preference, the model produces an incorrect
estimation for each timestamp.

Figure 18 demonstrates the visual comparison results of the Portrait Selection Compo-
nent. Without the Portrait Selection Component, the result deviates from the real track. This
is because the Portrait Selection Component can select the most relevant characteristics for
prediction and without it, irrelevant characteristics may be introduced into the prediction
process, which results in significant deviations in the predicted outcomes.
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Figure 18. The predicted trajectories of a tugboat, where the green and red lines are the prediction
results using VEPO-S2S with and without the Portrait Selection Component, respectively. The Portrait
Selection Component is responsible for selecting the most relevant characteristics for prediction.
Without this component, the model cannot select appropriate characteristics to assist in prediction,
leading to a decrease in model robustness.

Figure 19 shows the visual comparison results of the Feature Fusion Component, which
effectively integrates the trajectory information with the vessel features and enhances the
correlation between them. Without the Feature Fusion Component, the vessel characteristics
struggle to be fully expressed, which leads to incorrect predictions.
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Figure 19. The predicted trajectories of a tugboat, where green and red lines are the prediction
results by VEPO-S2S with and without Feature Fused Component, respectively. The Feature Fused
Component effectively integrates trajectory information and vessel characteristics and increases the
correlation between both. Without the Feature Fused Component, vessel characteristics are difficult
to express adequately in the VEPO-S2S model, leading to a decrease in model accuracy.

Figure 20 denotes the comparison results of the Multi-head Decoder Component,
which can adjust the level of engagement in the trajectory information and vessel features.
The model’s adaptability decreases when removing the Multi-head Decoder Component.
Based on these ablation studies, the VEPO-S2S model demonstrates satisfactory accuracy
and robustness.
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VEPO-S2S VEPO-S2S without muti_d

2km2km
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32.76
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Figure 20. The predicted trajectories of a tugboat, where the green and red lines are the predic-
tion results using VEPO-S2S with and without the Multi-head Decoder Component, respectively.
The Multi-head Decoder Component regulates the involvement of the trajectory information and
vessel characteristics in the prediction process. Without it, the adaptability of the VEPO-S2S model de-
creases.

6. Conclusions

Through a study of the relevant literature, we found that vessel features and behavioral
preferences have a significant impact on trajectories. Therefore, this study proposes a new
trajectory prediction model, VEPO-S2S, which fully considers the trajectory information,
vessel features, and behavioral preferences. VEPO-S2S consists of two parts: the Multi-level
Vessel Trajectory Representation Module and the Feature Fusion and Decoding Module.
The Multi-level Vessel Trajectory Representation Module obtains trajectory information
(such as the longitude, latitude, course, speed, and sailing distance) along with Multi-
level Vessel Characteristics, encompassing Shallow-level Attributes (vessel length, type,
and draft) and Deep-level Features (Sailing Location Preference, Voyage Time Preference,
and anchoring time preference). These are encoded using multiple encoders. The Feature
Fusion and Decoding Module aims to select the most relevant vessel characteristics for the
current prediction environment and integrate them with the trajectory information before
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decoding with an enhanced decoder. The experimental results demonstrate that this model
outperforms other baseline models qualitatively and exhibits excellent performance on
grid-based maps.

7. Future Works

In this work, we took into account the impact of features and preferences beyond
trajectory information on trajectory prediction. In the future, we aim to optimize our model
to enhance the efficiency and prediction accuracy, validated across more global navigation
datasets. Moreover, we will explore other prominent models, such as the time-series large
model. Additionally, there are other factors influencing vessel movements, including
weather, sea conditions, ocean currents, and reefs. Therefore, we aim to incorporate more
influencing factors into the modeling process and undertake further investigations in more
complex scenarios.
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