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An al!ernative menns for deriving equations of motion of complex systems s demon-
stratzd. Since the methed is energy besed, it ie wezdul for elastic sy rteymelaemsehthﬁrm dass

method can handle vectors cxprcsscd relative to rotating coordinate systems, it does

not rﬁqmre the introduction of coordipate transformations and thereby produ

equetions in o simple form. The articls shows that Xansg’s method feor rigid y

systems is a special case of this slternative method. Two example prghlems show how

the algebra can be applied to rigid and flexible nonholonomic systems.
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[ATROGUTTION

Mazay research apphcations require ihe dymamic equations of mofion for
manipuiators. In complex @anipulater-envircnment syetoms, it is necessary to
sisnustate readistically the motior of the manipulatsr i its enviroument. Typiczl

cxamples are Space Shustle fight simulations performed by MASA. Similarly,
amuf.xtwn zids the desige of complex systems. Akhough some simulation
applications can be perfor e oﬁfhnmamdsnmnwﬁmgmmegmgmsnnulate
Rrbtieil in seallkme, asispletnvsimmlationiis Sitediming 214 for human cperators

Journgl of Robotic Sysiems, 5, 553-555 {1988)
© 168BE by John Wilay & Sora, bae CCC (T2Y-2223/36/ (N3 53-14$4.CN



Machine Translated by Google

o

554 Jaumnel of Rabotic Sysiems—1868

Another application of dynamic equaticns 1s the controi of manipulators.
FHEAMPESHRI AWH I8 Have been proposed for increasing the performance of
manipulators that i@cﬁﬁ%erfhe coiiputation of dniving torque. Driving torque
musi be computed by tiie dynamic equations. Many of the control aigorithms
require torque to be computed in real time.

‘Theve have been many aiiempis to solve manipulalor dynamic equations in
real vime. Some researchers ignore terms such as the Coriolis and Centripeial
accelerations. Ignoring terms has the advamage of reducing the number of
compuiations bui the disadvantage of being approximate. The approximation
may be unsatisfaciory for some AppHEaHIGRE

Another method for solving dynamic equations in reai time is parallel
processing, a satisfactory solution lor some cases, bui excessive hardware
expenditure for others.

Recursive calculation of dynamic equaiions redaces the computation timie.
Recursion, a simple process that utilizes the open chain structlure of a manipu-
lator to simpiify computation, may noi be appliCaBRETS systems that are not
open chain structuies; hence its applicability is imited.

Ciosed form reductions reduce ihe rinmerical compiexity of soiving dynamic
equations. Closed form reductions usually requiie considerabie experience and
staminia. The efiort required tor closed forin reduction can vary greatly among
the methods used for deriving the equaiions. For example, a meihod that
produces equaions in exms of matnix multipiications (such as the standard
Lagrange method) is difficult o reduce. A iechiiique thai produces equations
in terms of vector operaiions like dot and cross products is much easier to
reduce (han ine matrix formuiation. Either method of denivation produces the
same equations, bui each can produce the equations i difierent initial forsas.

ﬁ%tEﬁPQer oi this concept, consider soirie of the techniques available for
deriving equations of rigid, open chain manipulators. One technique is to use
rAghaRee's eguations.’ T'he mct%«%ipcd{at%ﬁﬁiangc begins by expressing the
scalar energy quantities of a sysiem. Smice Kinetic energy is a function of
absolute velocity, the presence of multiple rigid bodies makes it necessary to
introduce coordinate wransformations. These transtonmations are complicated
trigonometric functions. After iniroducing the transformations, severai partial
and voiai derivatives are compuied. The itigonometry makes it difficult (if not
impossible) to simpiify the equations. One significant advantage of the
Lagrange iechnigue is in noi including the forces that mainiain system
constraints.

Another popular technique uoiilizes Newton's equations. Althougli the
method can be derived from Lagrifges EJadtisli MeWoNS Idatibhs"dre
dR8fAciive. The metiod is usually based on vector equations and requires the
computation of avsoiute acceieration. Unlike Lagrange’s meihod, the tech-
nigae rieed not introduce coordinate transformations ai the outsei; herice the
results are often expressed with vector dot and cross producis. This vector
form ailows rednction by utiiizing the speciai properties of vector products. A
nmajor disadwéggh‘é icd%f tthe techni%ue 15 that even constraiii forces must be
included. g mssen -
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A third techniaue popular in the studv of spacecraft dynamics is the method
of Thomas Kane? Kane's method falso known as Lagrange’s form of
I’ Alembert’s Principle) is a vector formulation based on a modification of
Newton’s equations. Kane’s method is not energy based and requires the
computation of absolute velocity and acceleration as in Newton’s method.
Since the resulting equations are in vector form, so they can be reduced easily.
One advantage of the mathod i3 that foroes maintaimingeaorstraints do not
enter; therefore there are fewer unknowns than in Newton’s method. The
methnd’*; utility in deriving simpliied dynamic equations was demonstrated
recently.® Although at first glance the method appears awkward, it is powerful
in the hands of an experienced nser.

In the area of flexible (compliant) manipulators, many techniques are energy
hased and are not as well developed as those for rigid systems. As expected,
the energy techniques deal with scalare and require introduction of coordinate
transformations before computation of partial and total derivatives. Two
advantages of energy methods are that boundary conditions arise in the course
of equation devtivation and forces maintaining constraints are unimportant,

Vector-based Newtor’s equation technigues have been used in the deriva-
tion of equations for flexible svstems. Application of Newton’s eguations
require one to sum forces (stress) acting on an infinitesimal piece of the flexible
system. For many researchers working in the area of flexible systems this is an
unnamral process.

A method follows for formulating equations of motion of flexible, open
chain manipulators using energy. The method differs from present techniques
in that the formmlation does nat require the intreduction of coordinate
transformations. This is made possible through the proper maodification of the
partial and total derivatives normally required. Because the method is energy
hased, it should be natural for many researchers. The required boundary
conditicns arise during the derivation, and forces maintaining constraints do
not enter, Because the method is vector based, the resulting equations should
be easy to simplify. The method is applicable to six-degree-of-freedom
manipulators, which allows it to be used for the control and/or simulation of
practical manipulators.

EQUIVALENCE OF ENEREY AMD (ANE'S EQUATIONS

The technique demaonstrated in this article hegins with energy concepts and
derives equations of motion similar to those of Kane’s method The
equivalence between these techniques is not new. it has been shown? that the
Passerello-Huston equations can be used to compute Kane’s generalized
inertia forces given kinetic energy.

Consider a system with n degrees of freedom. It is often possible to define n
variables q; that satisfy all holonomic constraintsomheggnare called generalized
cacrdinates. The valocity of p(.m‘ P belonging to the system can be eYDTESSEC
2z o funcdiondligriodeiand time ¢, where 4, denotes the timgderivative of ¢. Tt
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may be convenient to define n quantities u;, Whicii are funcricne of g and .

as: ) _
Es kann praktisch sein,

,m
- Al
Gs= ) Wiyt X, for s=1,...,0n. 1)

1

1

The u; are called generslized speedgitie must be possible to sotve Eg. 1 for the
g, tenus. This means that mairix W is nonsingular.

If m lulp“' aonholoncemic coustrainis are applied io the system, coly p
(p=n-—mjol the g and u, are irdependent of cach cther. These consiraints
el beseapiieksed as:

e

u,=f,Anu.+B, for r=p+1,...,1. )
s=1

Once the p independent ;bst@kicwn (frere the eguations of metion), the
relations beWREFZEMHIWS %‘HB"Wuonlmlunﬁﬁﬁ@@él'ﬁli‘faﬂﬁé‘%msw solution
Rergradog) rfaen ised- OcahigesdeogplioPhéligligntities A, B, W, and X are
functions of time and the n coerdinates 4

The Passercilo-Huston equations for a sirmpie noniolonomic system defined
above are:

" (d 3KE OKE 5
Ft= (— - )(w+ W, A ) 3
:gl dt 34. aqs k=2p:+l KOk ( )

whereisF 7 is Kane's gereralized inertia force for generalized speed &, and KE
is kinetic eqergy. The connection between ,mt endal energy and Kane's
generaiized active foree h" s aiso been esiablished.?

With the Fasserclio~-iuston Eg. 3 one can begin with energy termes and
arrive at Kane's equations. T'l“l arg, however, several practical problems to
censiger. First, becauss q 3 requires the kinstic energy e be expressed as a
functior, coordinate ranmmmrmﬂmtinmmam nediately.
This makes the algs b 2 required 1o compute the paridal and total derivatives
excessive. Second, expressing thie cnergy in l-*urn' of g rather than i craces
some of the adva ...maé .s -‘ﬁ orded by Kaize’s metlod.

The disadvaatages ave so significant that aithough Kane’s melhed does have
an ensrgy bumigtﬁém is .1|.Jc merit [n usilizing the relationships.” In the
remaindes of the anicle, 2 medod will be demoastrated (kat allows manipula-
tion: of energy tenms without the serious shertcomings of Eqg. 3.

VARIATIONG OF VECTOR G ANTITIES

The present mediod is based on Hamilion's p acipie, whicl: siates that the
variation of e dime derivatve of the Legial _gm.'z is zero. Tonimipléaimikthe
teohuiqizrenitiSsenddviangigodidmput: the ».au.ia.u or: of eaergy. Ovdinarily the
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operation of variation is defined oaly for scalars (or matrices), bul derivation
of equaticns without the introduction of cecrdinate wansformation requires
computation of variations of vectors expressed in rotating coordinate systems.
Some of the basic definiticns have been pullished’ and these are reviewed.

Variation af & Vestar

To compuie what is hereir delined ss the absoiute Wielderorlefinievievior,ist is
AedREeNdiD  express the veclor with components along hree noncoplanar
staticnary coordinate directioris and compute the variation In each scalar
centponent. This can be expuessed as:

N

8(!.)n. 4)

N [\IJU

whereSdire fixed noncoplanar unit vectors in inertiai reference fraree n, and
fi are scalar funcuons.

Iz the current technigues that use vectoar notation, whenever a variation is
computed the vector terms are first expressed relative 1o an inertial reference.
This requises (he inweduction of ccordinate transforms before variazion.

Reletive Variation

Similarly, relative variations are conzpuled as the variation in lw scalar
components ¢f a vector expressed relative o a nonineréal reference. Mathe-
paatically this is

Rg{ = 7 5(g)i; (5)
=1

where reference R is nonizertial and g are scalar functions.
Relative and avsolute variations differ. Relative variations are often easier
@ cempute, bui Familcon's principie reguices competing abwolute varaticns,

Faiating Variallong

it is possibie (o relate reladve and absolute variations.*® If coordinate
systemn R is votating relative to frame N, the relative variations in these
coordinate sysiems are related as:

Ngy =RV + NgR x ¢ (6)

NGR &5 a vector of the possble rotations (ragie B can possess selative bodtame
WinKaie introduced veelor Y@ whes Giscussing corapatible vi Ltu_d dlsplace-
i a1

1

spound use of M&® for solviag praciical probierms
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Time Differentiation of Variations

The operations of reiative difierentiaiion and variation commute only wien
computed relative to the same reference.* Consider a vector V expressed in
conrdinate systera C. First compute the time derivative relative to a system B
and foilow with the variation reiative 1o a system A:

ASBDY = AS(ADV + BgAy
= AD*oV +{*88G4) x V + B34 « 26V ™
=BDASV +(48834) » V.
'The operator ‘D represents difierentiation relative to frame i, = ~" 7% is
I - - dar, zu sehen ist.
angular velocity of frame A as seen in B.
By reversing the order of application of the operators, Eq. 7 can be
expiessed as:
BpAsV =BD(EsV + 445 x V)
=B55DV + (°D*§%) x V + *6% x DV (8)
=A55DV +(°D*§®)x V.
Combining Eqs. 7 and 8 and using 26" = — 4% yiclds:*

BryB . AcH =
DPe% = 45934, (8

~

Variation of a Dyadic

A dyadic | is defined as:

I=Y ¥ nas (10)

i=1j=1

-

wierdST; is a scalar and g and B are noncopianar unit veciors fixed in
coordinaie systems A and BVedtks A and B are normally not commutative.
Dyadics have sgecial pmp<_=rties5 but can be though_t of as vectors whose
S8l SREIRETS RIS SRR SN Sl SR A HR AL P Y SR e D e
BRe" Mad rere %Qﬂ%r?ﬁ%%tors as operating on the ieft or the right. Consider
the variation relative to frame C of a dyadic, expressed as:

csi = }::‘

3
;; {{€8(1,d)1b; + (L,d:)(“sb)}. (11)
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The variation is computed by treating the dyadic as a vector whose com-
ponents are also vectors. From Eq. 6, Eq. 11 becomes:

3 3
C5?= Z Z {(*8(I;a;) + €g* x (Ii;d:)]l;; £ (Ii;‘&i)[aai’} +€6% x {’;]} (12)

i=1j=1
which reduces to:

3
°s1=Y, ¥, ((oly)ab; + S84 x Lah, — L,a(b, x “§%)) (13)

i=1 j=1

and tinally becomes:

sl = ()f ) (sti,)a,-s,) +Cerx T-Tx <g®. (14)

i=1 j=1

Comauiing ths Tt VorHatioa of Vectors

Let a position vector P rclative to coordinate system A in a system with n
generalized coordinates be expressed as:

3
= L fd, (15)

where d; are unit vectors fixed in coordinate system A, and f; are scalar

functions of the nigrBsralizeshGaridinates and time. The variation of p
relative to frame A s

Asp= Z 2q, (59 (16)

It n generaiized speeds are defined as in Eq. 1, the derivaiive of j in frame A
(the velocity of P in A) is:

APy op
V= ,Z:.aq,(zw +X)+at a7

s=1
1f there are no nonholonomic constraints, ail 8g, in Eq. 16 can be considered

arbitrary; hence another set of arbitrary variations du, can be defined as:

6q,= Y, Wad, (18)

s=1
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because W is nonsingular. Equation 16 can be written;

Asp= 2 2 wsu, ZAV Su, (19)

r= ls=l

where #V? is Kane’s partial velocity of ;ﬁ:? nt P in frame A for generalized
speed . This last suhstitution can be venified by Eq. 17.
Now consider the case of m simple nonholonomic constraints given by Eq.

2. Ry substicrting Eg. 2 into 17, veloeity can be exprassed:

Z f‘ aq’[wrs*’(’i wdAl-!)]u:"'

r=1s=1 j=p+1
(20)
- 3P ( ) op
W,;B; + X,
lz:t a‘Ir ,-;H ok at’
The variation of Eq. 3 can be expressed as:
Sty = i Adu, forr=p+1,...,n. (21)

s=1

Naotice that the vector B does not contribute to the variation because the
variation is taken instanteneonsly. Since B is not a function of the variables u.,
it has no variation. This concept is dlscusseéleégh!éﬂrgfgogasgr\der the topic of
rhecnomic nonholonomic constraints, Note that although R disappears from
Eq. 21, it does contribute to the problem. The equations of motion are
expressed as p equations that can be integrated for the p independent u.
r=3, ). Bauations, 3 frhjeh contain B) are vsedgherselve fe@nnthe
remmmng u,, then Eq. 2 are integrated for g,.
Substituting Eq. 21 into Eq. 19 results in:

a5=3 ¥ aq’[ (,Z W,,A,-,)]Su,

r=1s=1 =p+1

(22)
-5, ot

The term # V¥ is Kane’s nonholonomic partial velocity as demonstrated in Eq.
20.

These results can be summarized as follows. Suppose the time derivative of
a position vector B belonging to a system with p independent generalized
speed u: is written as a func&%lé oL the w and time as Vluy, ..., up, 1), and the
absolnte variation of the vector p (the virty; %“gﬂ‘ﬁmm . i5sEqAviLes, The
wmm t must be an expresslon of al] possible changes the vector

) erfahren kann
can experience independent of time in light of all constraints (holonomic and
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L. . ausgedriickt
nonholonomic) imposed on the system. This can be expressed as:

ASF= Y, — & (23)

where & represents an arbitrary virtual quantity and V is defined in Eq. 17 for
holenomic systems aad in Eq. 20 for a ncrholonomic systemi.

The quantifies % can be interpreted similarly. Suppese the angular velo-
me R relative to Aoifchipesssettbras 6P (uygoenommpen). Since 467 is
rexsion of all possible rotations of frame B relative to A4, it can be
written as:

3 a®

au.-

AgP = f 5. (24)
i=1

Note that the gquantities §; found in Eqs. 23 and 24 are identical. The formal
derivation of Eq. 24 is performed similarly to that of Eq. 23.

Exampip Probisir:s

Twao examples demanstrate the caoncept discussed in this article, 3 simpler
example can be found in Ref, 4. The method can be applied to complex
systems such as a six-degree-of-freedom robot in a similar manner. First
consider the problem of deriving the equatiops of motien of a three-dimen-
sional, n Jink, cpen-loop manipulztor. Let initial reference frame 0 be attached

meanipulator links.
Through proper definition of the inertia dyadic,” the kinetic energy of the
system is:

=%{i [°& - i . 0&i+n’i0"}i*_0‘7i*]} (25)

i=1

ist :
where f is the inertia dvadic for bodv i, m; is mass of body i, i* is the mass
. ‘i - . . . .
center of body i, and ° V" is absolute velocity. Assuming only gravity loading,
the potential energy is:

PE== 5 G 7" (26)

7™ is the position of the mass center of body i, and £ is the gravity vector.
Subtracting potential from kinetic and integrating, the functional in Hamil-
ton’s principle is obtained:

r=[[B508 Toatmev™ 004 ph]a @)
]

i=1
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The equations of motion are obtained by setting ali arbitrary varations of
the functional to zero, hence the variation of f must be computed. One way to
do this is:

(‘;f—'{zl (‘)i"i‘i(‘i(ﬂillni "i * 6 Ll‘ !(Sg)'pi +g'(15pl )I}dt—o.
t Li=1

Since the energy terms are scalars, the variations in all frames are identical.
For example °8(° V'™ - °V™) is the same as ‘8(°V'" - °V'™). Distributing the
variation among the dotted ternis requires careful observation of the irame of
the vartation sizes the mndivideal ternmss are vectors. Ia £q. 2& ihe fArst ternm s
varied in frame i because ihe inenia dyadic is conisiant relative to frame i
therefore, oniy the angular velocity vector contribuies to the variation. The
linear veiocity term in Eq. 28 1s varied in the ineriiai frame. The potential
energy term is varied in some aroitrarily seiecied frame j. When the variation
is applied io the gravity vector, there 1s a contribuiion because the vector is
not fixed in frame j.

'T'ne next siep is o reduce ail vanaiions of derivaiive terms inio derivatives
of variaiions by some of the ideniities in the fast section. Equation 28 can be

axpreluiKtas:
8f = I {Z (%6 - I - °D°§ + mO V'™ - °D°sp* + (§°x @) - p*
t \i=1

(3

ke é . (’85'*)]] d(’ = O ""
Using Green’s theorem, Eq. 29 cdf°B&Witten:
8f= j {Z[_OD(O‘BI . f') . 061' _OD(m()Vi*) . 08}3"4—{1}""’ % g) . 06’,
t Li=1
g (‘éff')'j} dt=0¢.  (30)

individuai equations (n of them) are extracied from Eq. 30 by expressing
the variations as a function of n arbitrary virtual quaniities. For exampie, with
n quantities u;, as discussed in the last section, so thal linear and angular
velocities of the sysiem can be e¥pressed as function®¥iPosition, tiMSRIREYES®
uge ol %%S%Q?Jf’g ed as:

uy. (€3

The quantity ‘8p' is equal to:

n
iJﬁl"’: Z —_— Su; (32)
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If the u; are chosen to be the n joint variables, it is easy to compute the
terms in Fas. 31 and 32. This choice is not necessary, hoyevesr, and significant
simptifications can come with an aliernative.” Gnce the variations are expres-
sed in terms of the n quantities u;, equations are extracted by collecting all
terms muitiplHP'E SRR seiting the collection o 2ero lor aii §.

The resulitng equations are similar to rhose irom Rane's iechnique. Because
the terms appear in a high levei form invoiving doi and cross products, it is
possible {0 manipuiste ihe terms intw signiticantly different forins before any
coordinate transformations need to be computed. Significant differences from

different coordinate sysiems to find simphfications, and the meihod being
energy based, thereby compatible with many other techmiques for elastic
systems.

Cinztic Enargy Termiz for a Fieichle Bedy

This exampie considers the kinetic energy ierms for a syster of several
fiexivie bodies. ihe poientiai energy is sumpie to compule. Since i€ ioiai
energy is merely the sum of energy of all bodies, consider the energy
contribution of a single body B, As shown in Figure 1, let p” represent the
absolute position of 2 particld BEEHERE (S BN time integral of the kinetic
energy of B can be expressed as

1 ,
j KEdt = j' j 2 pADP? - “DpPdydt (33)
t t Jool 2

where A is an inertial reference frame.
The probiem becomes complicaled when ihe variation of kinetic energy is

Figuee 1. A single fleaible body.
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computed. The simpiest way of writing the variation 1s:

F j KEdt = J' I p“Dp? - A8ADpPd dt = -[
t t Jvol

I pADADpP - A5pPd 0 dt.
vol
(34)

in the rigid body case, the quautity “83” is computed irom Eq. 24. In
continuous elastic systems, there are an infinite number of u. Define the elastic
deflection of point p as vector ¢, and define points # on a neutral body so that
points n and p coincide when = 0. If a3 cocrdinate system is established in
body B and p*' wrirten as the sum of vectors # and & shown in Figure i:

ASHP = A6 -+ 267 (35)

A8 tor ail n is a function of a finite number of independent u quantities. The
terms 83 in Eq. 35 are considered arbitrary, subject io boundary conditions.

Although Eq%ghfs %3"!%'%)%&? It may not be useful. An alternative form of
Eq. 34 follows. Note the ease with wiiich the equation is changed. Searching
for reductions typicaily requires expanding, redistributing, and precipitating
terms many times, looking for identities and common terms. Therefore the
ease with which equations are reduced is related to the ease of their manipula-
tion. o

Begin with the position vector defined as in Figire 1. The velocity of a
material point is:

APP=APR L AGB x § +BD§. (36)

The kinetic energy is:

1
KE = KEN+5_[ p[A3P x 8- A@P x §+°Di - *Dé
vol

(37)
+2(AV"-BDg+4V" . AGB x § + BD§ - 2638 X 7)) door.

The term KEy is the rigid body kinetic energy terms that wouid exist if the

body had no elastic displacement. The vanation of kinetic energy can be
expressed as:

6KE = 5KE~+I p[Aa® x - '8(A3® x ) + D5 - "85
vol
+I§AV . AGB X §+ AV I5(AR5 X §)
. (38)
+j8Avu . BD6+A";'n . f&"Dﬁ

+kEDE - AGB X §HEDE - 5457 X 8)] dps-
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The terms ‘8, /8, 8, '8, and ™8 denote variations in five different coordinate
systems to illustrate that terms need not have their variations computed in the
same coordinate system. The reason one would introduce a variation in some
coordinate system other than an inertial frame is bt(/aruse it may be easier

latignen In roti renderb}ioordlnaten auszuwer

evaluate variations in rotating coordinates, depending on thé specific pro
Now consider the problem of manipulating Eq. 38 into another form to
demonstrate the ease of manipniation. With the identity from Eq. 6 the
variation of kinetic energy is:
SKE = 5K5N+j Al(AGE X 5+ AV +BDg) - <6(A3P x i)
vl

+(PDE+AV" + A58 x §) - °68D3

+(A‘BB e "J'+BD6) . caA"}n

+(A‘;B X 6) . [16¢: X (A(l-;B e 6)]

+AV .65 X (438 X §) (39)

+BD13 . ké‘c X (AéB X 6)

+BDi - ™§° x BD5+AV" - ig° x D3

+%§°x BDj - 238 x §

+A(BBX g ié’ch"}n +BD6‘ ié’c xA"}n] door.
This is easiiy reduced to:
SKE = SKEN"'I p[A‘-}P ” Ca(Aa—'B X §+ BD6+A‘“}u)_A"}n . csA"}a] door.
vol
(40)

Using the relations in Eq. 16, Eq. 40 c#8°B&Written:

KE = 8KE~+I p[AVP - AS(AGE X 5+ PDi +A V™)
vol

+AVP.cgaxAPP
_A"}n . aGA"}u_A"}n . cé’a )(AV"] door

=5KE~+I p[AVP . A3(AVP)+cg° - AVP X AVP
vol
—AV"‘GSA‘?"—CG.“'A‘?"XAV"]M (41)
=8KEN+I pLAVP - A5(AVP)
val

_A"}n 5 nsA"}n] dwl
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(=

566G Journg' of Fuboiic Svstaras-~15833
= [ LAV 454 77)] do
vol
which is ideniical to the resuiis in Eq. 34.

CONCLUSIONS

‘The process demonstrated in this articie is an aiternative method for
accommodating rotating coordinaie systems and nonhoionomic constraints i
energy based formulaiions of equations of miotion. The existing energy
meihods accommodate rotaiing coordinaies by introducing vanable coor-
dinate transiormations to express energy as scalar functions in inertial
reference systems. When the energy terms are difierentiaied, the coordinate
transforms complicate the formulation. The technique Goes not require intro-
duction of transformations until the equations have been obtained. 'T'his results
in equations thai assume a simplified form amenable to ciosed form reductioa.

Previous energy techniques appiied to nonholonomic systems required the
iniroduction of mairices relating ihe dependent and independeni generalized
coordinates. The process shown accommodates nonhoionomic constraints by
expressing velocity in terms of a subset of the generaiized coordinate deriva-
tives. T'he subset chosen musi satisfy identically ail nonholonomic constraint
equaiions. The variation of position vectors are related to partiai derivatives of
the velocities, thereby expressinng an arbitrary variaiion that automatically
satisfies all constraints.

By defining generalized speeds as funciions of the generalized coordinates,
coordinaie derivatives, and time, the resuliing equations appt:a.r’E ff"a first order
form ideal for computer mtegratlon

The method can 5 (& to derive Kane’s equations for rigid systems, not in
itseif a contribution since the Fasserello-Huston equations verified that Kane's
method has an energy basis. The demonstrated process, however, does not
have the practical difficuities asscciated wirh the Passerelio-Hruston equations
for deriving equations using energy principles.
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