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Abstract: MicroGrowthPredictor is a model that leverages Long Short-Term Memory (LSTM) net-
works to predict dynamic changes in microbiome growth in response to varying environmental
perturbations. In this article, we present the innovative capabilities of MicroGrowthPredictor, which
include the integration of LSTM modeling with a novel confidence interval estimation technique.
The LSTM network captures the complex temporal dynamics of microbiome systems, while the
novel confidence intervals provide a robust measure of prediction uncertainty. We include two exam-
ples—one illustrating the human gut microbiota composition and diversity due to recurrent antibiotic
treatment and the other demonstrating the application of MicroGrowthPredictor on an artificial gut
dataset. The results demonstrate the enhanced accuracy and reliability of the LSTM-based predictions
facilitated by MicroGrowthPredictor. The inclusion of specific metrics, such as the mean square error,
validates the model’s predictive performance. Our model holds immense potential for applications
in environmental sciences, healthcare, and biotechnology, fostering advancements in microbiome
research and analysis. Moreover, it is noteworthy that MicroGrowthPredictor is applicable to real
data with small sample sizes and temporal observations under environmental perturbations, thus
ensuring its practical utility across various domains.
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1. Introduction

The human microbiome, an intricate ecosystem of trillions of microorganisms residing
in and on the human body, plays a crucial role in maintaining physiological homeostasis,
metabolic functions, and immune responses [1]. Disruptions in the microbiome have been
linked to a plethora of conditions, ranging from gastrointestinal disorders to more systemic
diseases such as diabetes, obesity, and even neurological disorders [2]. This symbiotic
host–microbe interaction underscores the necessity to understand the dynamic nature of the
human microbiome [3], particularly how it changes over time and in response to various
environmental stimuli [4,5].

Under normal conditions, the gut microbiome is composed of a diverse community of
bacteria, with Firmicutes and Bacteroidetes being the predominant phyla. Environmental
perturbations, such as changes in diet, antibiotic usage, and exposure to pollutants, can
significantly alter the composition and function of the microbiome, leading to potential
health implications. For instance, antibiotic treatment can dramatically reduce microbial
diversity, often resulting in an overgrowth of resistant bacteria and a decrease in beneficial
microbes, which can disrupt metabolic processes and immune functions [6]. Understanding
these population dynamics is crucial for developing strategies to mitigate the adverse effects
of such perturbations on human health.

High-throughput sequencing technologies, particularly 16S rRNA sequencing, have
ushered in a new era in microbiome studies, allowing for detailed assessments of microbial
diversity and relative abundance across different human populations and conditions [7]. How-
ever, the vast data generated by these technologies present both opportunities and challenges.
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One of the primary challenges is deciphering the temporal patterns and predicting future
states of the microbiome, essential for preventive and therapeutic healthcare applications.

Predictive modeling in biometrics has historically employed various statistical meth-
ods, but these traditional approaches often fall short in handling the high-dimensionality
and nonlinearity of microbiome data. The advent of machine learning, and more specifically
deep learning, offers promising new avenues for such complex data [8]. Recurrent Neural
Networks (RNNs) [9] and their advanced variant, Long Short-Term Memory (LSTM) net-
works [10], excel in analyzing and predicting temporal sequences, providing an excellent
framework for modeling microbiome dynamics.

In this study, we introduce the MicroGrowthPredictor model which aims to harness
the power of LSTM networks to predict changes in the human microbiome in response to
environmental perturbations, a critical step towards personalized medicine and targeted
therapeutic interventions.

2. Materials and Methods
2.1. Long Short-Term Memory (LSTM) Model

The Long Short-Term Memory (LSTM) network, a specialized form of the recurrent
neural network (RNN) architecture, is explicitly engineered to address the challenges of
learning from sequential data, notably long-term dependencies. Traditional RNNs, while
theoretically capable of handling such dependencies, often fall short in practice due to
the vanishing gradient problem, wherein information is lost over each time step during
training. LSTM networks are designed to overcome this limitation, thereby making them
particularly suitable for applications across diverse fields such as time series analysis,
natural language processing, and, pertinent to our work, microbiome data analysis.

LSTM networks introduce a more sophisticated cell structure than traditional RNNs [11].
Each LSTM cell contains mechanisms called gates that regulate the flow of information into
and out of the cell. There are three types of gates within an LSTM cell (Figure 1A):

Figure 1. Long Short-Term Memory (LSTM) architecture: (A) A zoom-in on an LSTM cell, showing
its three gates: the input gate, forget gate, and output gate. (B) The flow of the input and output data
in an LSTM network from time step t− 1 to time step t.

• Input gate: Modulates the amount of new information to be added to the cell state.
• Forget gate: Determines the extent of information to be discarded from the cell state.

The forget gate helps to eliminate irrelevant or outdated microbial information, thus
maintaining only the most pertinent data for accurate modeling.

• Output gate: Controls the quantity of information to be outputted from the cell. For
microbiome data, the output gate helps decide which processed microbial information
should influence the network’s predictions or analyses at each time step.
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These gates work together to update the cell’s state and allow the LSTM to both
remember and forget information over long sequences (Figure 1B), which is crucial for
learning long-term dependencies. Figure 1B illustrates the transition of data through the
LSTM network from one time step to the next. It shows the input data and output data as
they flow from time step t− 1 to time step t. At each time step, the input data, along with
the cell state from the previous time step, is processed by the LSTM cell. This processing
results in an updated cell state and an output, which are then passed on to the next time
step. This sequential mechanism allows the LSTM network to effectively handle temporal
dependencies, ensuring that information is carried forward and utilized across different
time steps for improved prediction and analysis in time-series tasks.

In the realm of microbiome analysis, understanding temporal dynamics and sequential
patterns is essential, given the nature of microbial communities’ evolution and interaction
over time. Here, we adopt specific notation to elucidate the mechanics of the LSTM model.
Consider a training dataset D = {(xt, yt)}T

t=1, where xt denotes the vector of relative
abundances [12] of all microbial taxa at the t-th time step and yt signifies the corresponding
desired output. The LSTM takes these input sequences and processes them through its
intricate cell structure, capturing valuable temporal dependencies present in the data that
are critical for accurate predictions and analyses in microbiome studies.

2.2. Model Structure for Microbiome Growth Prediction

The LSTM model employed in this study is designed for both simplicity and power.
The input layer is tailored to process the relative abundance levels of taxa, accommodating
an extensive array of microbial taxa denoted as xt. Comprising ntaxa nodes, each represent-
ing the relative abundance of a particular taxon, this layer corresponds to the total count of
unique taxa identified in the microbiome dataset.

Moving into the architecture, our model consists of two hidden layers positioned
between the input and output stages. The primary hidden layer incorporates an LSTM with
nh hidden states, functioning within a single layer. This configuration is crucial, allowing
the model to capture and interpret temporal dynamics inherent in the input sequence,
courtesy of the LSTM’s characteristic memory cells.

To address overfitting and enhance the model’s robustness, a dropout strategy is
implemented following the LSTM layer. This strategy, governed by a pre-specified dropout
probability p, involves the arbitrary deactivation of nodes, strengthening the model’s
generalization capacity. Nodes unaffected by dropout are then passed to the subsequent
layer—a fully connected stratum containing nfc nodes.

The secondary hidden layer employs the Rectified Linear Unit (ReLU) activation
function on data points derived from the fully connected layer. This imparts essential non-
linearity, preparing the model to discern complex patterns within the dataset. Predictions
are formulated based on the output of this layer.

In summary, our MicroGrowthPredictor model for predicting microbiome dynam-
ics integrates purpose-built layers, each designed to interpret the nuanced temporal dy-
namics in microbiome data. The architecture begins with an input layer hosting ntaxa
taxa-representative nodes, transitioning into a single-layer LSTM with nh hidden states.

While not explicitly detailed, we presume that the LSTM layer retains the conventional
composition of LSTM cells, including input, forget, and output gates for effective informa-
tion transfer. This structure is instrumental in enabling the model to learn and preserve
long-term dependencies inherent in sequential data.

After the LSTM layer, a dropout technique with a designated probability p is applied to
serve as a regularization mechanism, mitigating overfitting risks. Subsequently, a fully con-
nected layer with nfc nodes is introduced, culminating in a dense layer adept at capturing
nonlinear interdependencies in the data. The final phase of the model incorporates a ReLU
activation function, introducing nonlinearity and enhancing the model’s complexity for
detailed data interpretation. This stage is crucial in shaping the ultimate output, ensuring
precise and fluid predictions amid the dynamically shifting landscape of microbiome data.
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2.3. Training of the MicroGrowthPredictor Model

When working with time series data and using LSTM to predict the impact of envi-
ronmental perturbations, cross-validation must account for the temporal dependencies
inherent in the data. To ensure robust and accurate predictions, we employed a time series
cross-validation method using a rolling-window approach. The dataset was divided into
K consecutive folds without shuffling. For each fold k, the model was trained on the first
k folds and tested on the k + 1 fold, repeating until each fold served as the test set. This
method ensures temporal dependencies are respected and avoids data leakage.

Evaluation metrics, such as the mean square error (MSE), were collected for each
fold, and the average performance across all folds was computed to assess the
model’s robustness.

2.4. Prediction Interval

While traditional approaches to establishing confidence or prediction intervals in
deep learning models face considerable challenges due to these models’ nonlinearity and
complex architecture, recent advancements have begun to pave the way for more robust
solutions. One such advancement is the work of [13], in which the Monte Carlo (MC)
dropout framework was leveraged to introduce a method that, while effective, leaves room
for further refinement and application in new domains, such as microbiome data analysis.

Our research builds upon this foundational work, adopting the principle of stochastic
dropouts after each hidden layer in the neural network architecture. However, we extend
this concept by tailoring the dropout process and the subsequent interpretation of the
model’s outputs specifically to the characteristics and complexities of microbiome data.
This adaptation not only allows for the theoretical interpretation of the model’s output
as a random sample from the posterior predictive distribution but also acknowledges the
unique data behavior in microbiome studies.

The process of constructing an empirical distribution of predicted values by treating
each prediction during the dropout as a sample from the underlying data distribution
represents a nuanced approach in our study. It diverges from classical techniques by
providing a window into the model’s predictive capabilities and uncertainties specifically
fine-tuned to the microbiome context, thereby bolstering the robustness of decision-making
based on these predictions.

In our approach, we denote the test data sought to be predicted with the superscript ∗.
The prediction interval’s foundation lies in the conditional probability p(y∗|x∗,D). This
probability can be expressed as the integral of the product of p(y∗|x∗, θ) and p(θ|D) over
the parameter vector θ, denoted as follows:

p(y∗|x∗,D) =
∫

θ
p(y∗|x∗, θ)p(θ|D)dθ.

θ represents the parameter vector of the deep learning model, and p(θ|D) corresponds to
the posterior distribution. However, deriving an analytical form for p(y∗|x∗, θ) is generally
infeasible. To overcome this challenge, an approximation technique utilizing a variational
distribution denoted as q(θ) is proposed in ref. [14]. Consequently, the following approxi-
mation is obtained:

p(y∗|x∗,D) ≈
∫

θ
p(y∗|x∗, θ)q(θ)dθ ≈ 1

K

K

∑
k=1

p(y∗|x∗, θ̂k), (1)

where θ̂k ∼ q(θ). This final approximation, achieved through the sampling of {θ̂k}k=1,...,K
from the variational distribution q(θ), employs the technique of Monte Carlo integration.
Moreover, this approximation is equivalent to implementing the Monte Carlo dropout
algorithm introduced in [13]. In essence, for a given testing data point (x∗, y∗), the predic-
tive output y∗ is evaluated multiple times at x∗ with random dropout of nodes, and the
resulting empirical distribution serves as an estimate of p(y∗|x∗,D). Prediction intervals
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capture the variability originating from two primary sources: model uncertainty (η1) and
inherent noise (η2).

The following steps outline the process: For each individual data point x∗ in the
testing set, calculate the corresponding output ỹ∗ by randomly dropping out each node
with a given dropout probability p. Repeat this process B times to obtain a large number
of predicted values ỹ∗, each of which varies due to the random dropout of nodes. Next,
compute the model uncertainty η1 by calculating the average squared difference between
each predicted value ỹ∗i and the mean of all predicted values ¯̃y∗. This is done using the
formula η1 = 1

B ∑B
i=1(ỹ

∗
i − ¯̃y∗)2. To quantify the inherent noise in the predictions, calculate

the average squared difference between each predicted value ỹ∗j and its corresponding true
value y∗j using the test dataset of length V. This gives us the inherent noise η2, computed as

η2 = 1
V ∑V

j=1(ỹ
∗
j − y∗j )

2. Combining the model uncertainty and inherent noise, compute the
overall uncertainty η as the square root of the sum of η1 and η2, i.e., η =

√
η1 + η2. Finally,

determine the upper and lower bounds of the prediction interval by adding and subtracting
zα/2 times η from the mean predicted value ¯̃y∗. Here, zα/2 represents the z-score associated
with the desired confidence level (1− α)100%. A formal algorithm is listed in Algorithm 1.

Algorithm 1: LSTM Neural Network and Prediction Interval.
Require : x, y, x∗, y∗, p, t, nh, n f c
Ensure : θ, U, L

1 repeat
2 z1 ← x from LSTM layer with t and nh;
3 z2 ← z1 through random dropout with p;
4 z3 ← z2 from the fully connected layer with n f c nodes;
5 Apply ReLU to z3;
6 ŷ← z3 from the output layer;
7 Evaluate ŷ with y;
8 Update θ for model mθ ;
9 until the last epoch;

10 for i = 1 to B do
11 ỹ∗i ← mθ(x∗) with random dropout;
12 end
13 Compute ¯̃y∗ and η;
14 U, L← ¯̃y∗ ± zα/2 × η;

2.5. Parameter Tuning

To optimize the performance of our MicroGrowthPredictor model, we employ a
two-step tuning process.

In the first step, we preselect the numbers of hidden units in the LSTM layer (nh) and
fully connected layer (n f c) based on preliminary experiments. We then explore different
combinations of the dropout probability (p) and the sequence length (T), which repre-
sents the number of previous data points used as features for prediction. The model’s
performance is evaluated by calculating the mean square error (MSE) on a separate testing
dataset, and we select the combination of p and T that minimizes this error.

Once the optimal dropout probability and sequence length are determined, we proceed
to the second step, where we fine-tune the numbers of nodes in both the LSTM and fully
connected layers. For each architectural combination, we train the model multiple times
with different initializations to account for variations introduced by random dropout and
initial weight settings. We calculate the MSE for each training run and select the architecture
that results in the lowest error on the testing dataset.

This rigorous tuning process ensures that our MicroGrowthPredictor model is op-
timally configured for the specific dataset under consideration, thereby enhancing its
predictive performance.
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3. Results

In this study, we employ the MicroGrowthPredictor model and associated tuning
procedure to two distinct datasets: the antibiotic ciprofloxacin (Cp) dataset from [15] and
the artificial gut dataset detailed in [16]. Both datasets offer insights into the microbiome’s
temporal dynamics under varied environmental perturbations.

3.1. Ciprofloxacin Dataset

Reference [15] underscores the significant alterations imposed on the human gut
microbiota composition and diversity due to recurrent antibiotic treatments. This research
involved an in-depth surveillance of bacterial communities in the distal gut across three
subjects (D, E, and F). Stool samples were periodically gathered over ten months, summing
to 52–56 samples per individual. Within this timeframe, each subject was administered two
separate 5-day regimens of the antibiotic ciprofloxacin (Cp), spaced 6 months apart. Intense
sampling—daily over two 19-day spans coinciding with each Cp course—provided a
detailed perspective of the microbiome during antibiotic exposure. Outside these windows,
samples were acquired either weekly or monthly, capturing the microbial composition in
the absence of treatment.

For illustrative purposes, we focus on subject D. Our optimization process involves
generating a contour plot of the mean square error (MSE) against varying values of the
dropout probability p and the number of time steps. Figure 2 visualizes this relationship,
guiding our selection of an optimal combination for refining the MicroGrowthPredictor
model. The contour plot of the mean square error is plotted with dropout probability p on
the x-axis and the number of time steps on the y-axis. In the contour plot, the darker the
shading is, the smaller the error is. We use an optimization function to identify the best
combination of dropout probability and sequence length.

Figure 2. Contour plot of the mean square error over p and t for Subject D EU766613: The darker the
contour plot is, the smaller the error is. We can identify the best combination of dropout probability
and sequence length.

Subsequently, our focus shifts to ascertaining the optimal node count for both the
LSTM and fully connected layers, as depicted in Figure 3. The x-axis represents the number
of hidden states in the single LSTM layer, and the y-axis represents the number of nodes in
the fully connected layer. Different combinations result in changes in the mean square error
value. The contour plot provides a direct representation of the smallest MSE, indicated by
the darkest area on the figure.
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Figure 3. Contour plot of the mean square error over n f c and nh for Subject D EU766613: The x-axis
represents the number of hidden states in the single LSTM layer, and the y-axis represents the number
of nodes in the fully connected layer. With different combinations, the mean square value changes.
The contour plot basically gives us a direct impression of the smallest MSE, which is represented by
the darkest area on the figure.

Through this systematic exploration, our objective remains consistent: pinpointing a
configuration that minimizes testing dataset error, thereby enhancing the efficacy of the
MicroGrowthPredictor.

It is essential to note that in our training dataset, we included two-thirds of the
observed data, aiming to provide a robust foundation for the model. Notably, there were
two data points corresponding to antibiotic administration for each patient. One of these
points was included in the training set, while the other was reserved for the prediction
set. Based on our observations, the reaction to the first antibiotic exhibited a delayed
response compared to the second one. This observation explains why our predicted data
demonstrate a delayed pattern in Figure 4.

The temporal insight provided by the visualization of the trajectories of relative
microbiome abundance was crucial for understanding the dynamics of microbiome changes
and their potential implications for host health. To elucidate further, Figure 4 presents
an analysis and prediction of the relative abundance of Bacteroid EU766613 for subject D,
utilizing the aforementioned optimal parameters. The antibiotic administration intervals
are denoted by a blue dotted vertical line, while the red dotted demarcation segregates the
training and testing periods. In our study on repeated antibiotic treatments, we prioritize
the inclusion of extensive data on antibiotic interventions to bolster the predictive power
of our model. This data-driven approach enhances the accuracy of subsequent treatment
predictions, offering a critical tool in combating antibiotic resistance through informed,
strategic application of therapies.

The visualization underscores the MicroGrowthPredictor model’s capability in un-
derstanding microbiome dynamics and formulating predictions rooted in these identified
patterns. This is achieved with the model trained over 200 epochs using a learning rate of
0.001. Furthermore, the mean square error loss for the training data is 0.00081, and for the
testing data, it is 0.01021.
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Figure 4. Trajectories of relative abundance of Bacteroid EU766613 for subject D. The chosen parame-
ters are p = 0.05, t = 6, nh = 256, and n f = 256. The blue vertical bands represent the two antibiotic
treatment periods, and the red dotted line splits the data into training and testing.

3.2. Artificial Gut Dataset

The dataset provided by [16] comprises time-resolved readings of the gut microbiota
sourced from an artificial human gut. These data, captured both daily and hourly, originate
from an artificial gut constructed using continuous-flow anaerobic bioreactor systems,
ensuring an accurate representation of human gut microbiota dynamics. Over a month,
four ex vivo vessels, each initialized with an identical human fecal inoculum, were cultured.
To ensure experimental fidelity, key parameters like pH, temperature, media input rate,
and oxygen concentration were stringently maintained. On Day 23, microbial dynamics
received a deliberate stimulus via the introduction of a Bacteroides ovatus bolus, a strain
isolated from the stool donor. However, unforeseen disruptions to the feed supply in two
vessels between days 11 and 13 introduced unplanned microbial variations. Notably, we
observed significant changes in the population of Rikenellaceae, a family of bacteria known
for its role in the human gut microbiome. Rikenellaceae are involved in the breakdown of
complex carbohydrates and play a crucial part in maintaining gut health and metabolic
functions. The changes in this population are particularly interesting because they can
provide insights into how disruptions in diet and microbial introductions influence gut
microbiota stability and function.

In this example, the first vessel serves as our training set, while the second vessel
functions as our testing set. Our MicroGrowthPredictor tool, configured with an optimal
dropout probability (p) of 0.25, utilized the preceding five time points to identify four
parameters and achieve optimal predictions. The fully connected layer was equipped with
256 nodes, and the LSTM layer comprised 128 nodes. The model underwent training for
800 epochs. The mean square error for the training data is 0.00057, and for the testing data,
it is 0.01456. Without using our predictive model, a generalized additive model (GAM)
has an MSE of 0.0048 for the training data, which is approximately 8.42 times higher. The
performance on the testing data is significantly worse, so it is not included for comparison.

The trajectories of relative microbiome abundance visualized in Figure 5 provide
critical insights into the dynamics of micribome changes over time. The blue line in
Figure 5 represents all the actual data, while the orange line is highlighted simultaneously
with the predicted line (green). In our deep learning algorithm, we utilized the previous
five time points to predict the next one. Notable variations, especially for Rikenellaceae,
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were observed due to the disruption of the first two vessels between days 11 and 13. These
visualizations reveal significant shifts in microbial populations, underscoring the model’s
accuracy in capturing temporal changes. The observed patterns align with our statistical
analyses, confirming substantial changes in microbiome composition during perturbations.
This alignment strengthens our understanding of microbiome dynamics and their responses
to experimental conditions.

Contrary to the notion that more data lead to better predictions, our experiment
involving additional training vessels (including 1, 3, and 4) for predicting the second vessel
yielded a mean square error for testing of 0.0265, almost double the original testing error.
Interestingly, the correlation between the predicted value and the actual value for testing
vessel 2 is 0.70, which is 18% higher than the case when we include vessels 1, 3, and 4.
This suggests that a careful balance in the selection of training data is crucial for achieving
accurate predictions.

In the realm of scientific studies, there is often a prevailing belief that incorporating
more datasets or information for training leads to increased accuracy. However, a critical
consideration arises when the environment in which the model is trained significantly
differs from the environment in which it will be applied for testing. This disjunction in
environmental conditions can introduce unforeseen disruptions and challenges.

In our experiment, the initial assumption that more training data (including vessels 1,
3, and 4) would inherently improve predictions was challenged by the observed results.
The disruptions to the feed supply in the first two vessels between days 11 and 13 created
variations in the microbial dynamics that were not adequately captured by the additional
training data. The unforeseen disruptions underscore the importance of aligning the
training data with the conditions and disturbances expected in the testing environment.

Figure 5. Trajectories of the relative abundance of Rikenellaceae in Vessels 1 and 2. The entire
trajectory of Vessel 2 is predicted by the MicroGrowthPredictor model trained on data from Vessel 1.
Confidence intervals are provided for the testing data of Vessel 2. In this experiment, the optimal
dropout probability p of 0.25 was used. The model utilized the preceding five time points to identify
four parameters and achieve optimal predictions. The fully connected layer was equipped with
256 nodes, and the LSTM layer comprised 128 nodes. The model underwent training for 800 epochs.

While it is tempting to assume that a larger sample size will inherently lead to better
predictions, the key lies in the relevance of the training data to the testing conditions. In
cases where the testing data involve different environmental interruptions or perturbations,
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blindly including diverse datasets may lead to suboptimal predictions. The delicate balance
between the quantity and relevance of training data becomes crucial in ensuring the model’s
adaptability to real-world scenarios.

4. Discussion

The MicroGrowthPredictor model leverages knowledge from observations that re-
peated antibiotic treatment disrupts the gut microbial community, affecting the diversity
and abundance of specific bacterial groups. By analyzing the data, the model accurately
predicts how the microbiome will change over time in response to antibiotic perturbation.
This provides a deeper understanding of antibiotics’ impact on the gut microbiota and
potential human health implications.

Additionally, the model’s versatility is demonstrated through its application to an
artificial gut dataset. Insights drawn from this controlled environment show MicroGrowth-
Predictor’s adaptability to diverse microbiome systems. The artificial gut dataset validates
the model’s predictive capabilities under specific conditions, highlighting its proficiency
in capturing intricate temporal dynamics. This positions the model as valuable for under-
standing antibiotics’ effects and broader applications in environmental sciences, healthcare,
and biotechnology.

Our method addresses real-world problems where limited sample sizes are a constraint
due to logistical, ethical, or financial challenges. By developing and validating methods
that perform well with limited data, we provide practical solutions for such situations.
Unlike many black-box models, our approach offers clear insights into how environmental
perturbations influence microbial populations over time, crucial for understanding biologi-
cal processes and designing targeted interventions. Specifically, we discuss its potential to
contribute to personalized treatment plans by predicting individual responses to dietary
changes, antibiotic treatments, and probiotic interventions.

In summary, MicroGrowthPredictor emerges as a potent tool surpassing traditional
modeling approaches. The model, driven by insights derived from data rather than direct
integration of knowledge, incorporates LSTM networks with confidence interval estimation
to contribute to a holistic comprehension of microbiome dynamics. The model’s successful
applications to both real-world human gut microbiota and artificial gut datasets underscore
its efficacy and potential impact. We foresee MicroGrowthPredictor playing a pivotal
role in advancing microbiome research, offering valuable insights, and contributing to
well-informed decision-making across various fields.
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