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Abstract: To enhance the autonomy and flexibility of robotic systems, a crucial role is played by the
capacity to perceive and grasp objects. More in detail, robot manipulators must detect the presence
of the objects within their workspace, identify the grasping point, and compute a trajectory for
approaching the objects with a pose of the end-effector suitable for performing the task. These can be
challenging tasks in the presence of complex geometries, where multiple grasping-point candidates
can be detected. In this paper, we present a novel approach for dealing with complex-shaped
automotive parts consisting of a deep-learning-based method for topological skeleton extraction
and an active grasping pose selection mechanism. In particular, we use a modified version of the
well-known Lightweight OpenPose algorithm to estimate the topological skeleton of real-world
automotive parts. The estimated skeleton is used to select the best grasping pose for the object at
hand. Our approach is designed to be more computationally efficient with respect to other existing
grasping pose detection methods. Quantitative experiments conducted with a 7 DoF manipulator on
different real-world automotive components demonstrate the effectiveness of the proposed approach
with a success rate of 87.04%.

Keywords: computer vision for manufacturing; deep learning in grasping and manipulation;
visual learning

1. Introduction

Components with complex geometrical shapes are largely used in the manufacturing
industry, e.g., in the automotive sector. Using robots to handle complex-shaped parts is
still a challenging task due to perception, planning, and reasoning problems. In particular,
uncertainties in the position of the object to grasp and perception noise due to reflective
materials are common challenges in industrial scenarios.

Grasping objects with complex geometries can be roughly classified into model-based
methods that rely on pre-existing 3D models and learning-based techniques that employ
machine learning to predict grasping points. Both the approaches need to perceive the
external environment using vision-based algorithms, based on cameras and point clouds for
object detection, segmentation, and pose estimation, as in [1,2], or tactile-based strategies, as
in [3], requiring sensors for force measurement, haptic feedback, and slip detection. Hybrid
approaches combine multiple methods for robustness, including multi-sensor fusion and
active perception.

In this paper, we present a complete pipeline for handling complex-shaped automo-
tive parts using a 7 DoF robot manipulator. In particular, we adopt a deep learning-based
approach to design a multi-object detector aimed to extract the topological skeleton be-
longing to the part to grasp to precisely estimate its pose. After estimating the pose, a
selection of the best grasping pose is carried out to increase the chance of grasping the
object successfully.

The contribution of this work is three-fold.
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1. The skeleton extraction process provides a representation of the object pose in 3D
space. Therefore, it also allows a precise estimation of the orientation of the object.

2. We use MobileNetV3 to replace the original MobileNetV1 backbone in the skeleton
extraction network, and we customize it to detect the skeleton of industrial objects
with complex geometry from both front and back views, even if the objects have
different shapes on either side.

3. The grasping pose selection is carried out using a dynamic approach. This means that
an error in the skeleton extraction is autonomously detected and the robot actively
modifies its position to better perform the grasping.

We have conducted several experiments with real-world automotive parts to validate
our approach, which can detect the object’s keypoints from upside-down views, without
any constraint.

The remainder of the paper is organized as follows. Section 2 contains a brief de-
scription of existing related work. Our method is presented in Section 3. Experiments
demonstrating the effectiveness of the proposed approach are shown in Section 4. Finally,
conclusions and future directions are drawn in Section 5.

2. Related Work

In the last few years, thanks to the availability of powerful GPUs, deep learning
methods have become suitable for dealing with grasping-point detection. They have proven
capable of replacing traditional analytical approaches based on geometrical properties,
physics models, and force analytics. A Convolutional Neural Network (CNN) architecture
named GraspNet, able to segment graspable regions on the surfaces of objects, has been
presented in [4]. In [5], a CNN, in combination with the information provided by a depth
camera, has been used to detect the presence of the object and the best grasping pose.
Several approaches were proposed to improve the accuracy of deep CNN, see, e.g., [6,7],
but they usually require long computation time (i.e., of the order of seconds).

More efficient approaches, requiring only depth images, have been proposed in [8,9].
More in detail, in [8], a Deep Convolutional Neural Network has been trained in a simulated
environment to learn grasping-relevant features and return a single-grasp solution for each
object. In [9], the so-called generative grasping convolutional neural network (GG-CNN)
has been proposed. It allows direct evaluation of the grasp quality and pose of grasps
for every pixel in an input depth image, and it is fast enough to perform grasping in
dynamic environments. The GG-CNN performance has been improved by introducing the
GG-CNN2 [10], which is a CNN based on the semantic segmentation architecture of [11].
A common characteristic of deep-learning-based methods for grasping-point detection is
the need to calculate the grasping quality value for each pixel in the image at hand, which
is extremely time-consuming.

When the object knowledge and the grasp pose candidates are not available, it is
possible to approximate the object using shape primitives, e.g., using multiview measure-
ments [12] or identifying features in sensory data [13]. The method proposed in [14] consists
of selecting grasp pose candidates after locating areas where a successful grasp had already
been experienced. In [1], grasping partially known objects in unstructured environments
is proposed based on an extension to the industrial context of the well-known technique
of Background Subtraction [15]. Thanks to the spreading of low-cost depth sensors, many
3D registration algorithms have been exploited to handle the object grasping problem. For
example, in [2], a model of the object to be grasped is generated using a set of point clouds
acquired from different positions, and the nominal grasping pose is fixed. Subsequently,
this model is compared with the runtime object view to compute the current grasping pose.

In this work, we propose a skeleton-based approach for detecting the grasping poses,
which is inherently less computationally demanding due to the compact representation of
the object via the skeleton.
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A qualitative and quantitative comparison between our approach and the most rel-
evant papers described in this section is shown in Table 1. This comparison takes into
account not only the results but also the limitations of each work.

Table 1. Comparison table between different object grasping approaches.

Methods Applications Quantitative Results Limitations

CNN architecture with a DDF
module [4] Real-time robotic grasping 90% of accuracy on Cornell

grasp dataset
Error in predict orientation for

some objects

Structure based on faster
R-CNN and DACAB [5]

Object grasping with mobile
manipulator 86.3% of success rate Inefficient search method

GQ_CNN to classify robust
grasping [6] Grasping household objects 99% of precision Long computational time

DCNN based on depth images
to predict grasp pose [8] Grasping of unknown objects

92% (70%) of precision with
cylindrical-shaped

(box-shaped) objects

Generation of a single-grasp
solution for a single object

NN for learning prototypical
parts [14] Grasping of similar objects N.A.

Grasping of complex-shaped
objects with never-before-seen

features.

Topological skeleton
extraction (this work)

Grasping of complex-shaped
automotive parts 87.04% of success rate Needs a good camera

calibration

3. Proposed Method

Figure 1 shows the overall functional architecture of our approach. It is made of four
main modules, namely Visual Data Acquisition, Topological Skeleton Extraction, Grasping
Pose Selection, and Robot Grasping. Each module is detailed below.

Visual Data 
Acquisition

Topological 
Skeleton 

Extraction

Grasping Pose 
Selection

Robot 
Grasping

RealSense

Depth

RGB
Skeleton

Selected 
Grasping Pose

Figure 1. Functional architecture of the proposed approach.
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3.1. Visual Data Acquisition

Visual data (both RGB and depth) are acquired using an Intel Realsense D435 RGBD
camera, mounted on the end-effector via a 3D printed support in the so-called eye-in-hand
configuration. Figure 2 shows the reference frames attached to the robot end-effector, Fe,
and the camera, Fc.

ℱ𝑐𝑐

ℱ𝑜𝑜

ℱ𝑒𝑒

Figure 2. End-effector and camera reference frames.

The Intel Realsense D435 camera has a minimum depth distance beyond which it
is not able to provide a depth measure approximately equal to 28 cm and the camera
data acquisition requires the realsense-ros library since communication between the
modules takes place through the Robot Operating System (ROS). The camera has been
previously calibrated using 30 images of a 2D chessboard flat pattern. The calibration
process includes both intrinsic and extrinsic calibrations. The first is aimed at determining
the camera parameters that describe how the camera transforms the 3D coordinates of the
scene into the 2D coordinates of the image, like the focal length, the principal point, and
the optical distortions, while the second one provides the parameters which describe the
rigid transformation that maps the 3D coordinates of the real world to the 3D coordinates
of the camera’s reference system. The calibration procedure implementation proposed by
the VISP library [16], based on [17,18], has been adopted using a chessboard composed of
9× 6 squares with dimensions of 0.02645 m.

It is worth remembering that a good calibration procedure is crucial for the success
of the grasping procedure since it ensures an accurate perception of the environment,
enabling precise identification and positioning of the points in three-dimensional space for
successful manipulation.

3.2. Topological Skeleton Extraction

The proposed method has been developed for objects that:

• are rigid, as it is not applicable to deformable objects;
• are not perfectly symmetrical since although it is possible to define a non-symmetric

topological skeleton, the detector may become confused during the extraction process
due to symmetrical features.

In this work, we focus on real automotive parts, including two crankcase oil separator
covers made of cast iron and plastic and an air pipe. The selected objects have an increasing
level of difficulty. The first object, the cast iron crankcase oil separator cover, exhibits a high
degree of symmetry with multiple grasping points and can be grasped by a cylindrical
part, therefore reducing the impact of the robot orientation errors around the axis of the
pin. The second object, the plastic crankcase oil separator cover, also exhibits a high degree
of symmetry with various grasping points but must be grasped with a specific orientation.
Finally, the air pipe has a complex shape, lacks symmetry, and has only two available
grasping points, representing the most challenging task for the robot.
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We decided to model their skeletons considering a few keypoints, some of which
correspond to the potential grasping points for lifting that object with the robot manipulator
(see the upper right part of Figure 1). To detect the Topological Skeleton (TS) of the objects
to be grasped, we consider Lightweight OpenPose [19], whose architecture consists of
three main components: a feature extractor, a TS estimator, and a Part Affinity Fields
(PAF) network.

In comparison to the original OpenPose [20], we chose Lightweight OpenPose because
the high computational demand of the former method makes it less applicable in real-time
applications on devices with little processing power. OpenPose employs a two-branch,
multi-stage CNN architecture. The first branch predicts part confidence maps (PCM) for
body parts, and the second branch predicts part affinity fields (PAF) to model the con-
nections between body parts. The architecture involves several stages of convolutions
to refine these predictions iteratively, resulting in high accuracy at the cost of increased
computational load. Light OpenPose, on the other hand, modifies the original architecture
to reduce complexity and improve efficiency. The approach reduces the number of convo-
lutional layers and stages and uses depthwise separable convolutions in place of standard
convolutions to reduce the number of parameters and operations. Moreover, the backbone
network uses MobileNet or ShuffleNet in place of the heavier VGG19 or ResNet used in the
original OpenPose and optimizes the computation of part affinity fields to strike a balance
between accuracy and efficiency.

Feature extraction. The original Lightweight OpenPose uses a MobileNetV1 network
that is optimized for reaching real-time feature extraction. MobileNet is a family of neural
network architectures designed for efficient deployment on mobile and embedded devices
with limited computational resources. The key feature of MobileNet is its use of depthwise
separable convolutions, which can significantly reduce the number of parameters and
computations required while maintaining high accuracy.

While MobileNetV1 is a highly effective neural network, it does have some limitations
and drawbacks that should be considered. For instance, it has limited accuracy because it is
designed to balance model size and accuracy. It may not achieve the same level of accuracy
as larger and more complex neural networks, especially on challenging objects where the
keypoints (joints) are not evident. The depthwise separable convolution operation used in
MobileNetV1 can be less expressive than traditional convolutional operations and may not
be able to capture all the important features of an image.

For the above reasons, in this work, we propose to replace MobileNetV1 with Mo-
bileNetV3 [21] for the feature extraction step. MobileNetV3 has been designed to address
the limitations of MobileNetV1 while maintaining efficiency. The architecture of the Mo-
bileNetV3 network used in this work is shown in Figure 3.

MobileNet V3 has two main variants: (1) MobileNet V3-Large designed for higher accu-
racy applications, with more layers and channels, and (2) MobileNet V3-Small optimized
for resource-constrained environments, trading off some accuracy for reduced computa-
tional demand. Our choice fell on the latter one. MobileNet V3 introduces several new
components, such as Inverted Residual Blocks to maintain a high degree of efficiency,
Squeeze-and-Excitation (SE) Modules to improve the representational power of the model
by recalibrating channel-wise feature responses and the H-Swish Activation Function.

The hard-swish function is a non-linear activation function that is designed to be more
efficient than traditional activation functions such as ReLU. The hard-swish function is
defined as

h-swish(x) = x
ReLU6(x + 3)

6
, (1)

where ReLU6(x) = min(max(x, 0), 6) is a clipped ReLU function that outputs values
between 0 and 6, still providing a non-linear behavior while increasing the computational
speed with respect to the standard ReLU function.

Another important feature of MobileNetV3 is the use of a squeeze-and-excitation (SE)
module. The SE module is a simple and efficient way to improve the representational power
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of the network (i.e., the ability to learn and represent complex patterns and features in the
input data). It works by learning channel-wise scaling factors that are used to selectively
enhance informative features in the network. The SE module is added to each bottleneck
block in the MobileNetV3 architecture, contributing to increasing the accuracy with respect
to MobileNetV1.

Figure 3. MobileNetV3 architecture.

MobileNetV3 also introduces a new technique called the mobile inverted bottleneck
convolution (MBConv), which is a modified form of the depthwise separable convolution
used in MobileNetV1. The MBConv block consists of three types of convolutions: a 1 × 1
convolution to expand the number of channels, a depthwise convolution to perform spatial
filtering, and a 1 × 1 convolution to reduce the number of channels back to the original size.
The MBConv block also includes a shortcut connection that allows the gradient to flow
directly from the input to the output. MBConv block helps in increasing the expressiveness
of the model with respect to MobileNetV1.

Finally, MobileNetV3 includes a middle-flow block that is used to maintain a high
level of accuracy while minimizing the number of computations required. It also uses a
dynamic convolution operation that adapts to the input data. The details of the parameters
used for each block are described in Table 2. The input image is resized to 384 × 384,
and the output is a set of 24 × 24 × 96 feature maps, one for each keypoint and one for
the background.

Table 2. The MobileNetV3 network architecture used in this paper. HS = hard-swish, RE = ReLU,
s = stride.

Input Operator Exp Size #out SE NL s

3842 × 3 conv2d, 3× 3 - 16 - HS 2
1922 × 16 bneck, 3× 3 16 16 x RE 2
962 × 16 bneck, 3× 3 72 24 - RE 2
482 × 24 bneck, 3× 3 88 24 - RE 1
482 × 24 bneck, 5× 5 96 40 x HS 2
242 × 40 bneck, 5× 5 240 40 x HS 1
242 × 40 bneck, 5× 5 240 40 x HS 1
242 × 40 bneck, 5× 5 120 48 x HS 1
242 × 48 bneck, 5× 5 144 48 x HS 1
242 × 48 bneck, 5× 5 288 96 x HS 1
242 × 96 bneck, 5× 5 576 96 x HS 1
242 × 96 bneck, 5× 5 576 96 x HS 1



Electronics 2024, 13, 3021 7 of 18

TS estimation. The feature maps from MobileNetV3 are the input to generate a
set of candidate key points for each object part in the image. In fact, the feature maps
capture the spatial information in the input image and provide a rich representation of
the image that can be used to detect keypoints. MobileNetV3 adds a custom head to
predict keypoint locations, which consists of o a series of convolutional layers that generate
heatmaps, refining the features extracted by the backbone and generating heatmaps for each
keypoint. Figure 4 shows an example of the TS estimator output for the cast iron crankcase
oil separator cover, which consists of five heatmaps, one for each considered keypoint.
Each heatmap has the same spatial resolution as the feature maps and is normalized to
have values between 0 and 1. Each pixel in the heatmap indicates the likelihood that the
corresponding body part is present at that location in the image.

PAF network. It takes the feature maps generated by the feature extractor as input
and outputs a set of PAF feature maps, one for each pair of the detected keypoints. The
PAF feature maps encode the direction and strength of the connections between keypoints
using a two-channel representation, where each channel encodes a different aspect of the
connection. Specifically, one channel encodes the unit vector that represents the direction
of the connection, while the other channel encodes the confidence score that represents the
strength of the connection.

Figure 4. Heatmap examples for cast iron crankcase oil separator cover. There are five heatmaps
corresponding to the considered keypoints.

Final TS computation. Once the PAF and heatmaps are generated, they are used
together to group the individual keypoints into the final TS. The final TS is obtained by
first identifying the candidate connections using the PAFs and then scoring the connections
based on the likelihood that they form a valid connection. The connections are then used to
construct the final TS by connecting the individual keypoints into a complete object TS.

Once the keypoints are calculated, we use the depth information for building the
final 3D TS given the set of keypoints from Lightweight OpenPose. Figure 5 shows some
examples of final TSs for the three objects considered, where it is possible to note the
robustness of the proposed TS extraction approach with respect to different views of the
object, to photochromic changes and partial occlusions. The approach is also working with
multiple instances of the object.
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Figure 5. TS extraction examples on different objects: the cast iron crankcase oil separator cover on the
left, the air pipe in the middle, and the plastic crankcase oil separator cover on the right. Our approach
is robust to different views of the same object, to photochromic changes, and partial occlusions.

3.3. Grasping Pose Selection

After the selection of the Nk keypoints for the TS extraction, these keypoints are also
identified within the CAD model of the object through 3D modeling software. This results
in the generation of a nominal three-dimensional representation of the TS, TSN , in the CAD
coordinate system, F f . Moreover, the poses in F f of all possible Ng grasping reference
frames (see Figure 6), expressed via the (4 × 4) homogeneous transformation matrix [22],
T f

gj , j = 1, . . . , Ng, can be localized on the model. For the sake of clarity, let us assume that
each grasping point coincides with a keypoint.

Figure 6. The grasping frames for the considered objects: cast iron crankcase oil separator cover (top
row), plastic crankcase oil separator cover (middle row), and air pipe (bottom row).



Electronics 2024, 13, 3021 9 of 18

Then, given all possible combinations of three keypoints

St =

{
ti, i = 1, . . . , Nt =

(
Nk
3

)
: ti = (Pj, Pl , Pm), j, l, m ∈ {1, . . . , Nk}, j ̸= l ̸= m

}
,

for each triple ti, a plane is identified via a coordinate frame attached to it, whose pose
is denoted by the homogeneous transformation matrix T f

ti
. For each grasping reference

frame, the relative pose with respect to the ith plane can be determined as

T ti
gj =

(
T f

ti

)−1
T f

gj . (2)

Thus, for each grasping point, a list of Nt transformation matrices, T ti
gj , representing

the grasping frame poses in the plane frame, can be computed. This set of operations,
summarized in Algorithm 1, is performed only once.

Algorithm 1: Pre-processing algorithm

Input : TSN , Ng, Nt, T f
gj (j = 1, . . . , Ng)

Output : T ti
gj (i = 1, . . . , Nt; j = 1, . . . , Ng)

1 for each triple ti of keypoints in TSN do
2 Compute T f

ti

3 end for
4 for i = 1, . . . , Nt do
5 for j = 1, . . . , Ng do

6 T ti
gj =

(
T f

ti

)−1
T f

gj

7 end for
8 end for
9 return T ti

gj

At runtime, the following steps are executed:

1. A YOLO detector [23] is adopted to distinguish between the objects. YOLO has been
chosen since it is faster than classifier-based systems but with similar accuracy and
makes predictions with a single network evaluation by considering object detection as
a single regression problem, and this leads to high accuracy performance. Moreover,
YOLO can detect and classify multiple objects simultaneously within an image.

2. The current 3D TS, TSC, is extracted.
3. The grasping point closest to the camera, pc

cc, is selected as the best one.
4a. If at least 3 keypoints are visible, a set of three keypoints, tk, is used to compute

the corresponding plane in the camera frame, Tc
tk

, and to select the homogeneous

transformation matrix, T tk
gcc , that identifies the grasping pose in the plane frame. Then,

the procedure continues with the step 5.
4b. If only 2 or fewer keypoints are visible, the robot starts moving in a circle around the

center of the object bounding box to acquire a new image from a different point of
view. Then, the procedure comes back to the step 1.

5. The grasping pose in camera frame is computed as

Tc
gcc = Tc

tk
T tk

gcc .

This procedure is summarized in Algorithm 2.
Let us define the homogeneous transformation matrix Te

c, i.e., the constant homoge-
neous matrix performing the transformation between the camera frame and the end-effector
frame, obtained via the calibration method described in Section 3.1.
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Algorithm 2: Runtime algorithm

Input : objT ti
gj for each object

Output : Tc
gcc

1 Get image from camera
2 Detect current object from image
3 TSC ← extract TS

4 T = T ti
gj

∣∣∣i=1,...,Nt ; j=1,...,Ng ← get the list of transformations relative to the current
object

5 pc
cc ← extract the grasping point closest to the camera

6 if visible_keypoints ≥ 3 then
7 tk ← extract a triple of visible keypoints in TSC
8 Compute Tc

tk

9 Extract T tk
gcc from T

10 else
11 move the robot to a different point of view
12 GO TO 1
13 end if
14 Tc

gcc ← Tc
tk

T tk
gcc

15 return Tc
gcc

To capture the grasping pose in the inertial frame, Tc
gcc is transformed as follows

Tgcc = Te Te
c Tc

gcc , (3)

where Te is the homogeneous matrix representing the pose of the end-effector in the
inertial frame.

Remark 1. It is worth noting that if the grasping point is not coincident with a keypoint, the above
procedure is still applicable, but a further constant transformation needs to be applied to link the
grasping point to one of the keypoints belonging to the plane.

3.4. Robot Grasping

To perform the grasp, the end-effector must be commanded to align its reference frame
to the grasping reference frame. The trajectory is planned by assigning a sequence of three
points: the first one is the view pose of the robot, the intermediate one is the approach point,
i.e., a point positioned along the z axis of the grasping reference frame at a distance of
10 cm to the origin, and the last one is the estimated grasping position, p̂g. More in detail,
the end-effector desired position, pe,d(t), is defined as

pe,d(t) =


p0 +

s1(t)
∥pa − p0∥

(pa − p0) for 0 ≤ t ≤ ta

pa +
s2(t)

∥p̂g − pa∥
(p̂g − pa) for ta < t ≤ t f

. (4)

where p0 is the view position and pa is the approach point position, s1(t) (s2(t)) is the arc
length form p0 to pa (from pa to p̂g). To ensure continuous acceleration and velocities at the
path points, both for s1(t) and s2(t), the time-law can be designed as a quintic polynomial.
Regarding the time instants, t f is the duration of the motion, and ta is the intermediate time
instant at the approach point that is chosen to have a fast motion until the approach point
and a slow motion in the object’s proximity.
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Regarding the end-effector orientation, it is planned to reach the same orientation
of the estimated grasping pose, R̂g, at the approach point and to keep such orientation
constant during the last part of the path.

The planned trajectory in terms of position and orientation is the input of the closed-
loop inverse kinematics algorithm [22] aimed at computing the reference values of the
joint positions and velocities. Let denote with pe(t) and Re(t) the end-effector position and
orientation, respectively, and with Re,d(t) the end-effector desired orientation. The robot
joint velocity references, q̇r(t), are computed as

q̇r(t) = J†(q(t))(v̇e,d(t) + Ke(t)), (5)

where J†(q(t)) denotes the right pseudo-inverse of the robot Jacobian matrix, K ∈ IR6×6 is

a positive definite matrix gain, ve,d =
[

ṗT
e,d ωT

e,d

]T
is the desired end-effector linear and

angular velocity, and e is the tracking error defined as

e =

[
pe,d − pe

ηeϵe,d − ηe,dϵe − S(ϵe,d)ϵe

]
, (6)

whereQe = {ηe, ϵe} andQe,d = {ηe,d, ϵe,d} are the unit quaternion extracted from Re and Re,d,
respectively, and S(·) is the skew-symmetric matrix operator performing the cross product [22].

A flowchart representation highlighting the whole process is given in Figure 7.

 

Figure 7. Flowchart representation of the whole process.
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4. Experimental Results

The experimental setup consists of an Intel RealSense D435 camera mounted on a
Franka Emika Panda robot manipulator, characterized by 7 revolute joints. The robot
can be controlled by means of the Franka Control Interface (FCI) and the libfranka C++
open-source library, which directly controls the robot with an external workstation through
an ethernet connection. In this work, the franka_ros meta-package, which integrates
libfranka into ROS, has been used. The workstation runs Ubuntu 18.04 LTS and a real-time
kernel on an Intel Xeon 3.7 GHz CPU with 32 GB RAM. We have conducted experiments
with the three considered objects shown in Figure 6, and the quantitative results are
reported below.

4.1. TS Extraction Results

Using Coco Annotator [24], 5992 images have been annotated. The labeled data have
been split into Training, Validation, and Test sets composed of 4618, 229, and 1145 images,
respectively. Table 3 shows the number of images in the Training, Validation, and Test sets
for each considered object.

Table 3. Number of sample images used in Training, Validation, and Test sets for the considered objects.

Object Training Validation Test

Cast iron crankcase oil separator cover 1440 60 300
Air pipe 1406 46 228

Plastic crankcase oil separator cover 1772 123 617

The metric we used for evaluating the TS detection is the Object Keypoint Similarity
(OKS) [25], defined as follows:

OKS =

∑i∈[0,N−1] exp

(
−d2

i
2s2k2

i

)
δ(vi > 0)

∑i∈[0,N−1] δ(vi > 0)
(7)

where:

− s is the object scale;
− di is the distance of the predicted keypoint i from the ground truth;
− ki is a per-keypoint constant that controls the falloff;
− vi is the visibility flag.

OKS is calculated for each sample representing an object. The visibility flag takes
into account if a point is visible or not: if the keypoint is labeled, δ(vi > 0) is 1, else it is 0
without considering occluded keypoints.

In our scenario, we used OKS to compute the True Positive (TP), False Negative (FN),
False Positive (FP), and True Negative (TN) detections. If a detection has OKS > threshold,
it is considered to be a TP; otherwise, as an FP. In particular, we considered two thresholds,
namely 0.5 and 0.75, and calculated the following metrics: Precision, Recall, F1-score,
and Average Precision (AP). Table 4 shows the results of our algorithm for a test set of
1145 images.

Table 4. Results of the TS detector at different thresholds for a test set of 1145 images.

Threshold Precision Recall F1-Score AP

0.5 0.92 0.90 0.91 0.82
0.75 0.86 0.89 0.87 0.72

To compute the runtime performance of our TS extractor, we tested it on a subset of
60 images using an NVIDIA RTX A5500, obtaining an average execution time of 0.012 s and
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a standard deviation of 0.0018 s. On a subset of 40 images, using an NVIDIA QUADRO
T2000, the average execution time is 0.019 s, and the standard deviation is 0.0025 s.

4.2. Object Detector Results

For training the object detector, we annotated 750 images of size 640 × 480 using the
LabelImg annotation tool [26]. We split the dataset into Train, Validation, and Test sets
composed of 450, 150, and 150 images, respectively. After the training stage, the mean
average precision on the test set is 97.32%, and the success rate is 96.70%. The inference on
the images has been executed on an NVIDIA QUADRO T2000. On a subset of 40 images,
the average execution time is 0.323 s, while the standard deviation is 0.0615 s.

4.3. Robot Grasping Results

Let us define the estimation grasping position and orientation errors as

ee
p = pe

g − p̂e
g , (8)

ee
ϕ = ϕe

g − ϕ̂
e
g , (9)

where pe
g is the actual grasping position while p̂e

g is the estimate provided by the visual
algorithm. Regarding the orientation, ϕe

g (ϕ̂e
g) is the Euler angles extracted from the actual

(estimated) grasping pose. The adoption of Euler angles in lieu of quaternions as in (6)
provides a clearer physical interpretation of the orientation errors. The superscript e denotes
that the variables are expressed in the end-effector frame (see Figure 2).

To have statistically significant results, 54 grasping tests (20 for the cast iron crankcase
oil separator cover, 19 for the air pipe, and 15 for the plastic crankcase oil separator cover)
have been conducted by placing the objects in different configurations, different light
conditions, and with different backgrounds in a way to let the robot explore all the possible
grasping poses. A grasping test is considered successful if the gripper holds the object with
a stable grasping for 10 s. A set of snapshots of the grasping procedure is shown in Figure 8,
where the top row refers to a successful test and the bottom row refers to a failure.

(a)

(b)

Figure 8. Snapshots of two grasping cases. (a) Successful grasp. (b) Failure.

Only 7 experiments (2 for the cast iron crankcase oil separator cover, 3 for the air pipe,
and 2 for the plastic crankcase oil separator cover) experienced a failure. Thus, a success
rate of 87.04% has been obtained. Tables 5–7 show the mean position and orientation errors
and the corresponding standard deviation for the successful tests.
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Table 5. Mean errors for the cast iron crankcase oil separator cover.

Successful Tests ee
px

[mm] ee
py

[mm] ee
ϕx

[deg] ee
ϕy

[deg]

1 0.734 9.471 3.128 3.515
2 6.867 0.717 3.284 3.091
3 1.081 5.857 6.092 12.433
4 13.032 10.752 3.132 6.256
5 1.796 0.775 6.801 0.77
6 3.832 0.759 3.913 3.546
7 3.629 1.531 2.981 3.416
8 1.324 6.747 0.674 0.92
9 3.073 7.437 0.62 35.308
10 1.293 1.021 0.952 1.605
11 3.916 1.631 0.391 6.217
12 4.62 2.697 3.044 4.508
13 2.368 4.09 9.12 3.953
14 0.463 6.314 2.456 10.075
15 1.816 2.214 2.217 5.806
16 2.958 4.751 1.842 7.763
17 2.86 8.736 1.354 4.138
18 3.018 0.747 13.855 2.16

Mean 3.26 4.236 3.659 6.415
Standard deviation 2.820 3.278 3.329 7.607

Table 6. Mean errors for the air pipe.

Successful Tests ee
px

[mm] ee
py

[mm] ee
ϕx

[deg] ee
ϕy

[deg]

1 0.043 0.989 2.439 8.109
2 9.586 17.223 4.597 0.555
3 1.098 2.612 16.723 13.204
4 3.777 6.188 19.545 10.702
5 7.213 0.227 3.663 1.042
6 3.882 1.516 1.684 0.315
7 2.897 2.176 11.183 1.733
8 0.144 1.932 10.255 7.891
9 2.41 1.412 12.057 7.392
10 5.042 0.797 12.674 20.755
11 2.989 2.809 11.516 26.216
12 14.5 4.903 0.988 2.294
13 11.149 1.207 5.192 0.53
14 3.736 5.841 9.211 25.563
15 0.818 8.494 12.022 20.307
16 0.636 14.538 15.122 7.086

Mean 4.37 4.554 9.304 9.606
Standard deviation 4.085 4.843 5.447 8.801

For all the objects, the position errors along the z-axis of the end-effector frame have
not been reported since they are negligible due to the object geometry. For the same reason,
the orientation errors around the z-axis of the end-effector frame can be negligible for the
cast iron crankcase oil separator cover and the air pipe.

In some tests, large errors have been experienced, mostly along the y-axis of the end-
effector frame, but the object has been successfully grasped since the gripper is characterized
by parallel fingers, and errors along the closing direction are more tolerated.

The system failures can be divided into two main categories:

1. Errors related to missing (see Figure 9a,e) or inaccurate (see Figure 9b,d,f) keypoint
detection or prediction, and wrong depth estimation.

2. Pose estimation errors that can cause the slipping of the object.
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Table 7. Mean errors for the plastic crankcase oil separator cover.

Successful Tests ee
px

[mm] ee
py

[mm] ee
ϕx

[deg] ee
ϕy

[deg] ee
ϕz

[deg]

1 13.453 1.036 7.726 4.594 10.505
2 1.795 8.396 11.419 16.797 1.977
3 1.387 5.306 2.214 3.451 11.761
4 7.493 5.909 3.41 5.945 7.285
5 0.799 6.753 3.439 12.744 2.62
6 2.997 1.521 2.03 4.885 9.134
7 5.897 9.452 10.56 1.247 4.62
8 0.973 1.319 7.221 0.007 4.146
9 2.246 5.577 2.104 3.025 2.231
10 1.268 13.631 3.325 4.165 26.108
11 4.547 13.786 2.265 1.418 7.61
12 0.575 1.472 8.638 2.531 10.629
13 3.606 2.318 1.721 6.289 23.799

Mean 3.618 5.883 5.082 5.161 9.417
Standard deviation 3.487 4.281 3.381 4.527 7.367

Figure 9. Examples of missing (a,e) and inaccurate (b,d,f) keypoint detection in TS. Example of
missing keypoint detection that can lead to a successful object grasping (c).

In the case of a missing keypoint detection, e.g., due to the relative object-camera
position, the failure can be managed by moving the camera’s point of view and acquiring a
new prediction (see Section 3.3). In the other cases, the grasping procedure is completed
with a failure. Since the robot can detect the grasping failure, the whole process is repeated.
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It is worth noticing that, according to the procedure outlined in Algorithm 2, the
grasping of an object is feasible even with only three visible keypoints (see Figure 9c)
correctly detected, provided that one of these is a grasping point situated in a location that
can be grasped with the available end-effector.

5. Conclusions

In this work, a robust method for complex-geometry parts grasping in an industrial
scenario has been proposed. In such an environment, grasping challenges are due to the
presence of uncertainties in the position of the object to grasp and to the perception of noise
due to its material. In particular, we focused on real-world automotive parts with complex
geometries and reflective surfaces that provoke noise in the depth map. The proposed
solution relies on a TS extraction network that can create a graph-based representation of
the object in real time. A reasoning step is used to decide if the current view of the object is
good enough for the actual grasping or if the manipulator needs to move to better grasp
the object. Quantitative experiments have been conducted with a 7 DoF robot and three
different complex-shaped automotive parts, demonstrating that the proposed approach
is fast and robust. The high accuracy and real-time capability of this proposed approach
render it a suitable solution for industrial applications where fast and accurate performance
is required.

Due to the complexity of the considered objects, a complete quantitative performance
comparison with other approaches present in the literature can hardly be carried out.
However, the test dataset is publicly available to make possible future comparisons.

In future directions, we intend to study the integration of the depth data inside the TS
extraction process to directly obtain the 3D positions of the keypoints. Moreover, the object
detection phase could also be integrated into the TS extraction procedure.
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FP False Positive
GG-CNN Generative Grasping Convolutional Neural Network
MBConv Mobile inverted Bottleneck Convolution
OKS Object Keypoint Similarity
PAF Part Affinity Fields
ROS Robot Operating System
TN True Negative
TP True Positive
TS Topological Skeleton
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Abstract: To improve the control performance of a permanent magnet synchronous motor (PMSM)
under external disturbances, an improved active disturbance rejection control (IADRC) algorithm is
proposed. Since the nonlinear function in the conventional ADRC algorithm is not smooth enough at
the breakpoints, which directly affects the control performance, an innovative nonlinear function is
proposed to effectively improve the convergence and stability. On this basis, the proposed IADRC
is constructed, and comparative simulation results with ADRC and other IADRC show that faster
response speed, higher accuracy and stronger robustness are obtained.

Keywords: improved ADRC; nonlinear function; PMSM; speed control

1. Introduction

Due to the advantages of high power density, simple structure, easy maintenance
and convenient speed regulation, permanent magnet synchronous motors (PMSMs) are
widely used in new energy vehicles, computerized numerical control (CNC) machine
tools and other high-end equipment [1,2]. The proportional integral differential (PID)
control technology, which is extensively utilized across various industries, governs the
traditional PMSM speed regulation system. Although the PID controller has the advantages
of simple structure and easy implementation [3,4], it is necessary to establish an accurate
mathematical model of the controlled object to achieve accurate control. However, when
modeling PMSMs, the motor structure is often simplified. This simplification has been
proved inadequate when the PMSM operates at low speeds, resulting in a notable degrada-
tion of control performance, as highlighted in Ref. [5]. Moreover, noise and interference
cannot be suppressed well by PID, so scholars have proposed a variety of improved PID
systems [6,7]. By optimizing the adjustment parameters, the control performance can be
significantly improved, but the anti-interference ability, response speed and accuracy still
need to be enhanced.

Modern control theory provides a new solution for the performance improvement of
control systems. Concurrently with the advancement in PMSM control technology, various
effective control methods have been proposed. According to Ref. [8], the nonlinear PID
controller enhances control performance through adaptive error signal transformation and
dynamic adjustment of PID parameters, which enables the controller to efficiently attenuate
noise in the input signal and address a trade-off between response speed and overshoot
inherent in conventional PID controllers. Moreover, fuzzy PID is also adopted to enhance
the system’s robustness [9]. Additionally, sliding mode control (SMC) has undoubtedly
emerged as a critical advancement in motor control engineering in recent years [10,11]. It
can enhance the control effectiveness of PMSM systems while exhibiting rapid convergence
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and strong resistance to interference. However, due to the chattering characteristics of
sliding mode variable structure, how to effectively suppress this chattering has become
an important topic. Robust control is also a class of methods aimed at uncertain systems,
and robust control laws based on H∞ paradigms and µ-synthesis have been studied,
which achieve good disturbance suppression and robustness to parameter variations [12].
Although these algorithms effectively improve the PMSM system’s control effect, they still
struggle with achieving superior control performance when addressing uncertainties in
models and dealing with external interferences.

Active disturbance rejection control (ADRC) is a nonlinear control strategy pro-
posed by Jingqing Han, which can effectively deal with uncertainties and external dis-
turbances [13]. The utility of this approach is reflected in its superior anti-interference
ability, strong adaptability to the change and uncertainty of system parameters, high control
precision, fast response speed, simple structure and easy implementation [14], and it has
attracted wide attention in many technical fields [15–17]. ADRC consists primarily of
three components: tracking differentiator (TD), extended state observer (ESO), as well as
nonlinear state error feedback control law (NLSEF). The TD can smooth the input signal,
reduce the noise influence and provide differential information of the signal to help the
controller better respond to changes in the system. The ESO is ADRC’s core component,
which is used to estimate the state variables and total disturbances of the system. It has
the capability to observe and mitigate uncertainties and external disturbances in real time,
thereby enhancing the system’s robustness and resistance to interference. Additionally, the
NLSEF generates control commands based on observed state error as well as disturbance
information to obtain the controlled object’s accurate control. The nonlinear feedback
control strategy provided by the NLSEF can dramatically enhance the system’s dynamic
response. ADRC inherits the essence of traditional PID and can effectively control systems
with nonlinearity and uncertainty without relying on accurate models [18,19]. For example,
based on ADRC and sliding mode control, Fang et al. [20] proposed a new integrated
design method of speed and position loops and realized the speed and position control
of PMSMs. While achieving minimal system overshoot, the complexity of parameter con-
figuration remains a challenge. Addressing this, Li et al. [21] introduced a sliding mode
ADRC, replacing the ESO with a nonlinear disturbance observer to streamline parameter
adjustments. Building upon their research, Ge et al. [22] employed particle swarm opti-
mization algorithm to enhance ADRC for spacecraft attitude control. Instead of depending
upon empirical selection, the parameters are now determined via mathematical optimiza-
tion. Ref. [23] proposed a fractional-order fuzzy ADRC, which mitigates the limitations
of conventional control methods (such as low precision and slow response), and it is used
to manage the manipulator’s numerous joint motion control. Ramlavi and Chidan [24]
studied the linear active disturbance rejection control tracking control approach to enhance
the controller’s tracking performance and robustness and solved the model uncertainty
and environmental disturbance of a single-wheeled robot. Drawing on Partovibakhsh and
Liu’s research [25], Guo and Zhao [26] enhanced the tracking capabilities of mobile robots
through the compensation mechanism of ADRC. Lv [27] proposes a fuzzy auto disturbance
rejection control (Fuzzy-ADRC) method for a three-phase four-arm inverter for suppressing
motor torque pulsations under complex operating conditions. Wang [28], in response to the
poor control performance caused by fixed parameters in ADRC for a bearingless PMSM,
proposes a dynamic parameter adjustment method for ADRC based on a genetic algorithm
and backpropagation neural network. Fang [29] proposed an ADRC method based on an
improved ESO to design an electromechanical actuator cascade controller for PMSMs.

Although ADRC technology effectively improves the control effect of nonlinear and
uncertain systems, there are still limitations, such as the insufficiency of effective parameter-
setting methodologies, the lack of estimation ability for fast time-varying disturbances and
the fal function adopted by traditional ADRC not being smooth enough at the switching
points between the nonlinear section and the linear section [30,31]. Considering the chal-
lenges currently faced in PMSM control systems with ADRC controllers, this paper aims to
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make the following contribution: a polynomial nonlinear function combined with a cosine
function is proposed to improve the fal function, which effectively improves the nonlinear
function’s smoothness and enhances ADRC’s robustness. Investigated findings indicate
that when contrasting with the conventional ADRC and other improved ADRC (IADRC),
the IADRC proposed herein significantly amplifies the system’s response speed, precision
and robustness.

The organizational structure of this paper is outlined below. Section 2 introduces
the PMSM’s mathematical model. Section 3 presents ADRC’s improvement strategy and
constructs an IADRC controller. In Section 4, a design for the PMSM speed control system
employing the proposed IADRC is presented. In Section 5, the simulation experiment and
analysis are carried out, and the good control performance of the proposed IADRC for
PMSM systems is verified.

2. Mathematical Modelling of PMSM

The rotor structure and permanent magnet distribution of the PMSM [32] are shown
in Figure 1. According to their structural characteristics, PMSMs can be divided into
two types: surface-mounted and built-in. The surface-mounted PMSM is also called the
nonsalient pole PMSM. Because its permeability is very close to the vacuum permeability,
the change between the reluctance and the inductance is very small, which makes the
rotor have good nonsalient pole characteristics. This also makes the magnetic field of the
permanent magnet have an approximately sinusoidal distribution, and the motor has a
better performance. For the built-in PMSM, the reluctance of the direct axis is much higher
than that of the quadrature axis, so the inductance of the direct axis is much lower than
that of the quadrature axis and the rotor has salient pole characteristics, so it is also called
the salient pole PMSM. The built-in PMSM realizes sensorless control through the salient
pole effect and increases the power density through the electromagnetic resistance torque.
However, the rotor structure is complex, the magnetic flux leakage coefficient is large and
the manufacturing cost is high.

Figure 1. Schematic diagram of PMSM rotor structures.

Due to the different structures of PMSMs, their operation modes and the formations
of their electromagnetic torques will also be different. Therefore, to achieve a better control
effect, it is necessary to formulate a variety of different control schemes according to the
internal structures of PMSMs. Considering that the surface-mounted PMSM has low cost
and the same inductance of the d-q axis, it is simpler to establish the electromagnetic torque
equation. Therefore, the surface-mounted PMSM is selected in this study.

To analyze the three-phase PMSM’s mathematical model, the following assumptions
are made for the convenience of analysis:

(1) Ignore the reluctance of the stator and rotor cores, without considering losses due to
eddy currents or hysteresis.

(2) The permanent magnet material is nonconductive, and its permeability is equivalent
to that of air.

(3) The rotor does not have any damping windings.
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(4) The excitation magnetic field from the permanent magnet and the armature reaction
magnetic field from the three-phase winding are sinusoidally distributed across the
air gap.

(5) The induced electromotive force waveform in the phase winding follows a sinusoidal
pattern.

Assuming that the aforementioned conditions are met, according to electromagnetic
induction and Kirchhoff’s voltage law, the voltage equation of a three-phase PMSM in the
natural coordinate system can be expressed as follows:

ua = dψa
dt + Rsia

ub = dψb
dt + Rsis

uc =
dψc
dt + Rsic

(1)

The PMSM’s stator voltage equation in a two-phase rotating coordinate system can be
obtained by the Clarke transform and Park transform [33]:{

ud = dψd
dt + Rsid − ωeψq

uq =
dψq
dt + Rsiq + ωeψd

(2)

The stator magnetism-chain equation is:{
ψd = Ldid + ψf
ψq = Lqiq

(3)

Bringing Equation (3) into (2) gives:{
ud = dψd

dt + Rsid − ωeLqiq
uq =

dψq
dt + Rsiq + ωe(Ldid + ψf)

(4)

where ua, ub, uc are the stator winding’s three-phase voltages, with V as the unit; Rs is the
stator resistance, with Ω as the unit; ia, ib, ic are the stator winding’s three-phase current,
with A as the unit; ψa, ψb, ψc are the flux of the stator winding, with Wb as the unit; ψ f is the
permanent magnet flux linkage, with Wb as the unit; Ld, Lq are the inductance components
of the stator inductance on the dq axis, respectively, with H as the unit; ωe represents the
electrical angular velocity of the motor, with rad/s as the unit.

Through analyzing the components of resistance torque and dynamic torque, the
motor’s mechanical motion equation is derived:

J
dωm

dt
= Te − Bωm − T (5)

where J is the moment of inertia, T is the load torque and B is the viscous friction coefficient.
By Clarke transformation and Park transformation, the equation of electromagnetic torque
is obtained below:

Te =
3
2

pn
[
ψfiq + (Ld − Lq)idiq

]
(6)

where Te is the electromagnetic torque; 3/2 is the coefficient when the equal amplitude
transformation principle is adopted; Pn pertains to the total number of motor pole pairs.

The transformed mechanical motion equation is:

J
dωm

dt
=

3
2

pn
[
ψfiq + (Ld − Lq)idiq

]
− Bωm − T (7)

3. Design of Improved ADRC Controller

The traditional ADRC treats uncertainty, internal system disturbances, and external
disturbances collectively as the system’s overall disturbance. And it can achieve real-
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time accurate estimation and compensation of this disturbance using the ESO and NLSEF.
This approach does not rely on an exact model of the plant and significantly enhances
anti-interference capabilities. However, the traditional ADRC’s fal function is not smooth
enough at the switching points between the nonlinear section and the linear section,
resulting in the control effect not being ideal. Therefore, an improved ADRC controller
underpinned by an improved fal function is proposed in this paper.

3.1. Improved Fal Function Design

The fal function is a nonlinear function, which plays a vital role in ADRC. It not
only allows ADRC to better estimate and compensate for system disturbances, thereby
improving the system’s anti-disturbance performance, but also allows the amplification to
be mitigated when the error is large and increased when the error is small. It is beneficial
to enhance the system’s reaction velocity to large errors and the control accuracy to small
errors, while enhancing the robustness and adaptability of the system.

In traditional ADRC, fal(e, α, δ), as a crucial nonlinear function, can effectively estimate
both internal and external disturbances of the system, thereby generating the ADRC’s
output signal. The form of the fal function is shown in Equation (8):

f al(e, α, β) =

{
|e|αsign(e), |e| ≥ δ

e
δ1−α , |e| < δ

(8)

Taking δ = 0.001, when α takes different values, the curve of the fal function is shown
in Figure 2.

Figure 2. Curves of fal(e, α, δ) function under different α values.

From the perspective of convergence, the terminal attractor |e|αsign(e) is finite-time
convergent, especially suitable for the control near the origin stage (|e| < 1), which has
an amplification effect on the error, but not suitable for the control away from the origin
stage, and the convergence will be slower than the classical linear control. The linear term
is exponentially convergent, which is suitable for the control far from the origin (|e| > 1).
However, in the fal function, the use of the terminal attractor term and the linear term
is reversed, which causes the fal function as a whole to converge in nonfinite time, no
matter how small the initial error e(0) is, so the linear term can be improved to enhance the
convergence ability.

From Equation (8), it is evident that the derivative values at the breakpoints differ
after applying the derivative of the fal function. And it can also be seen from Figure 2 that
the fal(e, α, δ) function curves are continuous but not smooth when e = |δ|, and there is a
sudden change, which will lead to poor control performance of the system.
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Based on the above problems, a polynomial nonlinear function Ifal(e, α, δ) combining
linear and trigonometric functions is proposed in this paper. The reasons for adopting a
combination of trigonometric functions and polynomials are as follows:

(1) Trigonometric functions and polynomials have explicit mathematical forms, making
them easy to handle analytically and theoretically.

(2) Properly designed trigonometric functions and polynomials can reduce system over-
shoot and enhance the response speed and stability of the system.

(3) Although the added trigonometric function makes Ifal more complex than the original
fal function, the calculation efficiency can be improved by the look-up table and
interpolation methods, and a better control effect can be achieved on the premise of
ensuring real-time performance and lower hardware requirements.

The function expression is shown below:

I f al(e, α, β) =

{
|e|αsign(e) , |e| ≥ δ
δα−3ek1 cos(e−δ)

k1
− δα−2ek2 cos(e−δ)

k2
+ k3δ + αδα−1e, |e| < δ

(9)

The design idea of the function is as follows: considering that the main problem of the
original fal function is that the segments are not smooth enough, the original linear function
is changed into a polynomial function combined with a trigonometric function and linear
function when |e| ≤ δ in this paper. Then, according to the condition that the fal function
is continuous at the segments and the derivative function values are equal, the relationship
between the three constant coefficients of k1, k2 and k3 is obtained.

Based on the above ideas, it can be known that when e = |δ|, the function values on
both sides of the Ifal function are equal, and after taking the derivative of the Ifal function,
the derivative values on both sides are also equal.

In light of the aforementioned concepts, the following equation is established:{
I f al−(e, α, β) = I f al+(e, α, β)
I f al′−(e, α, β) = I f al′+(e, α, β)

(10)

The derivative expression of the Ifal function, after calculation, is as follows:

I f al′(e, α, β) =

{
αδ(α−1) , |e| > δ

δα−3e(k1−1) − δα−2e(k2−1) + αδ(α−1) , |e| ≤ δ
(11)

Combining Equations (10) and (11), we can derive Equation (12).{
δα−3ek1 cos(e−δ)

k1
− δα−2ek2 cos(e−δ)

k2
+ k3δ + αδα−1e = |e|αsign(e)

δα−3e(k1−1) − δα−2e(k2−1) + αδ(α−1) = αδ(α−1)
(12)

When |e| = δ, Equation (3) simplifies to the following form:{
δk1+α−3

k1
− δk2+α−2

k2
+ k3δ + αδ = δα

δk1+α−3 − δk2+α−2 + αδα−1 = αδα−1
(13)

Then, the relationship for k1, k2 and k3 is derived, k2 = k1 − 1, k3 = k1
2−k1+1

k1(k1−1) − α,
which is brought into the Ifal function to obtain the new nonlinear function:

I f al(e, α, δ) =

{
|e|αsign(e) , |e| > δ
δα−3ek1 cos(e−δ)

k1
− δα−2ek1−1 cos(e−δ)

k1−1 + δk1+α−3

k1(k1−1) + (1 − α)δα + αδα−1e, |e| ≤ δ
(14)

The fal function curves before and after improvement are drawn by MATLAB 2020a
from MathWorks and are shown in Figure 3.
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Figure 3. Curves of fal(e, α, δ) function before and after improvement.

It can be seen from the graph that the Ifal(e, α, δ) function curve is smoother than that
of the fal function. The Ifal function is continuous and derivable at the points that |e| = δ.
In the range of (−0.06, 0.06), the output of the Ifal function is higher than that of fal function,
that is, the Ifal function converges faster and more smoothly.

3.2. Improved ESO Design (IESO)

Moreover, the IESO serves as the nucleus for IADRC. It not only provides the state
estimation of the PMSM system, but also classifies all types of both internal and external
disturbances, in addition to uncertainties comprising the entirety of the PMSM system’s
disturbances, and estimates and compensates for the total disturbance in real time. Similar
to the ESO, the IESO relies solely on the input and output data of the system and does
not require an accurate mathematical model of disturbances. This approach effectively
enhances the performance and robustness of the control system. The formulation of the
IESO is as follows: 

e2 = z21 − n
.
z 21 = bu(t) + z22 − k31 I f al(e2, α2, δ2).
z 22 = −k32 I f al(e2, α2, δ2)

(15)

3.3. Improved NLSEF Design (INLSEF)

The NLSEF realizes the effective control of nonlinearity, uncertainty and external
disturbance in ADRC and enhances the system’s control performance and robustness. The
fal function is a key nonlinear element in the NLSEF for processing error signals. It can
adaptively manipulate the amplification based on the magnitude of error, diminishing the
gain in instances of substantial error and elevating the gain when the error is minimal,
thereby enhancing the control mechanism’s accuracy and robustness. The expression of the
INLSEF is as follows: {

e1 = z11 − z21
u(t) = − z22

b + k2 I f al(e1, α1, δ1)
(16)
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where z21 represents an observation of the controller’s dynamic response, while z21 denotes
an observation of the disturbance, b is the compensation factor and k2 is the regulator gain.

3.4. Design of PMSM Speed Control System Based on IADRC-Proposed

Figure 4 depicts the schematic diagram of the IADRC-proposed PMSM speed control
system. The controller indirectly controls the speed and torque of the PMSM by controlling
the inverter’s output. The system adopts double closed-loop control, wherein the current
loop operates under PI, while the speed loop is controlled by IADRC-proposed.

Figure 4. Diagram outlining PMSM’s IADRC-proposed speed control system.

4. Simulation and Experimental Evaluation

To verify the effect of the IADRC-proposed algorithm on PMSM speed control, the
traditional ADRC, SMC, fuzzy PID and the IADRC in Ref. [34] are adopted as the compari-
son algorithms. The PMSM speed regulation system models based on these five control
algorithms are built in MATLAB/Simulink, and the simulation comparison experiments
are carried out thereafter. The specifications for the PMSM in the simulation models are
outlined in Table 1.

Table 1. Specifications for PMSM.

Specifications Value

Stator phase resistance R (Ohm) 2.785
Stator direct-axis inductance LD (H) 8.5 × 10−3

Stator cross-axis inductance LQ (H) 8.5 × 10−3

Permanent magnet flux linkage ψ f (Wb) 0.175
Inertia J (kg·m2/rad) 1 × 10−3

Pole pairs, P 4
Coefficient of friction B 1 × 10−4

The methodology incorporated within this manuscript is delineated as follows: the
expected speed of the PMSM is 1500 r/min. To verify the robustness of the IADRC-proposed
algorithm, a load torque is added first. When the actual speed reaches the expected speed
and is stable, the load torque of 2 N·m is suddenly applied to the PMSM’s output shaft
at 0.1 s to compare the no-load response curve and anti-interference ability of the PMSM
under the action of the above five control algorithms. The total experimental time is 0.15 s.

The parameter settings in the IADRC-proposed algorithm are as follows. According to
the specific descriptions of the ADRC’s three components in Section 3, the two parameters
α, δ in the TD and NLSEF are set based on experience, α1 = 0.4, δ1 = 0.09, α2 = 0.4, δ2 = 0.09.
The two parameters in the ESO are determined through continuous simulation and tuning:
α3 = 0.25, δ3 = 0.04. Velocity coefficient k1 in the TD, regulator gain k2 and compensation
factor b of the NLSEF, derived from the mathematical model and parameters of the PMSM
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system, are taken as k1 = 5355, k2 = 5000, b = 1030.66, respectively. Similarly, the calibration
gains of the output in the ESO are taken as k31 = 8500, k32 = 500,000. The key parameters in
the controller are shown in Table 2.

Table 2. The values of key parameters of controller.

Component Specifications Value

TD
Tracking factor α1 0.4

Filter factor δ1 0.09
Velocity factor k1 5355

NLSEF

Tracking factor α2 0.4
Filter factor δ2 0.09

Regulator gain k2 5000
Compensation factor b 1030.66

ESO

Tracking factor α3 0.25
Filter factor δ3 0.04

The calibration gains of the output k31 8500
The calibration gains of the output k32 500,000

According to the above parameter settings, the three algorithms are applied to the
PMSM’s speed control. The results of the experiment are shown below:

It can be seen from Figures 5 and 6 that in the PMSM’s initial start-up stage, the IADRC
proposed in this paper has the best effect among the three algorithms. It not only has no
overshoot but also reaches and stabilizes at the expected speed at 0.027 s. The maximum
error fluctuation value is 31.28 r/min, which is about 2.09% of the expected speed. The
IADRC in Ref. [34] needs 0.045 s to reach and stabilize at the expected speed, and the
overshoot is 61.64 r/min, which is about 4.11% of the expected speed. And the time for the
traditional ADRC to reach and stabilize at the expected speed is 0.085 s, and its overshoot
is also the largest, which is 119.04 r/min, about 7.89% of the expected speed. The SMC
requires 0.075 s to reach and stabilize at the expected speed, with a maximum overshoot of
423.71 r/min, which is approximately 28.25% of the expected speed. The fuzzy PID takes
0.043 s to reach and stabilize at the expected speed, with a maximum error fluctuation of
30.27 r/min, which is about 2.02% of the expected speed.

Figure 5. Speed response curves of 5 algorithms without Gaussian noise.
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Figure 6. The plant control inputs of 5 algorithms without Gaussian noise.

When the speed of the PMSM is stabilized at the expected speed, the step load torque
is applied at 0.1 s. The IADRC algorithm proposed in this paper is basically unaffected, and
the speed curve only fluctuates slightly. The maximum speed error is 7.39 r/min, which
is about 0.49% of the expected speed, and then quickly (0.004 s) returns to the expected
value. The speed curve of the IADRC algorithm in Ref. [34] produced a maximum speed
error of 20.73 r/min, which is about 1.38% of the expected speed, and returned to the
expected value after 0.006 s. And the speed curve of the traditional ADRC algorithm
produces a maximum speed error of 29.85 r/min, which is about 1.99% of the expected
speed, and returns to the expected value after 0.034 s. The velocity curve of the SMC
algorithm produces a maximum speed error of 81.98 r/min, which is approximately 5.47%
of the expected speed, and returns to the expected value after 0.028 s. The velocity curve of
the fuzzy PID algorithm produces a maximum speed error of 18.11 r/min, which is about
1.21% of the expected speed, and returns to the expected value after 0.07 s.

Various uncertain factors affect the PMSM system in practical work, such as envi-
ronmental noise and resistance changes caused by continuous operation of the motor or
changes in ambient temperature. To verify the robustness of IADRC-proposed algorithm
under different parameter variations and uncertainties, simulation experiments for noise
interference and motor resistance change are added to the system.

To verify the robustness of the IADRC-proposed algorithm, this paper also includes
comparative experiments of the plant control input U under Gaussian noise, comparing
it with other algorithms. The Gaussian noise is added at the beginning, and the signal
is set to have a mean of 1 and a variance of 200. Other motor parameters are shown in
Tables 1 and 2. The simulation results are shown in Figures 7 and 8.

Comparing Figures 5–8, it is obvious that the speed response curves and the system
output U do not change significantly before and after the Gaussian noise is added for all
five algorithms. Moreover, the speed response curves and the system output U controlled
by the IADRC-proposed algorithm have the shortest oscillation time and the smallest
oscillation amplitude, which verifies the stability of the IADRC-proposed algorithm.

To further validate the impact of motor resistance changes on the IADRC-proposed,
the motor resistances are set to 2.5875, 2.875 and 3.1625, respectively. Other parameters are
consistent with Table 1. The experimental results are shown in Figure 9.
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Figure 7. Speed response curves of 5 algorithms under Gaussian noise.

Figure 8. The plant control inputs of 5 algorithms under Gaussian noise.

From Figure 9, it is obvious that although the overshoot and the time to reach stability
all change, the change is slight. It indicates that after changes in external conditions, the
control effect is still very good, confirming the robustness of the IADRC-proposed algo-
rithm.

In summary, it is effectively proved that our presented IADRC exhibits enhanced
responsiveness, higher control accuracy, stronger robustness and anti-interference ability.
The specific performance is as follows: our proprietary IADRC algorithm is 40.00% better
than the IADRC in Ref. [34], 68.24% better than the traditional ADRC, 64.00% better than
SMC and 37.21% better than fuzzy PID in terms of rapidity. In terms of accuracy, it is
49.25% better than the IADRC in Ref. [34], 73.72% better than the traditional ADRC, 92.62%
better than SMC and 3.35% worse than fuzzy PID. Moreover, when the step load torque is
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applied in the stable operation state, the IADRC algorithm proposed in this paper is 33.33%
better than the IADRC in Ref. [34], 88.24% better than the traditional ADRC, 85.71% better
than SMC and 94.29% better than fuzzy PID in terms of rapidity. In terms of accuracy, it is
64.35% better than the IADRC in Ref. [34], 75.24% better than the traditional ADRC, 90.99%
better than SMC and 59.19% better than fuzzy PID. Additionally, experimental tests adding
Gaussian noise and changing motor resistance attest that the proposed IADRC algorithm
has good robustness.

Figure 9. Motor speed curves with different resistances.

5. Conclusions

A refined fal function-based IADRC strategy is elucidated in this article, and a better
control performance for the PMSM is obtained compared to the traditional ADRC, IADRC
in Ref. [34], SMC and fuzzy PID. Simulation results indicate that compared to ADRC,
IADRC in Ref. [34], SMC and fuzzy PID, the IADRC proposed in this paper has faster
response speed. The time to reach and stabilize at the expected speed is 68.24% shorter
than that of ADRC, 40.00% shorter than that of IADRC in Ref. [34], 64.00% shorter than that
of SMC and 37.21% shorter than that of fuzzy PID. Moreover, the IADRC proposed in this
paper has no overshoot, and the maximum error reduction amounts to 73.72% compared
to ADRC, 49.25% compared to IADRC in Ref. [34], 92.62% compared to SMC and −3.35%
compared to fuzzy PID. In the case of sudden disturbance when the speed of the PMSM is
stabilized at the expected speed, the time to reach and stabilize at the expected speed is
88.24% shorter than that of ADRC, 33.33% shorter than that of IADRC in Ref. [34], 85.71%
shorter than that of SMC and 94.29% shorter than that of fuzzy PID. Additionally, the
maximum error of the IADRC proposed in this paper is 75.24% lower than that of ADRC,
64.35% lower than that of IADRC in Ref. [34], 90.99% lower than that of SMC and 59.19%
lower than that of fuzzy PID. Apart from that, the good robustness is also verified by
adding Gaussian noise and changing motor resistance.

Our future work will focus on applying the IADRC-proposed algorithm to the phys-
ical control of PMSMs and continue to improve the algorithm according to the actual
control situation.
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Abstract: Machine learning algorithms have become common in everyday decision making, and
decision-assistance systems are ubiquitous in our everyday lives. Hence, research on the prevention
and mitigation of potential bias and unfairness of the predictions made by these algorithms has
been increasing in recent years. Most research on fairness and bias mitigation in machine learning
often treats each protected variable separately, but in reality, it is possible for one person to belong to
multiple protected categories. Hence, in this work, combining a set of protected variables and gener-
ating new columns that separate these protected variables into many subcategories was examined.
These new subcategories tend to be extremely imbalanced, so bias mitigation was approached as an
imbalanced classification problem. Specifically, four new custom sampling methods were developed
and investigated to sample these new subcategories. These new sampling methods are referred to as
protected-category oversampling, protected-category proportional sampling, protected-category Syn-
thetic Minority Oversampling Technique (PC-SMOTE), and protected-category Adaptive Synthetic
Sampling (PC-ADASYN). These sampling methods modify the existing sampling method by focusing
their sampling on the new subcategories rather than the class label. The impact of these sampling
strategies was then evaluated based on classical performance and fairness in classification settings.
Classification performance was measured using accuracy and F1 based on training univariate de-
cision trees, and fairness was measured using equalized odd differences and statistical parity. To
evaluate the impact of fairness versus performance, these measures were evaluated against decision
tree depth. The results show that the proposed methods were able to determine optimal points,
whereby fairness was increased without decreasing performance, thus mitigating any potential
performance–fairness tradeoff.

Keywords: fairness; protected categories; machine learning; sampling

1. Introduction

As machine learning (ML) algorithms increasingly dominate decision-making and
decision-assistance systems, their widespread deployment across various sectors raises
pressing issues about the fairness and transparency of their predictions [1]. The potential
for these algorithms to perpetuate or exacerbate existing societal biases has propelled a
significant body of research to investigate and mitigate algorithmic unfairness. This is
critical because the decisions influenced by these algorithms profoundly impact individuals,
affecting outcomes in domains ranging from finance and employment to criminal justice
and healthcare [2].

The source of unfairness and bias in ML is multifaceted [3]. In particular, it is possible
that unfairness arises directly from the ML algorithms themselves due to a possible mis-
alignment of the underlying inductive bias of the algorithms vis-à-vis the target concept
and data distribution. This is referred to as algorithmic bias. An alternative concern lies in
potential bias resident in the data used to train the models where, as a direct result of the
typical “independent and identically distributed” (IID) assumption employed in most ML
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methods, the result of learning is to propagate the bias in predictions such that they match
the bias in the underlying data itself. It is this latter situation that constitutes the focus of
our work here.

1.1. Bias and Unfairness in Machine Learning

Bias is the prejudicial, unfair, or unequal treatment of an individual or group based
on specific features, often referred to as sensitive or protected features [4]. Examples of
these protected features include age, race, disability, sex, and gender [5]. Bias in ML can be
divided roughly into disparate treatment (direct unfairness) and impact treatment (indirect
unfairness) [6]. Direct unfairness happens when protected features are used explicitly in
making decisions. Indirect unfairness has become increasingly common today. This type
of unfairness does not use protected attributes explicitly; instead, it occurs when reliance
on variables associated with these attributes results in significantly different outcomes for
the protected groups. These other variables are known as proxy features. Examples of
real-world bias include the historical U.S. practice of “redlining”, where home mortgages
were denied to residents of zip codes predominantly inhabited by minorities, Amazon
hiring process gender bias, Google soap dispenser racial bias, etc. [7].

Though these decision assistance tools help automate the decision-making process,
these tools may result in unfair treatment of either individuals or groups, both directly or
indirectly [8]. Unfairness can occur in several areas of modeling, such as in the training
dataset. This can happen when the training dataset does not provide a fair representation
of the protected categories, so the “ground truth” becomes difficult to determine. For
example, consider a dataset from a company where a specific group has historically faced
discrimination. Specifically, suppose female employees in this company have not been
promoted as their male counterparts, who, in contrast, have seen career advancement,
despite both groups performing at the same level. In this situation, the true value of female
employee contributions—the ground truth—is not visible. As a result, an ML algorithm
trained on this data is likely to detect and incorporate this bias, thereby perpetuating
existing prejudices. This could lead to the algorithm making discriminatory decisions, such
as recommending male candidates for hire or promotion more frequently than equally or
more qualified female candidates.

Another area where unfairness can occur is in the ML algorithm itself [9]. ML al-
gorithms can still produce discriminatory decisions, even when trained on an unbiased
dataset where the “ground truth” is represented accurately. This situation arises when the
system’s errors disproportionately impact individuals from a specific group or minority.
For example, consider a breast cancer detection algorithm that exhibits significantly higher
false negative rates for Black individuals compared with White individuals, meaning it
fails to identify breast cancer more frequently in Black patients than in White patients. If
this algorithm is used to inform treatment recommendations, it would erroneously advise
against treatment for a greater number of Black individuals than White, leading to racial
disparities in healthcare outcomes. This underscores the critical need to ensure that algo-
rithms perform equitably across all groups in terms of their training data and how their
errors affect different populations. Results from previous literature have reported several
cases of algorithms resulting in unfair treatment, e.g., redlining and racial profiling [10],
mortgage discrimination [11], employment and personnel selection [12].

While considerable efforts have been geared toward addressing bias in ML predic-
tions [13,14], much of the existing research has focused on mitigating bias for single pro-
tected attributes in isolation [15]. For example, on a dataset with two protected attributes,
race, and sex, most existing approaches can learn either a fair model involving race or a
fair model involving sex but not a fair model involving both race and sex [7]. However,
real-world identities are not singular; they are complex and multifaceted, with individuals
often belonging to multiple protected groups simultaneously [16]. For example, an indi-
vidual can be discriminated against across several protected attributes such as age, race,
and sex simultaneously. This intersectionality can lead to compounded forms of bias and



Electronics 2024, 13, 3024 3 of 24

discrimination, which are not adequately addressed by single-variable fairness interven-
tions. Therefore, it is critical to develop methodologies that holistically address personal
identities’ multidimensional nature. This project seeks to bridge this gap by considering
combinations of protected categories, thereby synthesizing these protected categories into
comprehensive multicategory groups, and aims to tackle the layered complexities of bias
more effectively using novel protected-category sampling methods, thus acknowledging
and addressing the multifaceted nature of personal identities and potential biases.

The work presented in this paper is motivated by the problem of using ML algorithms
for decision making in socially sensitive areas such as loan assessment, hiring, or mortgage
assessment, working with this situation where an individual can belong to several protected
categories. Given a labeled training dataset containing two or more protected features,
the method proposed combines these protected attributes and then splits them into new
multicategories. These new categories are likely to be extremely imbalanced and need
to be balanced to improve the fairness of the prediction of our ML algorithms. Popular
sampling methods such as over-sampling [17], Synthetic Minority Oversampling Technique
(SMOTE) [18], Adaptive Synthetic Sampling (ADASYN) [19], etc., sample data across class
labels, which does not align with the goal of our research of sampling across the new
multicategories. Hence, a new class of modifications of these sampling methods is proposed
that can sample across the new category rather than class labels. This new class of modified
sampling is called protected-category sampling. The resulting proposed protected-category
sampling methods are used to sample and balance the new categories before performing
classification. The novelty of this work is two-fold. First, the proposed approach combines
the protected categories to form new multicategories that mimic what the identity human
being looks like in the real world. The second is the modification of existing sampling
methods to conform with the sampling of these new categories in order to make sure that
all the new categories have the same number of instances.

For demonstration purposes only, a univariate decision tree was chosen as the clas-
sification algorithm. The intent is to demonstrate the effects of the different sampling
methods on performance, expecting that similar trends will be exhibited regardless of the
underlying learning method. The proposed sampling method was compared with the
baseline (unsampled data) using accuracy and F1 as the classification performance metrics,
as well as equalized odds differences and statistical parity as the fairness metrics. Also,
several analyses were performed to show how maximum depth in the decision tree affects
both accuracy and fairness.

1.2. Research Question

Proceeding from empirical observation that a trade-off sometimes exists between
fairness and ML performance [20], this research tries to answer several questions, such
as how this trade-off might be mitigated. In particular, we seek to answer whether the
protected-category sampling method of tackling fairness can mitigate this trade-off. In
addition, can we develop a methodological framework that effectively mitigates biases
across these combined protected variables without compromising the predictive accuracy
of ML models? Finally, we plan to answer the question of how the depth of a decision tree
affects both accuracy and fairness metrics, thus exploring the relationship between the level
of fit (underfitting through overfitting) and fairness.

1.3. Hypothesis

We hypothesize that, by employing sophisticated protected-category sampling tech-
niques designed for these newly formulated multicategory groups, we can significantly
increase model fairness in terms of equalized odds differences without decreasing classi-
fication performance in terms of accuracy and F1. Furthermore, we explore the delicate
balance between fairness and accuracy, hypothesizing that it is possible to identify strategic
points where fairness can be maximized without detrimental impacts on performance.
This research challenges existing claims of the existence of trade-offs in fairness and ML
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prediction. It sets the stage for future explorations into the multidimensional nature of
identity and discrimination in automated decision systems.

1.4. Contributions

The broad problem of fairness in machine learning is significant in that the prevalence
of AI and ML systems today is having a major impact on people’s lives and livelihoods.
While attention to fair ML has increased substantially, there continues to be a need for
methods to advance fair ML without negatively impacting ML performance. Based on an
in-depth review of the literature and the above need for this type of work, the methods
reported here make the following contributions:

1. The commonly-held assumption that there exists an inherent tradeoff between fairness
and performance (i.e., accuracy) in machine learning is challenged with evidence
provided to support this challenge. In particular, the results in this paper indicate that
such a tradeoff can be mitigated, suggesting that any tradeoff is most likely tied to
how the data is being managed.

2. Four novel preprocessing methods for sampling data are presented based on applying
a multicategory sampling strategy using data captured in protected categories. The
methods proceed from the assumption and corresponding hypothesis that balanc-
ing the data based on these multicategory properties can increase fairness without
adversely affecting machine learning model performance.

3. Experimental results are presented using three datasets studied extensively within the
fair ML community. The experiments include comparisons with traditional methods
of training with no resampling to demonstrate the relative effects of the proposed
methods. The results demonstrate that two of the proposed methods, Protected-
Category Synthetic Minority Oversampling Technique (PC-SMOTE) and Protected-
Category Adaptive Synthetic sampling (PC-ADASYN), are particularly effective in
improving both fairness and performance.

4. A detailed analysis relating the potential effects of underfitting and overfitting on
fairness is presented by examining different levels in a decision tree model, with and
without using the proposed sampling methods. The results demonstrate the ability of
the proposed methods to identify an ideal level of the tree where both fairness and
accuracy are maximized.

As a result of the above contributions, this work represents a significant step forward
in addressing concerns of fairness in machine learning. A key takeaway from the meth-
ods and results reported here is that fairness can be addressed without compromising
model performance.

1.5. Organization

This paper is organized as follows. In Section 2, a detailed explanation of fairness
and a discussion of several technical fairness metrics are presented. Then, in Section 3,
previous literature related to bias mitigation strategies is described. In Section 4, we
describe our proposed sampling techniques, dataset, and approach to hyperparameter
tuning. In Section 5, we present the results of several experiments along with statistical
hypothesis tests as a means of validating these results. In Section 6, the experimental
results are discussed, and how each algorithm performs on each dataset and each metric is
analyzed. Further results on the impact of tree depth on fairness and accuracy are presented
as well. In Section 7, the limitations of this work and corresponding directions for future
work are presented, and Section 8 presents a number of conclusions.

2. Background

This study considers fairness when predicting an outcome y ∈ Y from a set of fea-
tures x ∈ X ⊆ Rd and some additional protected attributes s ∈ S ⊆ Rp, such as race,
gender, and sex. For example, in loan prediction, x represents an applicant’s financial
history, s is their self-reported race and gender, and y is whether their loan is approved
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or denied. A prediction model is considered fair if its errors are evenly distributed across
protected groups like different races or genders. The class predictions from training data
D are denoted as ŶD := h(x, s) for some h : X × S → Y from a class H. The protected
attributes s ∈ S in our study are assumed to be binary with a special value n denoting the
unprivileged group. For example, S could be race and n “non-White”; therefore, the binary
nature of S is {w, n} where w represents White applicants, who are the privileged group,
and n represents non-White applicants, who are the unprivileged group. The definition
can be further generalized to nonbinary cases.

Discrimination in labeled datasets can be defined as given a dataset D, feature set
X , and protected attribute set S with domain value {w, n}. The discrimination in D with
respect to the group S = n denoted as diss=n(D) is defined as

diss=n(D) =
|{x ∈ D : x(s) = w, h(x) = +}|

|{x ∈ D : x(s) = w}| − |{x ∈ D : x(s) = n, h(x) = +}|
|{x ∈ D : x(s) = n}|

The above definition can be translated to the difference in the probability of an ap-
plicant being in the positive class for each protected attributes domain {w, n}. Our study
extends the above definition by considering dataset D, which contains two or more pro-
tected attributes.

Two popular fairness metrics are used. The first is equalized odd difference (EOD), which
measures how discriminative or fair our prediction is. EOD states that a binary classifier
ŷ is fair if its false negative rate (FNR) and true positive rate (TPR) are equal across the
domain of S [21]. FPR and TPR with respect to protected attribute s ∈ S with value n can
be defined as

TPRn(ŷ) = P(ŷ = 1|y = 1, S = n)

FPRn(ŷ) = P(ŷ = 1|y = 0, S = n)

EOD is then defined mathematically as the difference between TPR and FPR across
different groups in a protected attribute. That is,

EOD = TPRn(ŷ)− FPRn(ŷ).

A fair classifier has an EOD of 0, while an unfair classifier has an EOD of 1. Although
achieving a fully fair classifier in practice is almost impossible, this research is geared
toward improving EOD without decreasing accuracy. Then, for EOD,

FPRn(ŷ) = P(ŷ = 1|y = 0, S = n) = TPRn(ŷ) = P(ŷ = 1|y = 1, S = n)

and
FPRw(ŷ) = P(ŷ = 1|y = 0, S = w) = TPRw(ŷ) = P(ŷ = 1|y = 0, S = w)

To extend the above EOD definition to our multicategory, the EOD is calculated for
each column, then the macroaverage of the EOD is presented as the final EOD. The second
metric used to measure fairness in ML prediction is statistical parity (SP). SP defines fairness
as an equal probability of being classified as positive [22]. This can be interpreted as
each group in a protected attribute having the same probability of being classified with a
positive outcome.

P(ŷ = 1|S = w) = P(ŷ = 1|S = n)

3. Literature Review

ML algorithms, increasingly utilized for decision making in critical applications such
as recidivism, credit scoring, loan decisions, etc., might initially be assumed to be fair and
free of inherent bias. However, in reality, they may inherit any bias or discrimination present
in the data on which they are trained, as noted by Burt [23]. Moreover, merely removing
protected variables from the dataset is insufficient to tackle indirect discrimination and
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might, in fact, conceal it. This recognition has heightened the need for more advanced
tools, making discovering and preventing discrimination a significant area of research, as
highlighted by [24–27].

Bias in ML is a fast-growing topic in the machine learning research community. Bias
in an ML model can lead to an unfair treatment of people belonging to certain protected
groups. Lately, industrial leaders have started putting more and more emphasis on bias in
ML models and software. The Institute for Electrical and Electronics Engineers (IEEE) [28],
Microsoft [29], and the European Union [30] have recently published principles for guiding
fair AI conduct. These organizations have stated that ML models must be fair in real-world
applications. Bias mitigation strategies involve modifying one or more of the following
to ensure the predictions made by the ML algorithm are less biased: (a) the training data,
(b) the ML algorithm, and (c) the ensuing predictions themselves. These are, respectively,
categorized as preprocessing [31], inprocessing [32], and postprocessing approaches [21].

First, the training data can be preprocessed to lower unfairness or bias before training
the model. Kamiran and Calders [6] suggest sampling or reweighting the data to neutralize
discrimination. This approach can adjust the representation or importance of certain data
points to favor (or reduce favor) one class over another. Another method involves changing
individual data records directly to reduce discrimination, as explored by [33]. For example,
this approach involves altering values in a dataset to decrease identifiable biases against
certain groups. Additionally, the concept of t-closeness, introduced by Sondeck et al. [34],
is applied to discrimination control in the work of [35]. Using t-closeness ensures that the
distribution of sensitive attributes in any given group is close to the distribution of the
attribute in the entire dataset, thereby preserving privacy and preventing discrimination
based on sensitive attributes. A common thread among these approaches is balancing
discrimination control with the processed data’s utility, that is minimizing bias without
significantly compromising the data’s accuracy, representativeness, and overall usefulness
for predictive modeling or analysis. This balance is essential for ensuring that efforts to
promote fairness do not inadvertently reduce the quality or applicability of the data.

Overall, the pre-processing method can further be divided into three categories:
(1) data modification, (2) data removal, and (3) data resampling. Methods in the first
category aim to modify the values of the training data points (including protected attribute
values, class values, and feature values) to lower the bias in the dataset. An example of
this method is data massaging proposed by [15]. Their approach ranks the training data,
and data close to the decision boundary in both privileged and unprivileged groups are
flipped. Alternatively, an optimized pre-processing method that learns a probabilistic
transformation that edits the classes and features with individual distortion and group
fairness was proposed by Fahse et al. [23]. In [36], the original attribute values are replaced
with values chosen independently from the class label to train a model roughly achieving
equalized odds. Similarly, Peng et al. [37] replace the protected attribute values with values
predicted based on other attributes, similar to data imputation.

Methods in the second category aim to train a fair model by removing certain fea-
tures from the training set. An example of this method is data suppression proposed by
Dhar et al. [38]. In their paper, the protected attributes and features that are highly corre-
lated with protected attributes, otherwise known as proxy attributes, are removed from the
dataset to train a fair model.

Methods in the third category aim to train a fair model either by adjusting the sample
weights or by oversampling the dataset. For example, Krasanakis et al. [39] proposed a
reweighting method that iteratively adapts training sample weights with a theoretically
grounded model to mitigate the bias–accuracy tradeoff. In [40], Chakraborty et al. proposed
FairSMOTE as a method to over-sample training points from minority groups with artificial
data points based on Synthetic Minority Oversampling Technique (SMOTE) [18], to achieve
balanced class distributions. Also, Yan et al. [41] proposed oversampling the training data
from the minority groups with artificial data points to achieve balanced class distribu-
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tions. Unlike FairSMOTE, the authors focused on scenarios where protected attributes are
unknown and applied a clustering method to identify different demographic groups.

Inprocessing involves methods that modify the way an ML model is trained as a means
to reduce bias. In [42], an adversarial debiasing approach was proposed. This approach
learns a classifier to increase accuracy and fairness in prediction by including a variable for
the group interested by simultaneously learning a predictor and an adversary. This leads to
the generation of an unbiased classifier because the predictions do not contain any group
discrimination information that the adversary could utilize. Alternatively, an algorithm
that takes a fairness metric as part of the loss function and returns a model trained for
that fairness metric was proposed in [43]. Kamishima et al. [22] proposed a regularization
method, which included a penalty term in the loss function of a classifier to produce an
unbiased prediction. Zafar et al. [44] developed a new weighting method whereby they
tune the sample weight for each training datum to achieve a specific fairness objective, such
as equalized odds on the validation data. Recently, bias mitigation has been approached as
a constrained optimization problem by adding a fairness constraint and optimizing the loss
to be consistent with that constraint [45,46]. Also, some works modify neural networks by
using dropout to drop neurons that belong to protected attributes [47].

Postprocessing methods mitigate bias after fitting an ML model and include ap-
proaches such as calibration, constraint optimization, and transformation thresholding [6].
Such methods propose an algorithm that gives favorable outcomes to unprivileged groups
and unfavorable outcomes to favorable groups within a given confidence interval around
the decision boundary with the highest uncertainty. For example, one approach modifies
the peak thresholds of the classifier to yield a specified equal opportunity or equalized odds
target. Yet another approach involves randomly mutating the classes of certain predictions
into different classes [48].

Several new studies [49,50] combined either preprocessing, inprocessing, or post-
processing to form an ensemble method. For example, Bhaskaruni et al. [50] combine
oversampling the imbalance protected class with a decision boundary shifting a postpro-
cessing method to tackle the unfairness problem.

Researchers have delved into various concepts of discrimination and fairness within
algorithmic decision making. Disparate impact (referred to previously as indirect fairness),
for example, is measured through statistical parity and group fairness, as discussed by
Bhaskaruni et al. [50]. On the other hand, the concept of individual fairness, also introduced
by Bhaskaruni et al., emphasizes that similar individuals should be treated similarly,
regardless of their group affiliation. This approach focuses on fairness at the individual
level, ensuring that decisions are made based on relevant attributes rather than group-based
stereotypes or biases.

In classifiers and other predictive models, achieving equal error rates across different
groups is a key goal, as highlighted by Zhang and Neill [16]. Similarly, ensuring calibration
or the absence of predictive bias in the predictions, as discussed by Hardt et al. [21], is
crucial. However, the tension between these notions—calibration and equal error rates—is
explored by Dwork et al. [51] and Pleiss et al. [52], indicating that simultaneously satisfying
both can be challenging. Karimi-Haghighi and Castillo [53] present related work exploring
the complexities inherent in achieving algorithmic fairness. Friedler et al. [54] further
examines the trade-offs in meeting various algorithmic fairness definitions, especially from
a public safety perspective. Given that our work focuses on preprocessing rather than
modeling, considerations such as balanced error rates and predictive bias become less
directly applicable.

Based on our review of various preprocessing methods, it appears that no work has been
conducted attempting to model fairness for two or more protected attributes simultaneously.
Also, the sampling method used in prior work focused only on sampling based on class labels
rather than the protected categories. Hence, in this paper, preprocessing is emphasized as
it represents the most adaptable aspect of the data science pipeline [55]. Preprocessing is
distinct in that it does not depend on the choice of modeling algorithm and can be seamlessly
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incorporated with data release and publishing mechanisms. This independence and flexibility
make preprocessing critical for ensuring data quality and fairness before any analytical or
predictive modeling occurs. Finally, we focus on new custom sampling methods that sample
the protected category in the data training to build a fair model.

4. Methodology

The focus of our work is to explore sampling methods to enhance fairness in ML without
the corresponding prediction performance suffering, thus mitigating the fairness–performance
tradeoff. As a result, Four novel sampling methods focused on achieving this goal are
proposed. These sampling methods address the imbalanced class problem posed by the
new multicategory generated due to the combination of the protected categories. Custom
sampling methods are needed because the existing methods sample data based on minority
and majority classes, but to mitigate fairness, the new multicategories are sampled to be
equal. This, in turn, calls for modifying the existing sampling methods to sample data based
on these new categories. This leads to four new sampling methods: protected-category
oversampling, protected-category proportional sampling, protected-category SMOTE (PC-
SMOTE), and protected-category ADASYN (PC-ADASYN).

4.1. Protected-Category Oversampling

In protected-category oversampling, the first step is to combine the protected categories in
the dataset and encode the combination to produce our new multicategory. For example, in
the Adult Income dataset, age (young and adult), race (White and others), and sex (male and
female) are combined to generate eight new categories, which become ADULTWHITEMALE,
ADULTOTHERSMALE, YOUNGWHITEMALE, YOUNGOTHERSMAIL, ADULTWHITEFEMALE,
ADULTOTHERSFEMALE, YOUNGWHITEFEMALE, and YOUNGOTHERSFEMALE, respectively.
These new categories have varying sample sizes, and the goal of our protected-category
oversampling is to balance this new category such that the sample size of each of the new
categories matches the size of the category with the highest sample size. To avoid data
leakage, the dataset is separated into train and test, applying oversampling only on the
training data and then testing on an unsampled test set.

The pseudocode in Algorithm 1 shows our protected category oversampling method
in detail. In the algorithm, the largest category was used as the baseline because it is the
category with the highest sample size. The sampling process results in new training data with
a balanced sample size across the new category. The algorithm works by sampling the rest of
the protected categories to match the sample size of the baseline. This sampling is performed
by repeating the categories multiple times along with their class labels.

4.2. Protected-Category Proportional Sampling

The Protected-Category Proportional Sampling method is a generalization of protected-
category oversampling because the process begins by setting a target sample size (which
is a hyperparameter to be tuned, rather than just the size of the largest multicategory),
denoted as targetSamples. This corresponds to the desired number of instances needed for
each category. This target ensures uniformity across all categories, mitigating the risk of
model bias towards more frequent categories. The typical result of applying this method is
that some categories that have more samples than the targetSamples will be under-sampled
while others will be oversampled to yield an equal proportion of them in the training
dataset. The pseudocode in Algorithm 2 shows the step-by-step of the protected-category
proportional sampling method.
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Algorithm 1 Protected-Category Oversampling

1: baselineCount← sum of entries in ’Largest_Category’ of Xtrain
2: totalCount← number of entries in Xtrain
3: baselineProportion← baselineCount/totalCount
4: balancedData← initialize an empty dataset
5: categories← list of column names in Xtrain starting with ’combined_category_’
6: for each category in categories do
7: categoryData← select entries in Xtrain where category = 1
8: categoryData← combine categoryData with corresponding labels from ytrain
9: categoryCount← number of entries in categoryData

10: targetCount← integer part of totalCount× baselineProportion
11: if categoryCount < targetCount then
12: sampledData← sample targetCount from categoryData with replacement
13: balancedData← append sampledData to balancedData
14: else
15: balancedData← append categoryData to balancedData
16: end if
17: end for
18: return balancedData

Algorithm 2 Protected-Category Proportional Sampling

1: targetSamples← 5000
2: sampledBalanced← initialize an empty data set
3: for each column in new_categories.columns do
4: categoryRows← select rows in new_categories where column = 1
5: sampledRows← sample targetSamples entries from categoryRows with replacement
6: for each col in oneHotEncodedBalanced.columns do
7: sampledRows[col]← 0
8: end for
9: sampledRows[column]← 1

10: sampledBalanced← append sampledRows to sampledBalanced
11: end for
12: return sampledBalanced

4.3. Protected-Category SMOTE

The Protected-Category Synthetic Minority Oversampling Technique (PC-SMOTE)
sampling method is a more complex process aimed at mimicking SMOTE but modified for
sampling our new categories, rather than class labels. In this approach, the first step was to
modify SMOTE to use a fixed number of neighbors and to randomly select one neighbor for
the interpolation rather than averaging all of them. The pseudocode in Algorithm 3 shows
the procedure for the PC-SMOTE. Since the intent for the method is to use it for the new
category sampling, it does not address the generation of class labels directly. Hence, a new
function that can generate a new class label for the synthetic data is needed. For this, a new
function is defined that generates class labels based on the number of new synthetic data
generated and a preselected balance ratio between the two classes. Algorithm 4 shows how
our new function generates labels for our synthetic samples. The algorithm first determines
the number of samples for each class based on the balance ratio and generates the sample
needed for each class. The class labels are the shuffle to prevent algorithmic bias in the
classes generated.

These two algorithms are combined together to form PC-SMOTE, as shown in Algorithm 5.
In the approach to achieve multicategory balance, each distinct category is iterated over
such that the subset of data associated with that category is identified. The number
of synthetic samples needed to reach a predefined maximum size per category is then
calculated. If additional samples are required, the data is generated using PC-SMOTE,
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which interpolates between existing data points and their nearest neighbors. Concurrently,
a balanced distribution of synthetic class labels is created with a specified balance ratio by
employing Algorithm 4. These synthetic features and labels are then incorporated into the
training subset for each category. The process is repeated for all categories, resulting in a
balanced dataset. The hyperparameters in this Algorithm 5 are the number of neighbors
and balance ratio.

Algorithm 3 Custom Synthetic Minority Oversampling Technique (SMOTE)

1: procedure CUSTOMSMOTE(data, n_samples)
2: syntheticSamples← zero matrix of size (n_samples× number of columns in data)
3: nn← NearestNeighbors(n_neighbors = 7).fit(data)
4: neighbors← nn.kneighbors(data, return_distance = False)
5: for i← 1 to n_samples do
6: sampleIdx ← random integer from 0 to (number of rows in data− 1)
7: nnIdx ← random choice from neighbors[sampleIdx, 1 :]
8: di f f ← data[nnIdx]− data[sampleIdx]
9: weight← random number from uniform distribution between 0 and 1

10: syntheticSamples[i]← data[sampleIdx] + weight× di f f
11: end for
12: return syntheticSamples
13: end procedure

Algorithm 4 Generate Balanced Synthetic Labels

1: procedure GENBALSYNTHLABELS(n_samplesNeeded, balanceRatio)
2: nClass1← int(n_samplesNeeded× balanceRatio)
3: nClass0← n_samplesNeeded− nClass1
4: syntheticLabels← [0]× nClass0 + [1]× nClass1
5: SHUFFLE(syntheticLabels) ▷ Randomly shuffle the labels
6: return syntheticLabels
7: end procedure

Algorithm 5 Protected-category SMOTE

1: balancedDataList← initialize an empty list
2: for each category in categories do
3: categorySubset← select rows in train_data s.t. ’combined_category’ == category
4: f eatures← remove ’class’, ’combined_category’ from categorySubset
5: nSamples← max_size− number of rows in categorySubset
6: if nSamples > 0 then
7: syntheticFeatures← PCSmote( f eatures, nSamples)
8: syntheticLabels← GenBalSynthLabels(nSamples, balanceRatio)
9: syntheticFeatures[′class′]← syntheticLabels

10: syntheticFeatures[′combined_category′]← category
11: categorySubsetBalanced← concatenate categorySubset and syntheticFeatures
12: else
13: categorySubsetBalanced← categorySubset
14: end if
15: append categorySubsetBalanced to balancedDataList
16: end for
17: balancedData← append balancedDataList and reset index

4.4. Protected-Category ADASYN

The protected-category ADASYN method mimics adaptive synthetic minority (ADASYN)
sampling but is modified slightly to fulfill our goal of protected-category sampling. Our PC-
ADASYN algorithm is shown in Algorithm 6. It extends ADASYN by focusing on category
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density rather than class imbalance. Specifically, this function operates by finding the nearest
neighbors to the data and then calculating the density of each data point’s category within its
immediate neighborhood. It weights these densities inversely to prioritize minority categories,
making it more likely to generate synthetic samples from underrepresented categories. The
synthetic samples are created by interpolating between selected data points and their neighbors,
similar to SMOTE but using a random weight to vary the interpolation, thus ensuring a
diverse synthetic dataset. This approach helps address the imbalance at the category level and
enriches the dataset’s variance, potentially improving the robustness and fairness of ML models
trained on this data. Since this sampling method also generates new samples by interpolating,
Algorithm 4 is used to generate class labels for the new synthetic samples.

Algorithm 6 PC-ADASYN for Category-Based Balancing

1: procedure PCADASYNCATEGORIES(data, labels, n_samplesNeeded, n_neighbors)
2: n_neighbors← n_neighbors + 1 ▷ Including the data point itself
3: nn← NearestNeighbors(n_neighbors).fit(data)
4: distances, indices← nn.kneighbors(data)
5: densities← zero array of length(data)
6: for i← 0 to length(data)− 1 do
7: current_category← labels[i]
8: neighbor_indices← indices[i][1 :] ▷ Skip the self index
9: densities[i]← SUM(labels[neighbor_indices] == current_category)

10: end for
11: weights← 1/(densities + 1) ▷ Add 1 to prevent division by zero
12: weights← weights/SUM(weights) ▷ Normalize weights
13: syntheticSamples← empty list
14: sampleIndices← random choice with replacement from length(data) using weights
15: for each idx in sampleIndices do
16: baseIdx ← idx
17: neighborIdx ← RANDOMCHOICE(indices[baseIdx][1 :])
18: di f f ← data[neighborIdx]− data[baseIdx]
19: syntheticSample← data[baseIdx] + RANDOM()× di f f
20: append syntheticSample to syntheticSamples
21: end for
22: return array(syntheticSamples)
23: end procedure

Algorithms 4 and 6 are combined to form our protected-category ADASYN sampling,
as shown in Algorithm 7. For each category, the data corresponding to that category is
isolated and the size deficit relative to the largest category is computed. If additional
samples are needed, the PC-ADASYN method is applied, generating synthetic features that
respect the category’s distribution characteristics. These features are then complemented
with synthetically generated labels, maintaining a predefined class balance ratio. The
process not only corrects category imbalances but also enriches the dataset, potentially
enhancing the predictive accuracy and fairness of models trained on this data.

4.5. Dataset and Hyperparameter Tuning

To test the four sampling methods, a classifier was needed to assess the effects on
fairness and performance. Ultimately, the type of classifier is not directly relevant since the
goal is to mitigate the fairness–performance tradeoff, rather than to find the best classifier.
Therefore, we chose to use univariate decision trees based on CART [56] due to their
robustness against noise and missing data. The specific implementation we chose was
taken from the sklearn library (version 1.5.1) [57]. In addition, decision trees allow us to
control the strength of fit by setting the tree depth of the learned tree. This allows us to
compare fairness and performance across different levels of fitting.
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The process begins by combining protected categories within each dataset, applying
one-hot encoding to create new multicategory features, and then performing label encoding.
The datasets were then divided using a stratified 10-fold cross-validation to ensure a
representative distribution of classes in each fold. For each fold, training was conducted on
sampled data using the previously described methods, while classification was tested on
the corresponding unsampled test sets. Consistency in model training was maintained by
applying identical tree depth across all sampling methods, and the results provided are
averages of the 10-fold runs with their corresponding confidence intervals.

Algorithm 7 Protected-category ADASYN

1: balancedDataList← initialize an empty list
2: for each category in categories do
3: categorySubset← select from new_data3 s.t. ’combined_category’ == category
4: f eatures← remove ’class’, ’combined_category’ from categorySubset
5: categoryLabels← extract ’combined_category’ from categorySubset
6: nSamplesNeeded← max_size minus number of rows in categorySubset
7: if nSamplesNeeded > 0 then
8: syntheticFeatures← PCAdasyn( f eatures, categoryLabels, nSamplesNeeded)
9: syntheticLabels← GenBalSynthLabels(nSamplesNeeded, balanceRatio)

10: syntheticFeatures[′class′]← syntheticLabels
11: syntheticFeatures[′combined_category′]← category
12: categorySubsetBalanced← concatenate categorySubset with syntheticFeatures
13: else
14: categorySubsetBalanced← categorySubset
15: end if
16: append categorySubsetBalanced to balancedDataList
17: end for
18: balancedData← concatenate balancedDataList and reset index

Three datasets were selected from the UCI repository [58] for our analysis: the Adult
Income dataset [59], the German Credit [60] dataset, and the Correctional Offender Man-
agement Profiling for Alternative Sanctions (COMPAS) dataset. The Adult Income dataset
aims to predict whether an individual earns above USD 50,000, featuring eight categorical
and four numerical attributes, with protected variables corresponding to age (young or
adult), sex (male or female), and race (White or others). The adult income dataset was
donated to UCI in 1996. The German Credit dataset, used to predict creditworthiness,
comprises 20 categorical and two numerical attributes, with protected variables of age and
sex. German credit dataset was donated to UCI in 1994. The COMPAS dataset [61], which
assesses recidivism rates in the United States, includes six categorical and six numerical
features, with protected variables of age, race, and sex. The dataset was published in
2018. These datasets were selected because they represent the state-of-the-art datasets for
measuring bias and discrimination and are widely used in other studies on algorithmic
bias and fairness (see Section 3). Also, the datasets have various sizes, ranging from small
to large, which makes them suitable for testing our sampling methods.

Hyperparameter tuning was conducted using grid search [62] to explore a broad
range of parameters, complemented by visual assessments to identify optimal settings that
balance Equalized Odds Difference (EOD) and accuracy. For the Adult Income dataset,
the optimal hyperparameters included a maximum tree depth of 3 and, for PC-SMOTE
and PC-ADASYN, a nearest neighbor setting of 5 with a balanced ratio of 0.34. These
parameters were similarly effective for the German Credit dataset. For the COMPAS
dataset, a maximum tree depth of 2 was optimal for all sampling methods. PC-SMOTE
and PC-ADASYN were adjusted to the nearest neighbor setting of 3 and a balanced ratio
of 0.60.
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5. Results

The four sampling strategies were applied to the three datasets described above and
evaluated their impact using a simple univariate decision tree classifier. The results in
Tables 1–3 show notable differences in model performance across five sampling strategies:
no sampling, oversampling, proportional sampling, PC-SMOTE, and PC-ADASYN on
our three datasets. Each method was assessed based on accuracy, macro F1, Equalized
Odds Difference (EOD), and Statistical Parity (SP). The results were measured in accuracy
and macro F1 because these two metrics are the most popular classification metrics. Also,
limiting the metric to two makes the results comparable for statistical analysis.

To ascertain the statistical significance of each method’s results, we used the Friedman
test, a nonparametric alternative to the one-way ANOVA with repeated measures. Upon
finding significant results from the Friedman test, we proceeded with the Nemenyi post hoc
test. This test is used to evaluate pairwise comparisons between the methods to ascertain
which methods statistically differ from each other. The Nemenyi test is advantageous
in this setting because it accounts for multiple comparisons without assuming normal
distributions, thereby providing a robust way to understand specific pairwise differences.

For the Adult Income dataset (Table 1), the no-sampling method yielded an accuracy
of 0.82, setting a high baseline for comparison. However, it demonstrated a slightly biased
prediction with an EOD of 0.36 and minimal disparity in prediction rates (SP = 0.02). In
contrast, oversampling maintained the same accuracy but lowered the macro F1 slightly
to 0.65, indicating potential overfitting issues while worsening fairness (EOD = 0.66) and
increasing disparity in prediction rates (SP = 0.09). Proportional sampling decreased
accuracy to 0.79 but improved the macro F1 to 0.79, suggesting a better balance between
precision and recall. However, it significantly increased SP to 0.71, indicating a substantial
disparity in positive prediction rates, which raises concerns about the model’s fairness. The
two custom approaches for SMOTE and ADASYN were designed specifically to improve
upon these metrics. PC-SMOTE showed a moderate performance with an accuracy of
0.81 and an improved EOD of 0.25, suggesting enhanced fairness over basic oversampling
and the no-sampling method. However, it still recorded lower macro F1 (0.63), indicating
misrepresentation issues in synthetic data generation. PC-ADASYN proved to be the
most balanced approach, maintaining high accuracy (0.82) and better handling of class
imbalances, with a moderate improvement in fairness (EOD = 0.28) and a controlled
increase in prediction rate disparity (SP = 0.09). Overall, the baseline accuracy is statistically
significantly better than the proportional sampling while it is not statistically significant as
compared with the other sampling methods. For the macro F1 proportional sampling is
statistically significantly better than other sampling methods. For the EOD, PC-ADASYN
is statistically better than other sampling methods while the no-sampling method SP is
statistically significantly better than other sampling methods.

Table 1. Results of the sampling methods on the Adult Income dataset with 95% confidence intervals.

Sampling
Method Accuracy Macro F1 EOD SP

No sampling 0.82 ± 0.00 0.66 ± 0.01 0.36 ± 0.18 0.02 ± 0.00
Over-sample 0.82 ± 0.02 0.65 ± 0.06 0.66 ± 0.2 0.09 ± 0.02
Prop. Sample 0.79 ± 0.05 0.79 ± 0.06 0.46 ± 0.12 0.71 ± 0.10
PC-SMOTE 0.81 ± 0.05 0.63 ± 0.07 0.25 ± 0.21 0.07 ± 0.00

PC-ADASYN 0.82 ± 0.04 0.64 ± 0.07 0.28 ± 0.19 0.09 ± 0.02

The results of the experiments on the German Credit dataset also show varying impacts
of each sampling strategy, particularly regarding fairness and accuracy, as shown in Table 2.
Without sampling, the baseline model achieved an accuracy of 0.72 but exhibited significant
bias in its prediction, with an EOD of 0.88, indicating a substantial disparity in error
rates between groups in the protected attributes. Implementing oversampling maintained
accuracy while improving the macro F1 to 0.68 and notably reducing EOD to 0.37, albeit at
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the cost of increased SP to 0.35, highlighting a potential trade-off between different fairness
measures. Proportional sampling reduced accuracy slightly to 0.68 but achieved the best
F1-score of 0.69. It also lowered EOD to 0.32, suggesting it effectively balances prediction
quality with fairness. PC-SMOTE shows an improvement in accuracy with 0.73 but a lower
macro F1 of 0.55; the model’s fairness shows a huge improvement over the baseline with
an EOD of 0.15 and a moderate SP of 0.1. PC-ADASYN shows a similar accuracy to the
baseline at 0.72, albeit with the lowest macro F1 of 0.48, suggesting a potential trade-off
in precision and recall. However, the model exhibits the best in fairness prediction with
an EOD of 0.13 and SP of 0.06. Overall, the result shows that the accuracy of no sampling
is not statistically significant to other sampling methods except proportional samplings
while for the EOD the results of all the sampling methods are statistically significant in
comparison with the no-sampling method.

Table 2. Results of the sampling methods on the German Credit dataset with 95% confidence intervals.

Sampling
Method Accuracy Macro F1 EOD SP

No sampling 0.72 ± 0.03 0.62 ± 0.06 0.88 ± 0.10 0.07 ± 0.01
Over-sample 0.72 ± 0.05 0.68 ± 0.04 0.37 ± 0.16 0.35 ± 0.11
Prop. Sample 0.69 ± 0.04 0.69 ± 0.07 0.32 ± 0.26 0.29 ± 0.10
PC-SMOTE 0.73 ± 0.05 0.55 ± 0.09 0.15 ± 0.09 0.1 ± 0.02

PC-ADASYN 0.72 ± 0.03 0.48 ± 0.11 0.13 ± 0.02 0.06 ± 0.00

Table 3 shows the results of our experience with the COMPAS dataset. These results
reveal significant variations in model performance across the different sampling strategies.
The baseline approach, without sampling, achieved accuracy and a macro F1-score of
0.89 but showed higher disparities in fairness metrics, with an Equalized Odds Difference
(EOD) of 0.39 and a Statistical Parity (SP) of 0.29. This underscores potential biases that
unadjusted models may exhibit towards protected groups. The application of oversampling
slightly improved accuracy to 0.90 but also improved fairness notably, decreasing EOD to
0.26. This suggests effectiveness in reducing outcome disparities without compromising
SP. Conversely, proportional sampling, while boosting accuracy and macro F1 to 0.90 and
0.91, respectively, also achieved an EOD of 0.26, improving it over the baseline while
also recording a higher SP of 0.36, indicating a potential increase in disparity of positive
outcomes across groups. PC-SMOTE and PC-ADASYN, with identical scores in accuracy,
macro F1, and SP, managed to maintain fairness improvements with an EOD of 0.30,
though these methods also increased SP to 0.47. Overall, the results show that both the
accuracy and the EOD of our sampling methods are statistically significantly better than
the no-sampling method.

Table 3. Results of the sampling methods on the COMPAS dataset with 95% confidence intervals.

Sampling
Method Accuracy Macro F1 EOD SP

No sampling 0.89 ± 0.04 0.89 ± 0.04 0.39 ± 0.15 0.29 ± 0.17
Oversample 0.90 ± 0.03 0.90 ± 0.05 0.26 ± 0.14 0.25 ± 0.07

Prop. Sample 0.90 ± 0.05 0.91 ± 0.04 0.26 ± 0.12 0.36 ± 0.10
PC-SMOTE 0.91 ± 0.02 0.91 ± 0.02 0.30 ± 0.11 0.47 ± 0.19

PC-ADASYN 0.91 ± 0.02 0.91 ± 0.03 0.30 ± 0.13 0.47 ± 0.21

6. Discussion

Results of the experiments on the three datasets substantiate that protected-category
sampling can markedly enhance model fairness, often without significantly compromis-
ing prediction accuracy. In some cases, improvement in accuracy and macro F1 were also
demonstrated. Focusing on the Adult Income dataset results, PC-SMOTE and PC-ADASYN
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demonstrated notable improvements in EOD and maintained moderate levels of SP. The
efficacy of these methods can largely be attributed to their sophisticated interpolation
techniques. For example, a visual examination of the decision trees generated with no
sampling and PC-ADASYN provides insightful contrasts. Examples from a single repre-
sentative fold are shown in Figures 1 and 2, respectively. The decision tree learned without
sampling selected its root with a feature closely associated with protected attributes, thus
acting as a proxy attribute. This led to pronounced prediction bias as reflected in the EOD.
Conversely, the decision tree trained on data generated using PC-ADASYN began with a
feature that generalized predictions very well and mitigated bias, as evidenced by a notable
enhancement in model fairness and a higher Gini impurity, indicating a purer initial split.

Figure 1. Example decision tree trained on Adult Income with no sampling.

Figure 2. Decision tree of PC-ADASYN on adult income.
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6.1. Comparing Fairness vs. Performance

Comparing oversampling and proportional sampling, the methods’ approaches to
augmenting sample size by duplicating existing data rows were straightforward and did
not yield substantial improvements in EOD. This outcome makes sense since these methods
tend to replicate existing biases, which can potentially exacerbate fairness issues rather
than alleviate them. This is evident, in particular, when considering the Adult Income
dataset, where the classes are extremely imbalanced. These naïve replication strategies
lack the interpolation capacity of PC-SMOTE and PC-ADASYN to adjust samples near
decision boundaries, which is crucial for mitigating the bias in the dataset. In contrast, the
interpolation strategies used by SMOTE and ADASYN expand the dataset and enhance its
diversity. This is particularly effective for samples near decision boundaries, where slight
shifts in the features can affect the fairness of predictions significantly. By interpolating
between samples, SMOTE and ADASYN effectively move these boundary samples towards
more equitable regions of the feature space, thus directly confronting and reducing bias
more effectively than methods that increase sample volume without altering data structure.
The class generation function (Algorithm 4) also helps increase the overall class distribution.
The results of our PC-SMOTE and PC-ADASYN on Adult income also show superiority
over the results obtained in [41], where the accuracy of 0.59 and SP of 0.17 was obtained.
Also, the results of PC-SMOTE and PC-ADASYN show superiority over the results obtained
in [40], where an EOD of 0.89 and a slightly better accuracy of 0.84.

In examining the results on the German Credit dataset, we observed a trend similar to
what was noted in the Adult Income dataset: the no-sampling method has a very high bias
regarding EOD. The low SP of 0.07 indicates minimal disparity in the positive prediction
rates between the groups, but this in itself is not a good way of measuring fairness since the
favored group has more samples than the unfavored one. This has the effect of skewing the
calculation of SP since it only counts positive decisions in each group, which are influenced
by sample size. One takeaway is the importance of employing multiple fairness metrics to
view a model’s impact on all stakeholders comprehensively. For oversampling, we saw an
improvement in EOD with a similar SP; this shows that increasing the number of samples
for each of the multicategory’s protected attributes improves the fairness with respect to
EOD. In addition, the updated SP reflects what it will look like to have a more equal number
of samples for each multicategory, unlike in the baseline where the favored group has five
times more samples than the unfavored group. The accuracy of proportional sampling
drops because the baseline number of samples selected after hyperparameter tuning was
insufficient for the model to generalize the unsampled test set, leading to overfitting. The
overfitting was confirmed by considering the training accuracy. Interestingly, the model is
not trading accuracy for recall like other models, and this gives proportional sampling the
highest macro F1.

Regarding fairness, we found an increase in EOD compared with baseline and over-
sampling. This arises because each multicategory is represented on the same baseline
counts. This can improve the model fairness because the model now has a bigger picture
of categories and makes better predictions and ultimately fairer decisions. PC-SMOTE
and PC-ADASYN play pivotal roles in significantly reducing bias in model predictions.
This consistency confirmed the robustness of these methods across different datasets. No-
tably, neither method compromises accuracy while both enhance fairness, illustrating
their effectiveness in handling the trade-offs typically associated with predictive modeling.
These results demonstrate the strong interpolation capabilities inherent in PC-SMOTE
and PC-ADASYN. These methods effectively reallocate samples within the feature space,
especially moving those in underprivileged regions from negative to more positive decision
boundaries. Such adjustments are crucial in mitigating biased outcomes and promoting
equity in automated decision-making processes. The macro F1 in both models drops com-
pared with the baseline because a higher number of samples is required for the model to
perform better on generalization, which this dataset does not support. Specifically, the
dataset has 700 samples for class 0 and 300 samples for class 1, which means the test set
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only has 30 samples for class 1. This small number of samples made both models trade
recall for precision in class 1. Notably, we saw a low recall for class 1 which ultimately
leads to a low f1-score for class 1 and since macro F1 averages the two f1-scores and treats
them equally, this affects the performance of both models in macro F1. Overall, the two
models yield a fairer model with good accuracy compared with the baseline and other two
sampling methods.

The COMPAS dataset’s evaluation further validates our sampling methods’ effective-
ness. The distinct patterns that emerge align with those observed in the Adult Income and
German Credit datasets, underscoring the robustness of our findings. Notably, oversam-
pling and proportional sampling techniques have demonstrated substantial improvements
in Equalized Odds Difference (EOD) and accuracy, while oversampling also notably im-
proves in SP. This improvement is likely due to the unique composition and balance within
the COMPAS dataset, unlike the other datasets in which the classes are imbalanced. The
success of oversampling and proportional sampling in this context can be attributed to
the balanced nature of the dataset, which allows repeated duplication of existing rows
(sampling techniques employed by these methods) to enhance the dataset without intro-
ducing a significant skew towards any particular class. This method effectively augments
the representation of all classes and the protected attributes in a balanced form, making
these techniques particularly effective for datasets where the feature domains contribute
equally to predictions and where initial class distributions do not suffer from severe im-
balance. This can further be verified from their macro F1 as none of the models is trading
precision for recall. The improvement of SP in oversampling can be attributed to the higher
number of samples in oversampling in comparison with proportional sampling. Regarding
PC-SMOTE and PC-ADASYN, these algorithms show an improvement over baseline in
both accuracy and EOD. These trends follow those in the previous results. One notable
thing in this results in the large drop in SP which can be attributed to our new label that
was generated to make the dataset to be skewed towards the negative class. These results
show the difficulty in optimizing for two or more fairness metrics at a time and how this
optimization can affect each other.

6.2. Impact of Tree Depth on Fairness and Accuracy

In this study, the impact of decision tree depth on model performance was also
investigated, specifically examining how variations in tree depth influence accuracy and
EOD. Understanding the depth’s effect is crucial as it provides insight into the effects
ranging from underfitting to overfitting and helps identify the optimal complexity level at
which both accuracy and fairness are maximized. Initially, the decision tree was allowed to
grow without constraints to its full depth which on average was about 30 branches. The
tree was then examined visually to deduce the maximum depth excluding the nonsplitting
branches. To analyze the effects of tree depth systematically, the maximum depth of the
trees was allowed to vary from 1 to 30. Each depth limit was evaluated using ten-fold
cross-validation to ensure the robustness and generalizability of the findings.

For each configuration of tree depth, the accuracy and EOD were measured on the test
set. Additionally, 95% confidence intervals were calculated for the metrics across the ten
folds. This statistical analysis highlighted the depth at which the decision tree balanced the
trade-off between accuracy and fairness while also considering the underlying statistical
bias–variance tradeoff. By doing so, it was possible to pinpoint the “sweet spot”—a delicate
point where the decision tree maintains high predictive accuracy without compromising
on fairness, effectively countering the often-cited trade-off presented in previous literature.
Figures 3–7 show the plots of accuracy and EOD against maximum depth for each of the
five sampling methods on the Adult Income dataset.
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Figure 3. Plots of Adult Income using no sampling, showing accuracy and EOD with 95% confidence
intervals against the maximum tree depth ranging from 1 to 30.

Based on results such as those shown in Figures 3 and 4, there is a notable initial
increase in accuracy as maximum depth increases for both the no-sampling and the over-
sampling methods. However, both methods exhibit a decline in accuracy from a depth
of 10 onwards, suggesting the onset of overfitting. Correspondingly, the EOD decreases
sharply with increasing depth up to about depth 10, beyond which it stabilizes. This
pattern indicates that while deeper trees initially improve fairness, they eventually reach a
threshold beyond which no further gains are observed. Recalling that the fairness goal was
to minimize EOD, a key observation is that setting the maximum depth between three and
five strikes an optimal balance between achieving high accuracy and maintaining low EOD.

Figure 4. Plots of Adult Income using oversampling, showing accuracy and EOD with 95% confidence
intervals against the maximum tree depth ranging from 1 to 30.

When considering the results shown in Figure 5, the proportional sampling method
continually increases accuracy with tree depth, peaking at a depth of about 26. Conversely,
the EOD initially increases before decreasing and stabilizing at a depth of around 15. The
wide confidence intervals observed in the EOD metric suggest significant variability in
fairness outcomes. This finding underscores the importance of selecting a depth that
minimizes variability in fairness while maximizing accuracy.
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Figure 5. Plots of Adult Income using proportional sampling, showing accuracy and EOD with 95%
confidence intervals against the maximum tree depth ranging from 1 to 30.

Figure 6. Plots of Adult Income using PC-SMOTE, showing accuracy and EOD with 95% confidence
intervals against the maximum tree depth ranging from 1 to 30.

Figures 6 and 7, representing the results using PC-SMOTE and PC-ADASYN, respec-
tively, exhibit slight downward trends in accuracy, which improve briefly before descending
again—a pattern indicative of overfitting at greater depths. EOD metrics for these methods
show initial stability at lower depths, surge at mid-level depths, and decline, suggesting
complex interactions between synthetic sample generation and decision boundary delin-
eation. Given these observations, a maximum depth of 3 was chosen for our experiments,
as it represents a “sweet spot” where both accuracy and EOD are optimized.

Given these results, one conclusion is to challenge the often presumed trade-off
between accuracy and fairness by demonstrating that our PC-ADASYN method consistently
outperforms baselines across all three datasets in terms of both accuracy and fairness. This
finding is significant, as it suggests enhancing model fairness without sacrificing accuracy
with appropriate sampling methods and model tuning is possible. However, our analysis
also reveals scenarios where adjustments to model complexity, specifically the maximum
depth of decision trees, can enhance accuracy at the expense of fairness, as indicated by
increases in Equalized Odds Difference (EOD). It is expected, however, that coupling
sampling methods with inprocessing methods such as fairness-based regularization may
offset these effects. These decisions highlight researchers’ discretionary power in balancing
model performance metrics depending on their study’s specific objectives and constraints.
The quantity of sample and time complexity is like every other sampling method. As the
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sample quantity increase, the time complexity increases but overall, the sampling methods
have the same time complexity as their underlying algorithms because they have the
same functionality.

Figure 7. Plots of Adult Income using PC-ADASYN, showing accuracy and EOD with 95% confidence
intervals against the maximum tree depth ranging from 1 to 30.

Moreover, our results underscore the complexities of simultaneously optimizing multi-
ple fairness metrics. For instance, efforts to improve Statistical Parity (SP) by favoring more
positive predictions for each protected group in the COMPAS dataset led to an inadvertent
reduction in negative predictions. This shift adversely impacted the False Positive Rate
(FPR), a component of EOD, thereby worsening the EOD metric as SP improved. This
phenomenon illustrates the inherent mathematical tensions between fairness metrics, where
optimizing one can detrimentally affect another. The COMPAS dataset, with its nearly
balanced class distribution, provides a concrete example of how dataset characteristics
can influence the behavior of fairness metrics. Optimizing SP in this context implies a
skewed measurement of fairness, particularly where inherent differences exist between
groups in protected attributes. This is supported by literature indicating that SP may not
adequately account for group differences, potentially leading to misleading conclusions
about a model’s fairness [63].

7. Limitations and Future Work

The very nature of this study is such that it is not possible to address all of the issues
surrounding fairness and the so-called fairness–performance tradeoff. As such, there exist
limitations in the work reported here. Even so, it is our hope and intent for the work
reported here to suggest additional avenues of exploration in this important area.

One limitation of this study is that our sampling method was not specifically designed
to optimize for arbitrary fairness metrics. Stated another way, since often inherent tradeoffs
exist between the available set of fairness metrics, the decision was made to focus on an
approach that was metric agnostic, recognizing that the results could have differed for
other metrics. This is also part of the reason why we saw different behaviors between EOD
and SP.

In addition, it is acknowledged that, while the underlying ML method should not be
relevant to the method proposed, this has not actually been tested. Therefore, in the future,
this research will be extended by considering the impacts of other ML algorithms such as
logistic regression, fuzzy ID3, K-nearest neighbor, and ensemble methods such as random
forests or gradient-boosted trees to assess the generalizability of our new sampling methods.
The purpose of such a study would be to verify that our methods are independent of the
ML algorithm employed. Furthermore, this would help validate whether the observed
improvements in fairness and accuracy are model-specific or can be universally applied.
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Additionally, it is acknowledged that only three distinct datasets were considered—datasets
that have been studied extensively in the field. This raises a concern that methods are being
tailored to these data rather than addressing the broader issue of fairness in ML. To address
this, experiments with larger and more diverse datasets are planned to provide deeper
insights into the scalability and robustness of our techniques. Another area for future
work is to refine our multicategory sampling approach by incorporating more granular
subdivisions of protected categories, potentially revealing subtler biases and providing a
more nuanced understanding of fairness.

Finally, it is recognized that alternative methods have been proposed for bias mitiga-
tion, and these methods have not been studied in this work at all. Future work would entail
comparisons with more sampling strategies. A more direct comparison of the proposed
methods with inprocessing and postprocessing methods will be conducted. For exam-
ple, incorporating inprocessing methods, such as regularization [22], or a postprocessing
method, such as the Randomized Threshold Optimizer [64], will be explored as possible
means to obtain further improvements in both fairness and performance.

8. Conclusions

In this study, the issue of bias in ML predictions was investigated, and a method was
developed based on combining protected variables into a new multicategory. In particular,
the focus was on the question that has been suggested in the literature of a bias–performance
tradeoff and seeking a method to mitigate this tradeoff. The proposed new multicategory
approach reflects the multifaceted identity of individuals, acknowledging the complex
interplay of attributes that define real-world scenarios. Given the inherent imbalance
in this multicategory, four sampling methods tailored to these complex categorizations,
rather than traditional class labels, were developed. For purposes of applying a baseline
classifier, decision trees were trained, and the effectiveness of these methods was evaluated
using three datasets that are often employed in fairness studies. The performance of the
methods was compared against baseline methods of no sampling, using accuracy, macro
F1, Equalized Odds Difference (EOD), and Statistical Parity (SP) as the evaluation metrics.

The results of the experiments indicate that two of the newly developed sampling
techniques—PC-SMOTE and PC-ADASYN—successfully enhance fairness without com-
promising accuracy. Remarkably, in some cases, these methods also improved accuracy,
thus providing evidence counter to the popular claims of a fairness–performance tradeoff.
Further analysis of the impact of maximum tree depth on model performance revealed
that, while increasing depth initially boosts accuracy, it eventually leads to a decline. Con-
versely, increasing depth adversely affects fairness, highlighting the challenge of balancing
complexity with equity. However, optimal tree depths were identified that simultane-
ously enhance accuracy and EOD, underscoring the possibility of achieving equity without
sacrificing performance.

Ultimately, these findings challenge prevailing notions of an implicit performance–fairness
tradeoff within bias mitigation research, suggesting that carefully designed bias mitigation
strategies have the ability to sidestep this trade-off. Our approach sets a new precedent for
developing more equitable predictive algorithms by redefining how protected attributes
are utilized in model training.
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40. Rančić, S.; Radovanović, S.; Delibašić, B. Investigating oversampling techniques for fair machine learning models. In Proceedings
of the Decision Support Systems XI: Decision Support Systems, Analytics and Technologies in Response to Global Crisis
Management: 7th International Conference on Decision Support System Technology, ICDSST 2021, Loughborough, UK, 26–28
May 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 110–123.

41. Yan, S.; te Kao, H.; Ferrara, E. Fair class balancing: Enhancing model fairness without observing sensitive attributes. In
Proceedings of the 29th ACM International Conference on Information & Knowledge Management, Virtual Event, Ireland, 19–23
October 2010; pp. 1715–1724.

42. HuZhang, B.; Lemoine, B.; Mitchell, M. Mitigating unwanted biases with adversarial learning. In Proceedings of the AAAI/ACM
Conference on AI, Ethics, and Society, New Orleans, LA, USA, 2–3 February 2018; pp. 335–340.

43. Celis, L.E.; Huang, L.; Keswani, V.; Vishno, N.K. Classification with fairness constraints: A meta-algorithm with provable
guarantees. In Proceedings of the Conference on Fairness, Accountability, and Transparency, Atlanta, GA, USA, 29–31 January
2019; pp. 319–328.

44. Zafar, M.B.; Valera, I.; Rodriguez, M.G.; Gummadi, K.P. Fairness beyond disparate treatment & disparate impact: Learning
classification without disparate mistreatment. In Proceedings of the 26th International Conference on World Wide Web, Perth,
Australia, 3–7 April 2017; pp. 1171–1180.

45. Agarwal, A.; Beygelzimer, A.; Dudík, M.; Langford, J.; Wallach, H. A reductions approach to fair classification. In Proceedings of
the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 60–69.

46. Lowy, A.; Baharlouei, S.; Pavan, R.; Razaviyayn, M.; Beirami, A. A Stochastic Optimization Framework for Fair Risk Minimization.
Trans. Mach. Learn. Res. 2022. [CrossRef]

47. Spinelli, I.; Scardapane, S.; Hussain, A.; Uncini, A. Fairdrop: Biased edge dropout for enhancing fairness in graph representation
learning. IEEE Trans. Artif. Intell. 2021, 3, 344–354. [CrossRef]

48. Hort, M.; Zhang, J.M.; Sarro, F.; Harman, M. Fairea: A model behaviour mutation approach to benchmarking bias mitigation
methods. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, Athens, Greece, 23–28 August 2012; pp. 994–1006.

49. Bhaskaruni, D.; Hu, H.; Lan, C. Improving Prediction Fairness via Model Ensemble. In Proceedings of the IEEE 31st International
Conference on Tools with Artificial Intelligence (ICTAI), Portland, OR, USA, 4–6 November 2019; pp. 1810–1814.

50. Iosifidis, V.; Fetahu, B.; Ntoutsi, E. Fae: A fairness-aware ensemble framework. In Proceedings of the IEEE International
Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 1375–1380.

51. Dwork, C.; Hardt, M.; Pitassi, T.; Reingold, O.; Zemel, R. Fairness through awareness. In Proceedings of the 3rd Innovations in
Theoretical Computer Science Conference, Cambridge, MA, USA, 8–10 January 2012; pp. 214–226.

52. Pleiss, G.; Raghavan, M.; Wu, F.; Kleinberg, J.; Weinberger, K.Q. On fairness and calibration. In Proceedings of the Advances in
Neural Information Processing Systems, Long Beach, CA, USA, 4–8 December 2017.

53. Karimi-Haghighi, M.; Castillo, C. Enhancing a recidivism prediction tool with machine learning: Effectiveness and algorithmic
fairness. In Proceedings of the Eighteenth International Conference on Artificial Intelligence and Law, São Paulo, Brazil, 21–25
June 2017; pp. 210–214.

https://op.europa.eu/en/publication-detail/-/publication/d3988569-0434-11ea-8c1f-01aa75ed71a1/language-en/format-PDF/source-337437547
https://op.europa.eu/en/publication-detail/-/publication/d3988569-0434-11ea-8c1f-01aa75ed71a1/language-en/format-PDF/source-337437547
http://dx.doi.org/10.3390/j4040043
http://dx.doi.org/10.1109/TKDE.2012.72
http://dx.doi.org/10.48550/arXiv.1306.6805
http://dx.doi.org/10.1109/TSE.2022.3220713
http://dx.doi.org/10.48550/arXiv.2102.12586
http://dx.doi.org/10.1109/TAI.2021.3133818


Electronics 2024, 13, 3024 24 of 24

54. Friedler, S.A.; Scheidegger, C.; Venkatasubramanian, S. The (im)possibility of fairness: Different value systems require different
mechanisms for fair decision making. Commun. ACM 2021, 64, 136–143. [CrossRef]

55. García, V.; Sánchez, J.S.; Mollineda, R.A. On the effectiveness of preprocessing methods when dealing with different levels of
class imbalance. Knowl.-Based Syst. 2012, 25, 13–21. [CrossRef]

56. Breiman, L. Classification and Regression Trees; Routledge: London, UK, 2017.
57. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
58. Kelly, M.; Longjohn, R.; Nottingham, K. The UCI Machine Learning Repository. 2024. Available online: https://archive.ics.uci.edu

(accessed on 10 June 2024).
59. Becker, B.; Kohavi, R. Adult. UCI Machine Learning Repository. 1996. Available online: https://archive.ics.uci.edu/dataset/2/

adult (accessed on 10 June 2024). [CrossRef]
60. Hofmann, H.; Statlog (German Credit Data). UCI Machine Learning Repository. 1994. Available online: https://archive.ics.uci.

edu/dataset/144/statlog+german+credit+data (accessed on 10 June 2024). [CrossRef]
61. Dressel, J.; Farid, H. The accuracy, fairness, and limits of predicting recidivism. Sci. Adv. 2018, 4, eaao5580. [CrossRef]
62. Huang, Q.; Mao, J.; Liu, Y. An improved grid search algorithm of SVR parameters optimization. In Proceedings of the 2012 IEEE

14th International Conference on Communication Technology, Chengdu, China, 9–11 November 2012; pp. 1022–1026.
63. Caton, S.; Haas, C. Fairness in machine learning: A survey. ACM Comput. Surv. 2023, 56, 1–38. [CrossRef]
64. Alabdulmohsin, I.; Lucic, M. A Near-Optimal Algorithm for Debiasing Trained Machine Learning Models. In Proceedings of the

35th Conference on Neural Information Processing Systems, Online, 6–14 December 2021.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/3433949
http://dx.doi.org/10.1016/j.knosys.2011.06.013
https://archive.ics.uci.edu
https://archive.ics.uci.edu/dataset/2/adult
https://archive.ics.uci.edu/dataset/2/adult
http://dx.doi.org/10.24432/C5XW20
https://archive.ics.uci.edu/dataset/144/statlog+german+credit+data
https://archive.ics.uci.edu/dataset/144/statlog+german+credit+data
http://dx.doi.org/10.24432/C5NC77
http://dx.doi.org/10.1126/sciadv.aao5580
http://dx.doi.org/10.1145/3616865


Citation: Shibano, K.; Ito, K.; Han, C.;

Chu, T.T.; Ozaki, W.; Mogi, G. Secure

Processing and Distribution of Data

Managed on Private InterPlanetary

File System Using Zero-Knowledge

Proofs. Electronics 2024, 13, 3025.

https://doi.org/10.3390/

electronics13153025

Academic Editor: Aryya

Gangopadhyay

Received: 13 June 2024

Revised: 14 July 2024

Accepted: 20 July 2024

Published: 31 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Secure Processing and Distribution of Data Managed on Private
InterPlanetary File System Using Zero-Knowledge Proofs
Kyohei Shibano 1,* , Kensuke Ito 1, Changhee Han 2, Tsz Tat Chu 2, Wataru Ozaki 2 and Gento Mogi 1

1 Department of Technology Management for Innovation, School of Engineering, The University of Tokyo,
Tokyo 113-8656, Japan

2 Callisto Inc., Tokyo 171-0022, Japan
* Correspondence: shibano@tmi.t.u-tokyo.ac.jp

Abstract: In this study, a new data-sharing method is proposed that uses a private InterPlanetary
File System—a decentralized storage system operated within a closed network—to distribute data to
external entities while making its authenticity verifiable. Among the two operational modes of IPFS,
public and private, this study focuses on the method for using private IPFS. Private IPFS is not open
to the general public; although it poses a risk of data tampering when distributing data to external
parties, the proposed method ensures the authenticity of the received data. In particular, this method
applies a type of zero-knowledge proof, namely, the Groth16 protocol of zk-SNARKs, to ensure that
the data corresponds to the content identifier in a private IPFS. Moreover, the recipient’s name is
embedded into the distributed data to prevent unauthorized secondary distribution. Experiments
confirmed the effectiveness of the proposed method for an image data size of up to 120 × 120 pixels.
In future studies, the proposed method will be applied to larger and more diverse data types.

Keywords: IPFS; zero-knowledge proof; circom; zk-SNARKs; private IPFS; data distribution; data
processing; data security

1. Introduction

Decentralized systems are robust because they lack a single point of failure; therefore,
they are widely applied across enterprise sectors including cryptocurrency, supply chain
management, financial services, and digital identity. To store large-sized data such as im-
ages, these systems require storage functions that are inherently decentralized. Blockchain,
commonly used in conjunction, typically handles smaller data sizes such as transaction
histories and operates as a ledger database. The InterPlanetary File System (IPFS) is a
prominent decentralized storage system that stores data across multiple nodes to enhance
data availability. The IPFS has two variants: public IPFS, wherein the data can be stored by
any user with unrestricted access, and private IPFS, wherein a closed network accessible
only within specific organizations or groups is established, offering enhanced privacy
and security.

When storing data in IPFS, understanding the differences between public IPFS and
private IPFS is crucial. Public IPFS allows anyone to access data, while private IPFS is
accessible only within specific organizations or groups, enhancing privacy and security.
When storing sensitive information, such as confidential data, in public IPFS, applying
an appropriate encryption scheme is vital to ensure data protection. By contrast, private
IPFS provides higher security for data storage, because it is accessible only within a
closed network.

Particularly for organizations such as corporations or healthcare institutions, storing
data in public IPFS, despite using strong encryption technologies, carries inherent risks.
Moreover, the potential for data leaks due to operational errors exists persistently in such
cases; although data is encrypted, it is exposed to the world, rendering it vulnerable to
brute force attacks and other security threats.
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Regarding accessibility, public IPFS allows general users to directly access and retrieve
data. However, in private IPFS, data must be received from members of the organization or
group constituting the network. During this process, if data is tampered, then users may
unable to detect it. Therefore, trusting the intermediaries responsible for handling data
transfer in such cases becomes mandatory. To address the aforementioned trust issue, a new
method is proposed herein for distributing data stored in a private IPFS to external entities
while making its authenticity verifiable. The Groth16 [1] protocol of zk-SNARKs, a type
of ZKP, is applied to data stored in a private IPFS to ensure the authenticity of the data.
Moreover, the recipient’s information is embedded into the distributed data to prevent
unauthorized secondary distribution. The proposed method of data sharing is important
because it is tailored to the private IPFS case.

The differences in several aspects, including security and accessibility, when storing
data in public IPFS and private IPFS within the enterprise domain are summarized in
Table 1. This study proposes solutions to the threats associated with private IPFS.

Table 1. Comparison between public and private IPFS in the enterprise domain.

Public IPFS Private IPFS

Trust Model Trustless Requires trust in the operating group

Access Restrictions Accessible by anyone Accessible only within the operating group

Data Leakage Risk Constant risk of leakage due to user error Low risk of leakage within a closed network

Handling of Confidential
Information Requires proper encryption

Data stored in IPFS does not require high-
level encryption itself; there is a trust point
when passing data to users

Brute Force Attack Risk Always present Low

Data Retrieval Method Direct access by users Data received from members of the organi-
zation or group

Threats Requires encryption that prevents decryp-
tion by unauthorized users

There is a risk of tampering when transfer-
ring data to users

The remainder of this paper is organized as follows. Section 2 presents related prior
research. Section 3 outlines the fundamental technologies, i.e., ZKP and zk-SNARKs.
Section 4 describes the structure of the proposed method, while Section 5 outlines the
potential applications of this method. Section 6 presents the implementation of this method,
while Section 7 discusses the experiments performed to verify the effectiveness of the
implementation. Section 8 presents a discussion of the experimental results, while Section 9
presents the conclusions of the paper and an outline of future challenges.

2. Related Studies

Existing decentralized systems use IPFS, particularly in combination with blockchain
technology. Kumar et al. [2] proposed a method for securely managing medical data by
integrating IPFS with a blockchain. Azbeg et al. [3] specifically suggested a system that
managed and stored medical data using private IPFS and a permissioned blockchain by
employing proxy re-encryption to ensure secure decryption by designated doctors. When a
physician receives some patient’s data, he/she obtains the re-encrypted data via a hospital.
Hossan et al. [4] also proposed a system to securely record information for ride-sharing
services using IPFS and a private blockchain.

Focusing on controlling the distribution of data managed by IPFS, Lin et al. [5]
proposed a system for protecting private data using improved IPFS combined with a
blockchain. This system recorded file metadata and accessed permissions on the blockchain,
enabling users to control file sharing. Moreover, the system implemented efficient man-
agement features using smart contracts, thereby enhancing data security and management
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flexibility. Battah et al. [6] developed a system that used multiparty authentication (MPA),
proxy re-encryption, and smart contracts on a blockchain for decentralized access control
of encrypted data stored in IPFS. Huang et al. [7] introduced a trusted IPFS proxy to realize
access control and group key management for encrypted data stored in IPFS. Sun et al. [8]
proposed a system that allowed only individuals with appropriate attributes to decrypt
encrypted data stored in IPFS using a ciphertext policy attribute–based encryption system,
facilitating efficient medical information management. Kang et al. [9] enabled the distribu-
tion of data managed using private IPFS and a private blockchain to external users using
named data network (NDN). Furthermore, Uddin et al. [10] proposed a file-sharing system
that used IPFS and public key infrastructure (PKI) technology without requiring a trusted
third party.

Several studies have used ZKP for data distribution. For instance, Li et al. [11]
proposed a privacy-preserving traffic management system that combined noninteractive
zero-knowledge range proofs with a blockchain. A prototype using Hyperledger Fabric
and Hyperledger Ursa met the data privacy requirements for real-time traffic management.

This study proposes a method for appropriately processing and distributing data
managed within private IPFS to users outside the network, thereby offering a different
approach than those proposed in previous studies. Some studies have adopted proxy re-
encryption as an appropriate method for data storage and distribution in IPFS [3,6]. Using
this method, distributed data can be re-encrypted to be decrypted with the recipient’s
private key. Moreover, when storing data in IPFS, recording the hash value of the pre-
encrypted data on the blockchain allows recipients to verify the correctness of their received
data after decryption. However, this method cannot handle cases where data is processed,
such as embedding the recipient’s name into the decrypted data, as in this study.

3. Zero-Knowledge Proof

ZKP is a cryptographic protocol that allows a prover to prove the validity of a propo-
sition to a verifier without disclosing any additional information other than the validity
of the proposition. The proposition of this study is that the data provided to an external
entity is generated based on a given CID. Our goal is to allow a member of private IPFS
(prover) to prove this proposition to an external entity (verifier as the recipient of the
data) without disclosing any other important information (such as IPFS access rights and
encryption keys).

ZKP, specifically the Groth16 protocol of zk-SNARKs used in this study, begins with a
trusted setup where both parties establish public parameters that are crucial for the secure
generation and verification of proofs. In the ZKP scheme, we first generate a circuit that
describes the process for which a proof is intended. The circuit includes the conditions
to be verified such as the existence of a CID. Through the ZKP scheme, cryptographic
keys—specifically a proving key and a verification key—are created. These keys are crucial
for creating a proof for the circuit and its verification. Using the proving key and input
data, the prover generates a proof that reveals the validity of the output data against the
conditions specified in the circuit. The verifier then uses the verification key to check the
proof and the output data. If the proof is valid, this confirms the integrity of data without
exposing any underlying information.

In this study, Groth16 processing is performed using circom [12,13] and snarkjs [14].
The process flow is summarized in Figure 1.

zk-SNARKs is employed owing to its noninteractive nature and efficiency, which
are particularly advantageous for systems employing smart contracts owing to low com-
putational costs for verifying the proof. Furthermore, zk-SNARKs is known for its high
computational requirements and the need for advanced PC specifications. For instance,
in one of the representative applications of zk-SNARKs, Zcash [15], proof generation
process takes over half a minute for a single anonymous transaction [16].
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Figure 1. Zero-knowledge proof using circom.

4. Proposed System

Figure 2 presents an overview of the proposed system.

Figure 2. Process flow of ZKP: an example of image data processing.

Herein, we make the following assumptions:

• Private IPFS is operated by a limited number of members.
• Data are stored in IPFS in an encrypted format using symmetric-key cryptography.
• The encryption key is exclusively held by an individual among the members, i.e., an

administrator.

The proposed system facilitates the creation of a ZKP proof through the circuit by the
encryption key-holding member (equivalent to an administrator). The inputs and outputs
(other than proofs) of this process are as follows:

• Public Input:

– CID of the original encrypted data;
– A filter for embedding the recipient’s name in the data;

• Private Input:

– Encrypted original data;
– Encryption key;

• Output:

– Decrypted data with the recipient’s name embedded.

Note that the ZK-optimized implementation (Section 6.1) adds more information to the
public input. In particular, the internal process of ZKP involves the following steps:

1. Calculating the CID of the original encrypted data to verify a match with the en-
tered CID.
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2. Decrypting the original data using a symmetric-key cryptography.
3. Embedding the recipient’s name into the decrypted image raw data based on the filter

provided in the public input.

In the proposed system, we do not solely focus on image data but use them as example data
to verify the applicability of the proposed scheme. Filters are used to improve the efficiency
of processing inside the circuit. As embedding name data inside the circuit is computa-
tionally intensive, a considerable portion of the image processing is performed outside
the circuit in advance and a filter is created. Using public input and proof, the recipient
can verify that the decrypted data (i.e., output) with their name embedded are generated
from the original data (contained in the private input) managed with the CID. The recipient
can check with at least one member of the network to confirm the existence of the CID in
private IPFS.

In summary, the aforementioned process enables the recipient to verify the received
data by performing the following tasks:

• verify that the received data were generated from the data managed with the CID of
private IPFS,

• confirm using the proof that the entire process was correctly conducted without
directly knowing the encrypted data or the encryption key, and

• verify that the CID exists specifically within the private IPFS by asking at least one
network member.

The novelty of the proposed system is that it allows data authenticity verification by trusting
at least one member of the network even if the recipient do not control the encryption key.
(It is natural for the recipient to trust at least one member of a particular multimember
system. If none of the members can be trusted, then there will be a marginal incentive to
receive data managed by that network).

5. Potential Applications

In the medical industry, patient diagnosis data are managed across multiple med-
ical institutions. Using the proposed system, patients can verify whether the data they
receive are indeed managed in private IPFS to ensure the authenticity. An all-in-one
platform is also proposed herein for the research and development of machine learning
with medical images [17]. On this platform, anonymized medical images are managed
in private IPFS operated by a group of medical institutions. The system allows machine
learning researchers, who are external to the network, to verify whether the image data
are indeed managed in the private IPFS. Moreover, by embedding the information about
machine learning researchers in the image data, medical institutions can mitigate the risk
of secondary distribution.

If the application is not limited to the embedding of recipient’s name, the potential
applications of the proposed system can be further expanded. For instance, consider
a scenario where a specific company establishes private IPFS for sharing confidential
documents among its group companies. If employee data are included, then concealing
private data and distributing them to external entities allows these entities to confirm the
association of employees with the company while ensuring that their privacy is protected.
Furthermore, suppose a university has set up private IPFS to allow only academic staff
access to student performance data. In this case, students can verify that their performance
data received are genuinely managed in the private IPFS.

Thus, the proposed system supports a hybrid case—distributing internal data to
specific external entities as necessary—prevalent in real-world settings.

6. Implementation

The proposed system was implemented to process image data using circom, a
renowned tool specialized for constructing zk-SNARKs circuits. Circom enables the de-
scription of computational processes within a circuit using its unique language, and the
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executable file generated after compilation can be invoked via the JavaScript library, snarkjs.
This arrangement allows describing circuit processes in circom, and external process-
ing and circuit correctness testing are performed using JavaScript. For the zk-SNARKs
scheme, Groth16 was used; it is known for its relatively faster execution speed than other
zk-SNARKs scheme.

In particular, we worked on two types of implementations for image data: a standard
implementation using general cryptographic techniques and a ZK-optimized implemen-
tation using ZK-friendly cryptographic techniques to reduce the computation time of the
circuit. These implementations were used for comparing the required computation times.
ZKP circuits require considerably large computation time, even for calculations that can
be easily handled by computer software (this is particularly noticeable when dealing with
image data). Therefore, computational efficiency is crucial for practical use.

6.1. Standard Implementation

Section 4 describes the data input into the circuit. For simplifying the in-circuit
processing, the original encrypted data were formatted as bitmap image data compliant
with OS/2 standards. The first 54 bytes of the image data store information such as the
width, height, and color depth of images [18]. The color depth is 8 bits and each color
component in RGB is allocated one byte, resulting in a representation of 3 bytes per pixel.

Initially, the system checks whether the encrypted data, entered as a private input,
matches the CID provided as a public input. If they do not match, the system signifies
an error and the image data outputted as the output is a byte sequence where all values
are 0x00. CID serves as crucial mechanism for uniquely identifying files and efficiently
retrieving data from IPFS. CID has two versions: V0 and V1 [19]. Herein, the more flexible
version CID V1 was used. CID includes a hash of the respective data, ensuring different
data will have different CIDs. Typically, CID V1 is calculated using the SHA256 hash
function, and the standard implementation uses SHA256 to compute CID.

The data structure of CID V1 is as shown in Table 2.

Table 2. CID V1 data structure.

Byte Position Description Value in Implementation

First byte CID version 0x01
Second byte multibase prefix 0x55: raw data
Third byte Hash function identifier 0x12: SHA-256
Fourth byte Hash length 0x20: 32 bytes
From fifth byte Hash value SHA-256 hash value (32 bytes)

The encoding for CID is conducted using Base32. Base32 encodes a sequence of bytes
constructed based on this structure to generate CID.

Inside the circuit, the entered CID value is decoded from Base32 and the system
checks whether the extracted hash value matches the SHA256 hash computed from the
encrypted data.

Subsequently, the encrypted data are decrypted. AES-CTR is used as the encryption
algorithm, which is a type of symmetric-key cryptography. The AES-CTR encryption
and decryption in circom-chacha20 [20] was used. For decrypting AES-CTR encryption,
the encryption key and nonce used during encryption are required. They are input into
the circuit as a 256-bit key and a 128-bit nonce, respectively, as private inputs. Moreover,
AES-CTR handles data volumes in multiples of 16. Therefore, if the length of the image
data before encryption is not a multiple of 16, zeros (0x00) are added to the end of the data
to align it with this requirement.

Finally, a filter is applied to the decrypted data to embed the recipient’s name. Im-
plementing text embedding directly within the circuit can substantially increase the com-
putation load; therefore, a filter is created outside the circuit that performs a considerable
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portion of the image processing in advance. The font used for the text representing the
recipient’s name is the Misaki font [21]. The filter is then used to streamline processing
inside the circuit. The filter is a list of numbers where values from 0 to 255 are used to
change the color of each pixel in case it differs from that of the pixels in the original image;
moreover, a value of 300 indicates the color should remain as in the original image. This
filter represents the position on the image where the recipient’s name should be inserted.
Inside the circuit, the specified pixel colors in the decrypted BMP data are changed based
on this filter.

6.2. ZK-Optimized Implementation

ZK-optimized implementation changes the hash function, encryption technology,
and in-circuit processing to the standard ZK-friendly encryption implementation. This
implementation enhances the computational efficiency and does not evaluate the difference
in computation speeds between ZK-friendly encryption and general encryption. Therefore,
in-circuit processing was also modified.

Poseidon hash [22] was used as the hash function for computing CID. Notably, us-
ing the Poseidon hash for CIDs is not officially supported; therefore, it was developed
specifically for this study. Although SHA256 is commonly used in general computations,
it demands considerable computation time within ZKP circuits. The Poseidon hash is
implemented in circom and JavaScript (circomlib [23] and circomlibjs [24], respectively). It
is computed over a finite field with a prime order and can accept up to 16 input variables.
The used order is less than the maximum of 32 bytes but greater than the maximum of
31 bytes. This indicates that each of the 16 inputs must contain data not exceeding this
order. In this implementation, the data targeted for hash computation are divided into
31-byte segments as input values. If the division exceeds 16 segments, the Poseidon hash is
calculated for the first 16 segments. This result is added to the next 15 segments of data for
a subsequent Poseidon hash input. The process is repeated until all the input data are used
for hash computation. Computationally, if the final input does not complete 16 segments,
the missing inputs are set to zero to ensure that the computation always involves 16 inputs.

When generating CID from the Poseidon hash value, the byte sequence should follow
the CID V1 data structure and be Base32-encoded. However, to further reduce computation
time, this implementation omits the Base32 encoding and directly uses the Poseidon hash
value as a substitute for CID. Dividing the input data into 16 segments within the circuit
is computationally intensive; therefore, this division is performed outside the circuit and
given as an input. In this case, the encrypted data byte sequence and the list of values for
calculating the Poseidon hash are provided as public inputs, allowing the verification that
both datasets represent the same information. Recipients can confirm that the data being
computed for the Poseidon hash and the data being decrypted in the circuit are identical
by mutually converting and checking these two values. In this case, as users can obtain the
decrypted data, a concern exists regarding password leakage through brute force attacks or
other means.

For encryption technology, we adopted Poseidon encryption [25] instead of AES-
CTR encryption. Poseidon encryption, implemented in circom and TypeScript (poseidon-
encryption-circom2 [26]), involves receiving the public key of the recipient, generating a
common key, and ensuring secure encryption and decryption by both parties. In this case,
however, a common key is directly generated and used for encryption and decryption. The
circuit is provided with two values representing the coordinates of an elliptical curve and a
nonce value as private inputs for encryption. Moreover, the filter is implemented in the
same manner as in the standard implementation.

7. Evaluation

We created a sample program based on the aforementioned implementations that
uses circom to describe the circuit and uses snarkjs for executing the circuit and verifying
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proofs. As cryptographic libraries, circom-chacha20 [20], circomlib [23], circomlibjs [24],
and poseidon-encryption-circom2 [26] were used.

The standard and ZK-optimized implementations were implemented for each circuit,
and their computation times were compared during execution. White bitmap images
were the target images, and the experiments were conducted using the letter “A” as the
embedded character. As embedding any number of characters does not alter the processing
by the filter, embedding a single character allowed for comparing the computation times.
Furthermore, we varied the image sizes to measure the execution times for each circuit.
The sizes used were 10 × 10, 15 × 15, 30 × 15, 30 × 30, 60 × 30, 60 × 60, 120 × 60, 120 × 120,
and 180 × 120 pixels. The execution environment was Windows 11 with a Ryzen 9 3950X
CPU and 128 GB RAM operating under Ubuntu 22.04 in a WSL2 environment.

Figure 3 shows an example image generated by the circuit, specifically for the 60 × 30 pixel
size using the ZK-optimized implementation. The results for each image size are presented
in Table 3, where nonlinear constraints indicate the number of nonlinear constraints in the
circuit, build time is the time required to compile circom and output the circuit, and proof
gen time is the time required to generate proofs using the circuit. As standard implementa-
tion uses AES-CTR encryption, data with 0x00 are appended at the end to ensure that the
input size is a multiple of 16.

Figure 3. An image generated by the circuit for a 60 × 30 image size by ZK-optimized implementation.

Table 3. Comparison of the execution time of the circuit.

Pixel Image Size
[Byte]

Nonlinear
Constraints

Build Time
[ms]

Proof Gen
Time [ms]

Standard
10 × 10 384 558,341 668,220 14,377
15 × 15 784 1,095,292 1,316,666 25,545
30 × 15 1440 1,980,688 1,696,370 35,161
30 × 30 2816 3,867,989 3,657,578 65,785
60 × 30 5456 7,453,300 7,864,583 126,262

ZK-optimized
10 × 10 376 35,407 128,979 3076
15 × 15 775 72,725 173,210 4032
30 × 15 1435 134,663 275,630 5900
30 × 30 2815 263,450 470,872 9733
60 × 30 5455 509,375 850,612 17,571
60 × 60 10,855 1,013,483 1,257,418 29,044

120 × 120 43,255 4,036,913 6,754,928 96,580

In standard and ZK-optimized implementations for 60 × 60 pixel and 180 × 120 pixel
image sizes, the system ran out of memory and the computation could not be completed.
In ZK-optimized implementation, the number of nonlinear constraints was reduced to
approximately one-tenth that of the standard implementation for the same image size.
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This reduced the build and proof generation times. However, the maximum manage-
able image size was still only up to 120 × 120 pixels, which is considerably small for
practical applications.

8. Discussion

Although ZK-friendly cryptographic technologies were used and in-circuit processes
were optimized during ZK-optimized implementation, the maximum manageable image
size was approximately 120 × 120 pixels. This limits the practical utility to considerably
small image sizes. However, research aimed at enhancing the performance of ZKPs is
ongoing, and future technological advancements may enable handling larger image sizes.
For instance, Zhang et al. [27] achieved a tenfold acceleration of zk-SNARKs using ASICs.
Ma et al. [16] similarly used a graphics processing units to accelerate the proof generation
time, achieving up to 48.1 times faster performance compared with traditional methods.
Moreover, methods to simplify computational processes have been proposed, such as the
“folding” method. This method compresses the propositions being proved [28]. As speed
enhancements are being progressively studied, memory consumption will also likely be
optimized. This will potentially allow handling of larger image sizes in the future.

Furthermore, we found that our proposal method can handle data sizes approximately
10 KB. Although directly applying our proposal to realistic image data (ranging from
several MBs to dozens of MBs) is challenging, splitting data into chunks by modifying the
encryption and embedded strings might make the application feasible.

Moreover, our implementations requires a value based on the size of the original
data to be processed (encrypted) as an argument during circuit generation. Therefore,
a circuit must be generated for each data. The circuit generation time (build time) increases
considerably with image data size; for instance, even in ZK-optimized implementation,
generating a circuit for a 120 × 120 image size requires more than 112 min (6,754,928 ms).
However, once the circuit is generated, the proof generation time under the same conditions
is short, approximately 97 s (96,580 ms). In other words, once a circuit is generated, proof
generation is not time intensive. This fact does not pose any practical issues in cases
wherein the same image is distributed to various people.

In ZK-friendly implementations, encrypted data is inputted as a public input. Han-
dling encryption keys for images requires careful consideration. Data managed in private
IPFS are encrypted. However, if encryption keys are leaked, the encrypted data could be
decrypted. Therefore, specific users managing private IPFS should become administrators
to carefully manage the keys or a consortium-type blockchain could be established on the
same network to set and manage access rights appropriately.

9. Conclusions

A new method was proposed herein to distribute data stored in private IPFS to external
entities while making its authenticity verifiable. The method applied a type of ZKP, zk-
SNARKs, to verify the CID of data and embed the recipient’s name. This approach enables
external entities to verify that the received data are generated from the original data in
private IPFS without requiring details such as IPFS access rights and encryption keys.

A standard implementation using conventional cryptographic techniques and a ZK-
optimized implementation using ZK-friendly cryptographic schemes were implemented to
enhance the computational efficiency of the proposed method. Experiments with a sample
program confirmed the effectiveness of the proposed method for an image data size of up
to 120 × 120 pixels.

This proposed method extends the usable range of decentralized storage systems to
a hybrid case—distributing internal data to specific external entities as necessary. This
study paves a new way for sharing sensitive information across different sectors within
and outside a group. However, for the wide practical applicability of the proposed method
to larger and more diverse data types, such as images and videos, processing speed must
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be improved and data splitting methods must be used, which are within the scope of our
future studies.

Author Contributions: Conceptualization, K.S., C.H., T.T.C. and W.O.; writing—original draft prepa-
ration, K.S.; writing—review and editing, K.S. and K.I.; supervision, G.M.; project administration,
K.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was conducted as a collaborative research project between the University of
Tokyo and Callisto Inc., funded by Callisto Inc. This work has been supported by Endowed Chair for
Blockchain Innovation and the Mohammed bin Salman Center for Future Science and Technology for
Saudi-Japan Vision 2030 (MbSC2030) at The University of Tokyo.

Data Availability Statement: The source code used for the simulations is available on GitHub.
https://github.com/blockchaininnovation/circom_image_processing (accessed on 21 March 2024).

Conflicts of Interest: Author Changhee Han, Tsz Tat Chu and Wataru Ozaki were employed by the
company Callisto Inc. The remaining authors declare that the research was conducted in the absence
of any commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Groth, J. On the size of pairing-based non-interactive arguments. In Proceedings of the Advances in Cryptology–EUROCRYPT

2016: 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, 8–12
May 2016; Proceedings, Part II 35; Springer: Berlin/Heidelberg, Germany, 2016; pp. 305–326.

2. Kumar, S.; Bharti, A.K.; Amin, R. Decentralized secure storage of medical records using Blockchain and IPFS: A comparative
analysis with future directions. Secur. Priv. 2021, 4, e162. [CrossRef]

3. Azbeg, K.; Ouchetto, O.; Andaloussi, S.J. BlockMedCare: A healthcare system based on IoT, Blockchain and IPFS for data
management security. Egypt. Inform. J. 2022, 23, 329–343. [CrossRef]

4. Hossan, M.S.; Khatun, M.L.; Rahman, S.; Reno, S.; Ahmed, M. Securing ride-sharing service using IPFS and hyperledger based on
private blockchain. In Proceedings of the 2021 24th International Conference on Computer and Information Technology (ICCIT),
Dhaka, Bangladesh, 18–20 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6.

5. Lin, Y.; Zhang, C. A method for protecting private data in IPFS. In Proceedings of the 2021 IEEE 24th International Conference on
Computer Supported Cooperative Work in Design (CSCWD), Dalian, China, 5–7 May 2021; IEEE: Piscataway, NJ, USA, 2021;
pp. 404–409.

6. Battah, A.A.; Madine, M.M.; Alzaabi, H.; Yaqoob, I.; Salah, K.; Jayaraman, R. Blockchain-based multi-party authorization for
accessing IPFS encrypted data. IEEE Access 2020, 8, 196813–196825. [CrossRef]

7. Huang, H.S.; Chang, T.S.; Wu, J.Y. A secure file sharing system based on IPFS and blockchain. In Proceedings of the 2nd
International Electronics Communication Conference, Singapore, 8–10 July 2020; pp. 96–100.

8. Sun, J.; Yao, X.; Wang, S.; Wu, Y. Blockchain-based secure storage and access scheme for electronic medical records in IPFS. IEEE
Access 2020, 8, 59389–59401. [CrossRef]

9. Kang, P.; Yang, W.; Zheng, J. Blockchain private file storage-sharing method based on IPFS. Sensors 2022, 22, 5100. [CrossRef]
[PubMed]

10. Uddin, M.N.; Hasnat, A.H.M.A.; Nasrin, S.; Alam, M.S.; Yousuf, M.A. Secure file sharing system using blockchain, ipfs and pki
technologies. In Proceedings of the 2021 5th International Conference on Electrical Information and Communication Technology
(EICT), Khulna, Bangladesh, 17–19 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–5.

11. Li, W.; Guo, H.; Nejad, M.; Shen, C.C. Privacy-preserving traffic management: A blockchain and zero-knowledge proof inspired
approach. IEEE Access 2020, 8, 181733–181743. [CrossRef]

12. Bellés-Muñoz, M.; Isabel, M.; Muñoz-Tapia, J.L.; Rubio, A.; Baylina, J. Circom: A circuit description language for building
zero-knowledge applications. IEEE Trans. Dependable Secur. Comput. 2022, 20, 4733–4751. [CrossRef]

13. Circom Official Website. Available online: https://iden3.io/circom (accessed on 24 March 2024).
14. Snarkjs Github Repository. Available online: https://github.com/iden3/snarkjs (accessed on 4 June 2024).
15. ZCash. Available online: https://z.cash/ (accessed on 12 July 2024).
16. Ma, W.; Xiong, Q.; Shi, X.; Ma, X.; Jin, H.; Kuang, H.; Gao, M.; Zhang, Y.; Shen, H.; Hu, W. Gzkp: A gpu accelerated zero-

knowledge proof system. In Proceedings of the 28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, Vancouver BC Canada, 25–29 March 2023; pp. 340–353.

17. Han, C.; Shibano, K.; Ozaki, W.; Osaki, K.; Haraguchi, T.; Hirahara, D.; Kimura, S.; Kobayashi, Y.; Mogi, G. All-in-one platform
for AI R&D in medical imaging, encompassing data collection, selection, annotation, and pre-processing. In Proceedings of the
Medical Imaging 2024: Imaging Informatics for Healthcare, Research, and Applications, San Diego, CA, USA, 18–23 February 2024; SPIE:
Bellingham, WA, USA, 2024; Volume 12931, pp. 311–315.

18. Miano, J. Compressed Image File Formats: Jpeg, png, gif, xbm, bmp; Addison-Wesley Professional: Boston, MA, USA, 1999.

https://github.com/blockchaininnovation/circom_image_processing
http://doi.org/10.1002/spy2.162
http://dx.doi.org/10.1016/j.eij.2022.02.004
http://dx.doi.org/10.1109/ACCESS.2020.3034260
http://dx.doi.org/10.1109/ACCESS.2020.2982964
http://dx.doi.org/10.3390/s22145100
http://www.ncbi.nlm.nih.gov/pubmed/35890780
http://dx.doi.org/10.1109/ACCESS.2020.3028189
http://dx.doi.org/10.1109/TDSC.2022.3232813
https://iden3.io/circom
https://github.com/iden3/snarkjs
https://z.cash/


Electronics 2024, 13, 3025 11 of 11

19. Content Identifiers (CIDs). Available online: https://docs.ipfs.tech/concepts/content-addressing/#cids-are-not-file-hashes
(accessed on 24 March 2024).

20. circom-chacha20 Github Repository. Available online: https://github.com/reclaimprotocol/circom-chacha20 (accessed on 24
March 2024).

21. The 8 × 8 dot Japanese Font “Misaki Font”. Available online: https://littlelimit.net/misaki.htm (accessed on 11 June 2024).
(In Japanese)

22. Grassi, L.; Khovratovich, D.; Rechberger, C.; Roy, A.; Schofnegger, M. Poseidon: A new hash function for {Zero-Knowledge}
proof systems. In Proceedings of the 30th USENIX Security Symposium (USENIX Security 21), Vancouver, BC, Canada, 11–13
August 2021; pp. 519–535.

23. Circomlib Github Repository. Available online: https://github.com/iden3/circomlib (accessed on 21 March 2024).
24. Circomlibjs Github Repository. Available online: https://github.com/iden3/circomlibjs (accessed on 21 March 2024).
25. Khovratovich, D. Encryption with Poseidon. 2019. Available online: https://drive.google.com/file/d/1EVrP3DzoGbmzkRmYn

yEDcIQcXVU7GlOd/view (accessed on 19 July 2024).
26. Poseidon-Encryption-Circom2 Github Repository. Available online: https://github.com/Shigoto-dev19/poseidon-encryption-c

ircom2 (accessed on 21 March 2024).
27. Zhang, Y.; Wang, S.; Zhang, X.; Dong, J.; Mao, X.; Long, F.; Wang, C.; Zhou, D.; Gao, M.; Sun, G. Pipezk: Accelerating zero-

knowledge proof with a pipelined architecture. In Proceedings of the 2021 ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA), Valencia, Spain, 14–18 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 416–428.

28. Kothapalli, A.; Setty, S.; Tzialla, I. Nova: Recursive zero-knowledge arguments from folding schemes. In Proceedings of the
Annual International Cryptology Conference, Santa Barbara, CA, USA, 15–18 August 2022; Springer: Cham, Switzerland, 2022;
pp. 359–388.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://docs.ipfs.tech/concepts/content-addressing/#cids-are-not-file-hashes
https://github.com/reclaimprotocol/circom-chacha20
https://littlelimit.net/misaki.htm
https://github.com/iden3/circomlib
https://github.com/iden3/circomlibjs
https://drive.google.com/file/d/1EVrP3DzoGbmzkRmYnyEDcIQcXVU7GlOd/view
https://drive.google.com/file/d/1EVrP3DzoGbmzkRmYnyEDcIQcXVU7GlOd/view
https://github.com/Shigoto-dev19/poseidon-encryption-circom2
https://github.com/Shigoto-dev19/poseidon-encryption-circom2


Citation: Popoola, G.; Sheppard, J.

Investigating and Mitigating the

Performance–Fairness Tradeoff via

Protected-Category Sampling.

Electronics 2024, 13, 3024. https://

doi.org/10.3390/electronics13153024

Academic Editors: Niusha Shafiabady

and Jianlong Zhou

Received: 11 June 2024

Revised: 23 July 2024

Accepted: 24 July 2024

Published: 31 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Investigating and Mitigating the Performance–Fairness Tradeoff
via Protected-Category Sampling
Gideon Popoola and John Sheppard *

Gianforte School of Computing, Montana State University, Bozeman, MT 59717, USA;
gideon.popoola@student.montana.edu
* Correspondence: john.sheppard@montana.edu

Abstract: Machine learning algorithms have become common in everyday decision making, and
decision-assistance systems are ubiquitous in our everyday lives. Hence, research on the prevention
and mitigation of potential bias and unfairness of the predictions made by these algorithms has
been increasing in recent years. Most research on fairness and bias mitigation in machine learning
often treats each protected variable separately, but in reality, it is possible for one person to belong to
multiple protected categories. Hence, in this work, combining a set of protected variables and gener-
ating new columns that separate these protected variables into many subcategories was examined.
These new subcategories tend to be extremely imbalanced, so bias mitigation was approached as an
imbalanced classification problem. Specifically, four new custom sampling methods were developed
and investigated to sample these new subcategories. These new sampling methods are referred to as
protected-category oversampling, protected-category proportional sampling, protected-category Syn-
thetic Minority Oversampling Technique (PC-SMOTE), and protected-category Adaptive Synthetic
Sampling (PC-ADASYN). These sampling methods modify the existing sampling method by focusing
their sampling on the new subcategories rather than the class label. The impact of these sampling
strategies was then evaluated based on classical performance and fairness in classification settings.
Classification performance was measured using accuracy and F1 based on training univariate de-
cision trees, and fairness was measured using equalized odd differences and statistical parity. To
evaluate the impact of fairness versus performance, these measures were evaluated against decision
tree depth. The results show that the proposed methods were able to determine optimal points,
whereby fairness was increased without decreasing performance, thus mitigating any potential
performance–fairness tradeoff.

Keywords: fairness; protected categories; machine learning; sampling

1. Introduction

As machine learning (ML) algorithms increasingly dominate decision-making and
decision-assistance systems, their widespread deployment across various sectors raises
pressing issues about the fairness and transparency of their predictions [1]. The potential
for these algorithms to perpetuate or exacerbate existing societal biases has propelled a
significant body of research to investigate and mitigate algorithmic unfairness. This is
critical because the decisions influenced by these algorithms profoundly impact individuals,
affecting outcomes in domains ranging from finance and employment to criminal justice
and healthcare [2].

The source of unfairness and bias in ML is multifaceted [3]. In particular, it is possible
that unfairness arises directly from the ML algorithms themselves due to a possible mis-
alignment of the underlying inductive bias of the algorithms vis-à-vis the target concept
and data distribution. This is referred to as algorithmic bias. An alternative concern lies in
potential bias resident in the data used to train the models where, as a direct result of the
typical “independent and identically distributed” (IID) assumption employed in most ML
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methods, the result of learning is to propagate the bias in predictions such that they match
the bias in the underlying data itself. It is this latter situation that constitutes the focus of
our work here.

1.1. Bias and Unfairness in Machine Learning

Bias is the prejudicial, unfair, or unequal treatment of an individual or group based
on specific features, often referred to as sensitive or protected features [4]. Examples of
these protected features include age, race, disability, sex, and gender [5]. Bias in ML can be
divided roughly into disparate treatment (direct unfairness) and impact treatment (indirect
unfairness) [6]. Direct unfairness happens when protected features are used explicitly in
making decisions. Indirect unfairness has become increasingly common today. This type
of unfairness does not use protected attributes explicitly; instead, it occurs when reliance
on variables associated with these attributes results in significantly different outcomes for
the protected groups. These other variables are known as proxy features. Examples of
real-world bias include the historical U.S. practice of “redlining”, where home mortgages
were denied to residents of zip codes predominantly inhabited by minorities, Amazon
hiring process gender bias, Google soap dispenser racial bias, etc. [7].

Though these decision assistance tools help automate the decision-making process,
these tools may result in unfair treatment of either individuals or groups, both directly or
indirectly [8]. Unfairness can occur in several areas of modeling, such as in the training
dataset. This can happen when the training dataset does not provide a fair representation
of the protected categories, so the “ground truth” becomes difficult to determine. For
example, consider a dataset from a company where a specific group has historically faced
discrimination. Specifically, suppose female employees in this company have not been
promoted as their male counterparts, who, in contrast, have seen career advancement,
despite both groups performing at the same level. In this situation, the true value of female
employee contributions—the ground truth—is not visible. As a result, an ML algorithm
trained on this data is likely to detect and incorporate this bias, thereby perpetuating
existing prejudices. This could lead to the algorithm making discriminatory decisions, such
as recommending male candidates for hire or promotion more frequently than equally or
more qualified female candidates.

Another area where unfairness can occur is in the ML algorithm itself [9]. ML al-
gorithms can still produce discriminatory decisions, even when trained on an unbiased
dataset where the “ground truth” is represented accurately. This situation arises when the
system’s errors disproportionately impact individuals from a specific group or minority.
For example, consider a breast cancer detection algorithm that exhibits significantly higher
false negative rates for Black individuals compared with White individuals, meaning it
fails to identify breast cancer more frequently in Black patients than in White patients. If
this algorithm is used to inform treatment recommendations, it would erroneously advise
against treatment for a greater number of Black individuals than White, leading to racial
disparities in healthcare outcomes. This underscores the critical need to ensure that algo-
rithms perform equitably across all groups in terms of their training data and how their
errors affect different populations. Results from previous literature have reported several
cases of algorithms resulting in unfair treatment, e.g., redlining and racial profiling [10],
mortgage discrimination [11], employment and personnel selection [12].

While considerable efforts have been geared toward addressing bias in ML predic-
tions [13,14], much of the existing research has focused on mitigating bias for single pro-
tected attributes in isolation [15]. For example, on a dataset with two protected attributes,
race, and sex, most existing approaches can learn either a fair model involving race or a
fair model involving sex but not a fair model involving both race and sex [7]. However,
real-world identities are not singular; they are complex and multifaceted, with individuals
often belonging to multiple protected groups simultaneously [16]. For example, an indi-
vidual can be discriminated against across several protected attributes such as age, race,
and sex simultaneously. This intersectionality can lead to compounded forms of bias and
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discrimination, which are not adequately addressed by single-variable fairness interven-
tions. Therefore, it is critical to develop methodologies that holistically address personal
identities’ multidimensional nature. This project seeks to bridge this gap by considering
combinations of protected categories, thereby synthesizing these protected categories into
comprehensive multicategory groups, and aims to tackle the layered complexities of bias
more effectively using novel protected-category sampling methods, thus acknowledging
and addressing the multifaceted nature of personal identities and potential biases.

The work presented in this paper is motivated by the problem of using ML algorithms
for decision making in socially sensitive areas such as loan assessment, hiring, or mortgage
assessment, working with this situation where an individual can belong to several protected
categories. Given a labeled training dataset containing two or more protected features,
the method proposed combines these protected attributes and then splits them into new
multicategories. These new categories are likely to be extremely imbalanced and need
to be balanced to improve the fairness of the prediction of our ML algorithms. Popular
sampling methods such as over-sampling [17], Synthetic Minority Oversampling Technique
(SMOTE) [18], Adaptive Synthetic Sampling (ADASYN) [19], etc., sample data across class
labels, which does not align with the goal of our research of sampling across the new
multicategories. Hence, a new class of modifications of these sampling methods is proposed
that can sample across the new category rather than class labels. This new class of modified
sampling is called protected-category sampling. The resulting proposed protected-category
sampling methods are used to sample and balance the new categories before performing
classification. The novelty of this work is two-fold. First, the proposed approach combines
the protected categories to form new multicategories that mimic what the identity human
being looks like in the real world. The second is the modification of existing sampling
methods to conform with the sampling of these new categories in order to make sure that
all the new categories have the same number of instances.

For demonstration purposes only, a univariate decision tree was chosen as the clas-
sification algorithm. The intent is to demonstrate the effects of the different sampling
methods on performance, expecting that similar trends will be exhibited regardless of the
underlying learning method. The proposed sampling method was compared with the
baseline (unsampled data) using accuracy and F1 as the classification performance metrics,
as well as equalized odds differences and statistical parity as the fairness metrics. Also,
several analyses were performed to show how maximum depth in the decision tree affects
both accuracy and fairness.

1.2. Research Question

Proceeding from empirical observation that a trade-off sometimes exists between
fairness and ML performance [20], this research tries to answer several questions, such
as how this trade-off might be mitigated. In particular, we seek to answer whether the
protected-category sampling method of tackling fairness can mitigate this trade-off. In
addition, can we develop a methodological framework that effectively mitigates biases
across these combined protected variables without compromising the predictive accuracy
of ML models? Finally, we plan to answer the question of how the depth of a decision tree
affects both accuracy and fairness metrics, thus exploring the relationship between the level
of fit (underfitting through overfitting) and fairness.

1.3. Hypothesis

We hypothesize that, by employing sophisticated protected-category sampling tech-
niques designed for these newly formulated multicategory groups, we can significantly
increase model fairness in terms of equalized odds differences without decreasing classi-
fication performance in terms of accuracy and F1. Furthermore, we explore the delicate
balance between fairness and accuracy, hypothesizing that it is possible to identify strategic
points where fairness can be maximized without detrimental impacts on performance.
This research challenges existing claims of the existence of trade-offs in fairness and ML
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prediction. It sets the stage for future explorations into the multidimensional nature of
identity and discrimination in automated decision systems.

1.4. Contributions

The broad problem of fairness in machine learning is significant in that the prevalence
of AI and ML systems today is having a major impact on people’s lives and livelihoods.
While attention to fair ML has increased substantially, there continues to be a need for
methods to advance fair ML without negatively impacting ML performance. Based on an
in-depth review of the literature and the above need for this type of work, the methods
reported here make the following contributions:

1. The commonly-held assumption that there exists an inherent tradeoff between fairness
and performance (i.e., accuracy) in machine learning is challenged with evidence
provided to support this challenge. In particular, the results in this paper indicate that
such a tradeoff can be mitigated, suggesting that any tradeoff is most likely tied to
how the data is being managed.

2. Four novel preprocessing methods for sampling data are presented based on applying
a multicategory sampling strategy using data captured in protected categories. The
methods proceed from the assumption and corresponding hypothesis that balanc-
ing the data based on these multicategory properties can increase fairness without
adversely affecting machine learning model performance.

3. Experimental results are presented using three datasets studied extensively within the
fair ML community. The experiments include comparisons with traditional methods
of training with no resampling to demonstrate the relative effects of the proposed
methods. The results demonstrate that two of the proposed methods, Protected-
Category Synthetic Minority Oversampling Technique (PC-SMOTE) and Protected-
Category Adaptive Synthetic sampling (PC-ADASYN), are particularly effective in
improving both fairness and performance.

4. A detailed analysis relating the potential effects of underfitting and overfitting on
fairness is presented by examining different levels in a decision tree model, with and
without using the proposed sampling methods. The results demonstrate the ability of
the proposed methods to identify an ideal level of the tree where both fairness and
accuracy are maximized.

As a result of the above contributions, this work represents a significant step forward
in addressing concerns of fairness in machine learning. A key takeaway from the meth-
ods and results reported here is that fairness can be addressed without compromising
model performance.

1.5. Organization

This paper is organized as follows. In Section 2, a detailed explanation of fairness
and a discussion of several technical fairness metrics are presented. Then, in Section 3,
previous literature related to bias mitigation strategies is described. In Section 4, we
describe our proposed sampling techniques, dataset, and approach to hyperparameter
tuning. In Section 5, we present the results of several experiments along with statistical
hypothesis tests as a means of validating these results. In Section 6, the experimental
results are discussed, and how each algorithm performs on each dataset and each metric is
analyzed. Further results on the impact of tree depth on fairness and accuracy are presented
as well. In Section 7, the limitations of this work and corresponding directions for future
work are presented, and Section 8 presents a number of conclusions.

2. Background

This study considers fairness when predicting an outcome y ∈ Y from a set of fea-
tures x ∈ X ⊆ Rd and some additional protected attributes s ∈ S ⊆ Rp, such as race,
gender, and sex. For example, in loan prediction, x represents an applicant’s financial
history, s is their self-reported race and gender, and y is whether their loan is approved
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or denied. A prediction model is considered fair if its errors are evenly distributed across
protected groups like different races or genders. The class predictions from training data
D are denoted as ŶD := h(x, s) for some h : X × S → Y from a class H. The protected
attributes s ∈ S in our study are assumed to be binary with a special value n denoting the
unprivileged group. For example, S could be race and n “non-White”; therefore, the binary
nature of S is {w, n} where w represents White applicants, who are the privileged group,
and n represents non-White applicants, who are the unprivileged group. The definition
can be further generalized to nonbinary cases.

Discrimination in labeled datasets can be defined as given a dataset D, feature set
X , and protected attribute set S with domain value {w, n}. The discrimination in D with
respect to the group S = n denoted as diss=n(D) is defined as

diss=n(D) =
|{x ∈ D : x(s) = w, h(x) = +}|

|{x ∈ D : x(s) = w}| − |{x ∈ D : x(s) = n, h(x) = +}|
|{x ∈ D : x(s) = n}|

The above definition can be translated to the difference in the probability of an ap-
plicant being in the positive class for each protected attributes domain {w, n}. Our study
extends the above definition by considering dataset D, which contains two or more pro-
tected attributes.

Two popular fairness metrics are used. The first is equalized odd difference (EOD), which
measures how discriminative or fair our prediction is. EOD states that a binary classifier
ŷ is fair if its false negative rate (FNR) and true positive rate (TPR) are equal across the
domain of S [21]. FPR and TPR with respect to protected attribute s ∈ S with value n can
be defined as

TPRn(ŷ) = P(ŷ = 1|y = 1, S = n)

FPRn(ŷ) = P(ŷ = 1|y = 0, S = n)

EOD is then defined mathematically as the difference between TPR and FPR across
different groups in a protected attribute. That is,

EOD = TPRn(ŷ)− FPRn(ŷ).

A fair classifier has an EOD of 0, while an unfair classifier has an EOD of 1. Although
achieving a fully fair classifier in practice is almost impossible, this research is geared
toward improving EOD without decreasing accuracy. Then, for EOD,

FPRn(ŷ) = P(ŷ = 1|y = 0, S = n) = TPRn(ŷ) = P(ŷ = 1|y = 1, S = n)

and
FPRw(ŷ) = P(ŷ = 1|y = 0, S = w) = TPRw(ŷ) = P(ŷ = 1|y = 0, S = w)

To extend the above EOD definition to our multicategory, the EOD is calculated for
each column, then the macroaverage of the EOD is presented as the final EOD. The second
metric used to measure fairness in ML prediction is statistical parity (SP). SP defines fairness
as an equal probability of being classified as positive [22]. This can be interpreted as
each group in a protected attribute having the same probability of being classified with a
positive outcome.

P(ŷ = 1|S = w) = P(ŷ = 1|S = n)

3. Literature Review

ML algorithms, increasingly utilized for decision making in critical applications such
as recidivism, credit scoring, loan decisions, etc., might initially be assumed to be fair and
free of inherent bias. However, in reality, they may inherit any bias or discrimination present
in the data on which they are trained, as noted by Burt [23]. Moreover, merely removing
protected variables from the dataset is insufficient to tackle indirect discrimination and
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might, in fact, conceal it. This recognition has heightened the need for more advanced
tools, making discovering and preventing discrimination a significant area of research, as
highlighted by [24–27].

Bias in ML is a fast-growing topic in the machine learning research community. Bias
in an ML model can lead to an unfair treatment of people belonging to certain protected
groups. Lately, industrial leaders have started putting more and more emphasis on bias in
ML models and software. The Institute for Electrical and Electronics Engineers (IEEE) [28],
Microsoft [29], and the European Union [30] have recently published principles for guiding
fair AI conduct. These organizations have stated that ML models must be fair in real-world
applications. Bias mitigation strategies involve modifying one or more of the following
to ensure the predictions made by the ML algorithm are less biased: (a) the training data,
(b) the ML algorithm, and (c) the ensuing predictions themselves. These are, respectively,
categorized as preprocessing [31], inprocessing [32], and postprocessing approaches [21].

First, the training data can be preprocessed to lower unfairness or bias before training
the model. Kamiran and Calders [6] suggest sampling or reweighting the data to neutralize
discrimination. This approach can adjust the representation or importance of certain data
points to favor (or reduce favor) one class over another. Another method involves changing
individual data records directly to reduce discrimination, as explored by [33]. For example,
this approach involves altering values in a dataset to decrease identifiable biases against
certain groups. Additionally, the concept of t-closeness, introduced by Sondeck et al. [34],
is applied to discrimination control in the work of [35]. Using t-closeness ensures that the
distribution of sensitive attributes in any given group is close to the distribution of the
attribute in the entire dataset, thereby preserving privacy and preventing discrimination
based on sensitive attributes. A common thread among these approaches is balancing
discrimination control with the processed data’s utility, that is minimizing bias without
significantly compromising the data’s accuracy, representativeness, and overall usefulness
for predictive modeling or analysis. This balance is essential for ensuring that efforts to
promote fairness do not inadvertently reduce the quality or applicability of the data.

Overall, the pre-processing method can further be divided into three categories:
(1) data modification, (2) data removal, and (3) data resampling. Methods in the first
category aim to modify the values of the training data points (including protected attribute
values, class values, and feature values) to lower the bias in the dataset. An example of
this method is data massaging proposed by [15]. Their approach ranks the training data,
and data close to the decision boundary in both privileged and unprivileged groups are
flipped. Alternatively, an optimized pre-processing method that learns a probabilistic
transformation that edits the classes and features with individual distortion and group
fairness was proposed by Fahse et al. [23]. In [36], the original attribute values are replaced
with values chosen independently from the class label to train a model roughly achieving
equalized odds. Similarly, Peng et al. [37] replace the protected attribute values with values
predicted based on other attributes, similar to data imputation.

Methods in the second category aim to train a fair model by removing certain fea-
tures from the training set. An example of this method is data suppression proposed by
Dhar et al. [38]. In their paper, the protected attributes and features that are highly corre-
lated with protected attributes, otherwise known as proxy attributes, are removed from the
dataset to train a fair model.

Methods in the third category aim to train a fair model either by adjusting the sample
weights or by oversampling the dataset. For example, Krasanakis et al. [39] proposed a
reweighting method that iteratively adapts training sample weights with a theoretically
grounded model to mitigate the bias–accuracy tradeoff. In [40], Chakraborty et al. proposed
FairSMOTE as a method to over-sample training points from minority groups with artificial
data points based on Synthetic Minority Oversampling Technique (SMOTE) [18], to achieve
balanced class distributions. Also, Yan et al. [41] proposed oversampling the training data
from the minority groups with artificial data points to achieve balanced class distribu-
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tions. Unlike FairSMOTE, the authors focused on scenarios where protected attributes are
unknown and applied a clustering method to identify different demographic groups.

Inprocessing involves methods that modify the way an ML model is trained as a means
to reduce bias. In [42], an adversarial debiasing approach was proposed. This approach
learns a classifier to increase accuracy and fairness in prediction by including a variable for
the group interested by simultaneously learning a predictor and an adversary. This leads to
the generation of an unbiased classifier because the predictions do not contain any group
discrimination information that the adversary could utilize. Alternatively, an algorithm
that takes a fairness metric as part of the loss function and returns a model trained for
that fairness metric was proposed in [43]. Kamishima et al. [22] proposed a regularization
method, which included a penalty term in the loss function of a classifier to produce an
unbiased prediction. Zafar et al. [44] developed a new weighting method whereby they
tune the sample weight for each training datum to achieve a specific fairness objective, such
as equalized odds on the validation data. Recently, bias mitigation has been approached as
a constrained optimization problem by adding a fairness constraint and optimizing the loss
to be consistent with that constraint [45,46]. Also, some works modify neural networks by
using dropout to drop neurons that belong to protected attributes [47].

Postprocessing methods mitigate bias after fitting an ML model and include ap-
proaches such as calibration, constraint optimization, and transformation thresholding [6].
Such methods propose an algorithm that gives favorable outcomes to unprivileged groups
and unfavorable outcomes to favorable groups within a given confidence interval around
the decision boundary with the highest uncertainty. For example, one approach modifies
the peak thresholds of the classifier to yield a specified equal opportunity or equalized odds
target. Yet another approach involves randomly mutating the classes of certain predictions
into different classes [48].

Several new studies [49,50] combined either preprocessing, inprocessing, or post-
processing to form an ensemble method. For example, Bhaskaruni et al. [50] combine
oversampling the imbalance protected class with a decision boundary shifting a postpro-
cessing method to tackle the unfairness problem.

Researchers have delved into various concepts of discrimination and fairness within
algorithmic decision making. Disparate impact (referred to previously as indirect fairness),
for example, is measured through statistical parity and group fairness, as discussed by
Bhaskaruni et al. [50]. On the other hand, the concept of individual fairness, also introduced
by Bhaskaruni et al., emphasizes that similar individuals should be treated similarly,
regardless of their group affiliation. This approach focuses on fairness at the individual
level, ensuring that decisions are made based on relevant attributes rather than group-based
stereotypes or biases.

In classifiers and other predictive models, achieving equal error rates across different
groups is a key goal, as highlighted by Zhang and Neill [16]. Similarly, ensuring calibration
or the absence of predictive bias in the predictions, as discussed by Hardt et al. [21], is
crucial. However, the tension between these notions—calibration and equal error rates—is
explored by Dwork et al. [51] and Pleiss et al. [52], indicating that simultaneously satisfying
both can be challenging. Karimi-Haghighi and Castillo [53] present related work exploring
the complexities inherent in achieving algorithmic fairness. Friedler et al. [54] further
examines the trade-offs in meeting various algorithmic fairness definitions, especially from
a public safety perspective. Given that our work focuses on preprocessing rather than
modeling, considerations such as balanced error rates and predictive bias become less
directly applicable.

Based on our review of various preprocessing methods, it appears that no work has been
conducted attempting to model fairness for two or more protected attributes simultaneously.
Also, the sampling method used in prior work focused only on sampling based on class labels
rather than the protected categories. Hence, in this paper, preprocessing is emphasized as
it represents the most adaptable aspect of the data science pipeline [55]. Preprocessing is
distinct in that it does not depend on the choice of modeling algorithm and can be seamlessly
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incorporated with data release and publishing mechanisms. This independence and flexibility
make preprocessing critical for ensuring data quality and fairness before any analytical or
predictive modeling occurs. Finally, we focus on new custom sampling methods that sample
the protected category in the data training to build a fair model.

4. Methodology

The focus of our work is to explore sampling methods to enhance fairness in ML without
the corresponding prediction performance suffering, thus mitigating the fairness–performance
tradeoff. As a result, Four novel sampling methods focused on achieving this goal are
proposed. These sampling methods address the imbalanced class problem posed by the
new multicategory generated due to the combination of the protected categories. Custom
sampling methods are needed because the existing methods sample data based on minority
and majority classes, but to mitigate fairness, the new multicategories are sampled to be
equal. This, in turn, calls for modifying the existing sampling methods to sample data based
on these new categories. This leads to four new sampling methods: protected-category
oversampling, protected-category proportional sampling, protected-category SMOTE (PC-
SMOTE), and protected-category ADASYN (PC-ADASYN).

4.1. Protected-Category Oversampling

In protected-category oversampling, the first step is to combine the protected categories in
the dataset and encode the combination to produce our new multicategory. For example, in
the Adult Income dataset, age (young and adult), race (White and others), and sex (male and
female) are combined to generate eight new categories, which become ADULTWHITEMALE,
ADULTOTHERSMALE, YOUNGWHITEMALE, YOUNGOTHERSMAIL, ADULTWHITEFEMALE,
ADULTOTHERSFEMALE, YOUNGWHITEFEMALE, and YOUNGOTHERSFEMALE, respectively.
These new categories have varying sample sizes, and the goal of our protected-category
oversampling is to balance this new category such that the sample size of each of the new
categories matches the size of the category with the highest sample size. To avoid data
leakage, the dataset is separated into train and test, applying oversampling only on the
training data and then testing on an unsampled test set.

The pseudocode in Algorithm 1 shows our protected category oversampling method
in detail. In the algorithm, the largest category was used as the baseline because it is the
category with the highest sample size. The sampling process results in new training data with
a balanced sample size across the new category. The algorithm works by sampling the rest of
the protected categories to match the sample size of the baseline. This sampling is performed
by repeating the categories multiple times along with their class labels.

4.2. Protected-Category Proportional Sampling

The Protected-Category Proportional Sampling method is a generalization of protected-
category oversampling because the process begins by setting a target sample size (which
is a hyperparameter to be tuned, rather than just the size of the largest multicategory),
denoted as targetSamples. This corresponds to the desired number of instances needed for
each category. This target ensures uniformity across all categories, mitigating the risk of
model bias towards more frequent categories. The typical result of applying this method is
that some categories that have more samples than the targetSamples will be under-sampled
while others will be oversampled to yield an equal proportion of them in the training
dataset. The pseudocode in Algorithm 2 shows the step-by-step of the protected-category
proportional sampling method.
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Algorithm 1 Protected-Category Oversampling

1: baselineCount← sum of entries in ’Largest_Category’ of Xtrain
2: totalCount← number of entries in Xtrain
3: baselineProportion← baselineCount/totalCount
4: balancedData← initialize an empty dataset
5: categories← list of column names in Xtrain starting with ’combined_category_’
6: for each category in categories do
7: categoryData← select entries in Xtrain where category = 1
8: categoryData← combine categoryData with corresponding labels from ytrain
9: categoryCount← number of entries in categoryData

10: targetCount← integer part of totalCount× baselineProportion
11: if categoryCount < targetCount then
12: sampledData← sample targetCount from categoryData with replacement
13: balancedData← append sampledData to balancedData
14: else
15: balancedData← append categoryData to balancedData
16: end if
17: end for
18: return balancedData

Algorithm 2 Protected-Category Proportional Sampling

1: targetSamples← 5000
2: sampledBalanced← initialize an empty data set
3: for each column in new_categories.columns do
4: categoryRows← select rows in new_categories where column = 1
5: sampledRows← sample targetSamples entries from categoryRows with replacement
6: for each col in oneHotEncodedBalanced.columns do
7: sampledRows[col]← 0
8: end for
9: sampledRows[column]← 1

10: sampledBalanced← append sampledRows to sampledBalanced
11: end for
12: return sampledBalanced

4.3. Protected-Category SMOTE

The Protected-Category Synthetic Minority Oversampling Technique (PC-SMOTE)
sampling method is a more complex process aimed at mimicking SMOTE but modified for
sampling our new categories, rather than class labels. In this approach, the first step was to
modify SMOTE to use a fixed number of neighbors and to randomly select one neighbor for
the interpolation rather than averaging all of them. The pseudocode in Algorithm 3 shows
the procedure for the PC-SMOTE. Since the intent for the method is to use it for the new
category sampling, it does not address the generation of class labels directly. Hence, a new
function that can generate a new class label for the synthetic data is needed. For this, a new
function is defined that generates class labels based on the number of new synthetic data
generated and a preselected balance ratio between the two classes. Algorithm 4 shows how
our new function generates labels for our synthetic samples. The algorithm first determines
the number of samples for each class based on the balance ratio and generates the sample
needed for each class. The class labels are the shuffle to prevent algorithmic bias in the
classes generated.

These two algorithms are combined together to form PC-SMOTE, as shown in Algorithm 5.
In the approach to achieve multicategory balance, each distinct category is iterated over
such that the subset of data associated with that category is identified. The number
of synthetic samples needed to reach a predefined maximum size per category is then
calculated. If additional samples are required, the data is generated using PC-SMOTE,
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which interpolates between existing data points and their nearest neighbors. Concurrently,
a balanced distribution of synthetic class labels is created with a specified balance ratio by
employing Algorithm 4. These synthetic features and labels are then incorporated into the
training subset for each category. The process is repeated for all categories, resulting in a
balanced dataset. The hyperparameters in this Algorithm 5 are the number of neighbors
and balance ratio.

Algorithm 3 Custom Synthetic Minority Oversampling Technique (SMOTE)

1: procedure CUSTOMSMOTE(data, n_samples)
2: syntheticSamples← zero matrix of size (n_samples× number of columns in data)
3: nn← NearestNeighbors(n_neighbors = 7).fit(data)
4: neighbors← nn.kneighbors(data, return_distance = False)
5: for i← 1 to n_samples do
6: sampleIdx ← random integer from 0 to (number of rows in data− 1)
7: nnIdx ← random choice from neighbors[sampleIdx, 1 :]
8: di f f ← data[nnIdx]− data[sampleIdx]
9: weight← random number from uniform distribution between 0 and 1

10: syntheticSamples[i]← data[sampleIdx] + weight× di f f
11: end for
12: return syntheticSamples
13: end procedure

Algorithm 4 Generate Balanced Synthetic Labels

1: procedure GENBALSYNTHLABELS(n_samplesNeeded, balanceRatio)
2: nClass1← int(n_samplesNeeded× balanceRatio)
3: nClass0← n_samplesNeeded− nClass1
4: syntheticLabels← [0]× nClass0 + [1]× nClass1
5: SHUFFLE(syntheticLabels) ▷ Randomly shuffle the labels
6: return syntheticLabels
7: end procedure

Algorithm 5 Protected-category SMOTE

1: balancedDataList← initialize an empty list
2: for each category in categories do
3: categorySubset← select rows in train_data s.t. ’combined_category’ == category
4: f eatures← remove ’class’, ’combined_category’ from categorySubset
5: nSamples← max_size− number of rows in categorySubset
6: if nSamples > 0 then
7: syntheticFeatures← PCSmote( f eatures, nSamples)
8: syntheticLabels← GenBalSynthLabels(nSamples, balanceRatio)
9: syntheticFeatures[′class′]← syntheticLabels

10: syntheticFeatures[′combined_category′]← category
11: categorySubsetBalanced← concatenate categorySubset and syntheticFeatures
12: else
13: categorySubsetBalanced← categorySubset
14: end if
15: append categorySubsetBalanced to balancedDataList
16: end for
17: balancedData← append balancedDataList and reset index

4.4. Protected-Category ADASYN

The protected-category ADASYN method mimics adaptive synthetic minority (ADASYN)
sampling but is modified slightly to fulfill our goal of protected-category sampling. Our PC-
ADASYN algorithm is shown in Algorithm 6. It extends ADASYN by focusing on category
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density rather than class imbalance. Specifically, this function operates by finding the nearest
neighbors to the data and then calculating the density of each data point’s category within its
immediate neighborhood. It weights these densities inversely to prioritize minority categories,
making it more likely to generate synthetic samples from underrepresented categories. The
synthetic samples are created by interpolating between selected data points and their neighbors,
similar to SMOTE but using a random weight to vary the interpolation, thus ensuring a
diverse synthetic dataset. This approach helps address the imbalance at the category level and
enriches the dataset’s variance, potentially improving the robustness and fairness of ML models
trained on this data. Since this sampling method also generates new samples by interpolating,
Algorithm 4 is used to generate class labels for the new synthetic samples.

Algorithm 6 PC-ADASYN for Category-Based Balancing

1: procedure PCADASYNCATEGORIES(data, labels, n_samplesNeeded, n_neighbors)
2: n_neighbors← n_neighbors + 1 ▷ Including the data point itself
3: nn← NearestNeighbors(n_neighbors).fit(data)
4: distances, indices← nn.kneighbors(data)
5: densities← zero array of length(data)
6: for i← 0 to length(data)− 1 do
7: current_category← labels[i]
8: neighbor_indices← indices[i][1 :] ▷ Skip the self index
9: densities[i]← SUM(labels[neighbor_indices] == current_category)

10: end for
11: weights← 1/(densities + 1) ▷ Add 1 to prevent division by zero
12: weights← weights/SUM(weights) ▷ Normalize weights
13: syntheticSamples← empty list
14: sampleIndices← random choice with replacement from length(data) using weights
15: for each idx in sampleIndices do
16: baseIdx ← idx
17: neighborIdx ← RANDOMCHOICE(indices[baseIdx][1 :])
18: di f f ← data[neighborIdx]− data[baseIdx]
19: syntheticSample← data[baseIdx] + RANDOM()× di f f
20: append syntheticSample to syntheticSamples
21: end for
22: return array(syntheticSamples)
23: end procedure

Algorithms 4 and 6 are combined to form our protected-category ADASYN sampling,
as shown in Algorithm 7. For each category, the data corresponding to that category is
isolated and the size deficit relative to the largest category is computed. If additional
samples are needed, the PC-ADASYN method is applied, generating synthetic features that
respect the category’s distribution characteristics. These features are then complemented
with synthetically generated labels, maintaining a predefined class balance ratio. The
process not only corrects category imbalances but also enriches the dataset, potentially
enhancing the predictive accuracy and fairness of models trained on this data.

4.5. Dataset and Hyperparameter Tuning

To test the four sampling methods, a classifier was needed to assess the effects on
fairness and performance. Ultimately, the type of classifier is not directly relevant since the
goal is to mitigate the fairness–performance tradeoff, rather than to find the best classifier.
Therefore, we chose to use univariate decision trees based on CART [56] due to their
robustness against noise and missing data. The specific implementation we chose was
taken from the sklearn library (version 1.5.1) [57]. In addition, decision trees allow us to
control the strength of fit by setting the tree depth of the learned tree. This allows us to
compare fairness and performance across different levels of fitting.
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The process begins by combining protected categories within each dataset, applying
one-hot encoding to create new multicategory features, and then performing label encoding.
The datasets were then divided using a stratified 10-fold cross-validation to ensure a
representative distribution of classes in each fold. For each fold, training was conducted on
sampled data using the previously described methods, while classification was tested on
the corresponding unsampled test sets. Consistency in model training was maintained by
applying identical tree depth across all sampling methods, and the results provided are
averages of the 10-fold runs with their corresponding confidence intervals.

Algorithm 7 Protected-category ADASYN

1: balancedDataList← initialize an empty list
2: for each category in categories do
3: categorySubset← select from new_data3 s.t. ’combined_category’ == category
4: f eatures← remove ’class’, ’combined_category’ from categorySubset
5: categoryLabels← extract ’combined_category’ from categorySubset
6: nSamplesNeeded← max_size minus number of rows in categorySubset
7: if nSamplesNeeded > 0 then
8: syntheticFeatures← PCAdasyn( f eatures, categoryLabels, nSamplesNeeded)
9: syntheticLabels← GenBalSynthLabels(nSamplesNeeded, balanceRatio)

10: syntheticFeatures[′class′]← syntheticLabels
11: syntheticFeatures[′combined_category′]← category
12: categorySubsetBalanced← concatenate categorySubset with syntheticFeatures
13: else
14: categorySubsetBalanced← categorySubset
15: end if
16: append categorySubsetBalanced to balancedDataList
17: end for
18: balancedData← concatenate balancedDataList and reset index

Three datasets were selected from the UCI repository [58] for our analysis: the Adult
Income dataset [59], the German Credit [60] dataset, and the Correctional Offender Man-
agement Profiling for Alternative Sanctions (COMPAS) dataset. The Adult Income dataset
aims to predict whether an individual earns above USD 50,000, featuring eight categorical
and four numerical attributes, with protected variables corresponding to age (young or
adult), sex (male or female), and race (White or others). The adult income dataset was
donated to UCI in 1996. The German Credit dataset, used to predict creditworthiness,
comprises 20 categorical and two numerical attributes, with protected variables of age and
sex. German credit dataset was donated to UCI in 1994. The COMPAS dataset [61], which
assesses recidivism rates in the United States, includes six categorical and six numerical
features, with protected variables of age, race, and sex. The dataset was published in
2018. These datasets were selected because they represent the state-of-the-art datasets for
measuring bias and discrimination and are widely used in other studies on algorithmic
bias and fairness (see Section 3). Also, the datasets have various sizes, ranging from small
to large, which makes them suitable for testing our sampling methods.

Hyperparameter tuning was conducted using grid search [62] to explore a broad
range of parameters, complemented by visual assessments to identify optimal settings that
balance Equalized Odds Difference (EOD) and accuracy. For the Adult Income dataset,
the optimal hyperparameters included a maximum tree depth of 3 and, for PC-SMOTE
and PC-ADASYN, a nearest neighbor setting of 5 with a balanced ratio of 0.34. These
parameters were similarly effective for the German Credit dataset. For the COMPAS
dataset, a maximum tree depth of 2 was optimal for all sampling methods. PC-SMOTE
and PC-ADASYN were adjusted to the nearest neighbor setting of 3 and a balanced ratio
of 0.60.
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5. Results

The four sampling strategies were applied to the three datasets described above and
evaluated their impact using a simple univariate decision tree classifier. The results in
Tables 1–3 show notable differences in model performance across five sampling strategies:
no sampling, oversampling, proportional sampling, PC-SMOTE, and PC-ADASYN on
our three datasets. Each method was assessed based on accuracy, macro F1, Equalized
Odds Difference (EOD), and Statistical Parity (SP). The results were measured in accuracy
and macro F1 because these two metrics are the most popular classification metrics. Also,
limiting the metric to two makes the results comparable for statistical analysis.

To ascertain the statistical significance of each method’s results, we used the Friedman
test, a nonparametric alternative to the one-way ANOVA with repeated measures. Upon
finding significant results from the Friedman test, we proceeded with the Nemenyi post hoc
test. This test is used to evaluate pairwise comparisons between the methods to ascertain
which methods statistically differ from each other. The Nemenyi test is advantageous
in this setting because it accounts for multiple comparisons without assuming normal
distributions, thereby providing a robust way to understand specific pairwise differences.

For the Adult Income dataset (Table 1), the no-sampling method yielded an accuracy
of 0.82, setting a high baseline for comparison. However, it demonstrated a slightly biased
prediction with an EOD of 0.36 and minimal disparity in prediction rates (SP = 0.02). In
contrast, oversampling maintained the same accuracy but lowered the macro F1 slightly
to 0.65, indicating potential overfitting issues while worsening fairness (EOD = 0.66) and
increasing disparity in prediction rates (SP = 0.09). Proportional sampling decreased
accuracy to 0.79 but improved the macro F1 to 0.79, suggesting a better balance between
precision and recall. However, it significantly increased SP to 0.71, indicating a substantial
disparity in positive prediction rates, which raises concerns about the model’s fairness. The
two custom approaches for SMOTE and ADASYN were designed specifically to improve
upon these metrics. PC-SMOTE showed a moderate performance with an accuracy of
0.81 and an improved EOD of 0.25, suggesting enhanced fairness over basic oversampling
and the no-sampling method. However, it still recorded lower macro F1 (0.63), indicating
misrepresentation issues in synthetic data generation. PC-ADASYN proved to be the
most balanced approach, maintaining high accuracy (0.82) and better handling of class
imbalances, with a moderate improvement in fairness (EOD = 0.28) and a controlled
increase in prediction rate disparity (SP = 0.09). Overall, the baseline accuracy is statistically
significantly better than the proportional sampling while it is not statistically significant as
compared with the other sampling methods. For the macro F1 proportional sampling is
statistically significantly better than other sampling methods. For the EOD, PC-ADASYN
is statistically better than other sampling methods while the no-sampling method SP is
statistically significantly better than other sampling methods.

Table 1. Results of the sampling methods on the Adult Income dataset with 95% confidence intervals.

Sampling
Method Accuracy Macro F1 EOD SP

No sampling 0.82 ± 0.00 0.66 ± 0.01 0.36 ± 0.18 0.02 ± 0.00
Over-sample 0.82 ± 0.02 0.65 ± 0.06 0.66 ± 0.2 0.09 ± 0.02
Prop. Sample 0.79 ± 0.05 0.79 ± 0.06 0.46 ± 0.12 0.71 ± 0.10
PC-SMOTE 0.81 ± 0.05 0.63 ± 0.07 0.25 ± 0.21 0.07 ± 0.00

PC-ADASYN 0.82 ± 0.04 0.64 ± 0.07 0.28 ± 0.19 0.09 ± 0.02

The results of the experiments on the German Credit dataset also show varying impacts
of each sampling strategy, particularly regarding fairness and accuracy, as shown in Table 2.
Without sampling, the baseline model achieved an accuracy of 0.72 but exhibited significant
bias in its prediction, with an EOD of 0.88, indicating a substantial disparity in error
rates between groups in the protected attributes. Implementing oversampling maintained
accuracy while improving the macro F1 to 0.68 and notably reducing EOD to 0.37, albeit at
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the cost of increased SP to 0.35, highlighting a potential trade-off between different fairness
measures. Proportional sampling reduced accuracy slightly to 0.68 but achieved the best
F1-score of 0.69. It also lowered EOD to 0.32, suggesting it effectively balances prediction
quality with fairness. PC-SMOTE shows an improvement in accuracy with 0.73 but a lower
macro F1 of 0.55; the model’s fairness shows a huge improvement over the baseline with
an EOD of 0.15 and a moderate SP of 0.1. PC-ADASYN shows a similar accuracy to the
baseline at 0.72, albeit with the lowest macro F1 of 0.48, suggesting a potential trade-off
in precision and recall. However, the model exhibits the best in fairness prediction with
an EOD of 0.13 and SP of 0.06. Overall, the result shows that the accuracy of no sampling
is not statistically significant to other sampling methods except proportional samplings
while for the EOD the results of all the sampling methods are statistically significant in
comparison with the no-sampling method.

Table 2. Results of the sampling methods on the German Credit dataset with 95% confidence intervals.

Sampling
Method Accuracy Macro F1 EOD SP

No sampling 0.72 ± 0.03 0.62 ± 0.06 0.88 ± 0.10 0.07 ± 0.01
Over-sample 0.72 ± 0.05 0.68 ± 0.04 0.37 ± 0.16 0.35 ± 0.11
Prop. Sample 0.69 ± 0.04 0.69 ± 0.07 0.32 ± 0.26 0.29 ± 0.10
PC-SMOTE 0.73 ± 0.05 0.55 ± 0.09 0.15 ± 0.09 0.1 ± 0.02

PC-ADASYN 0.72 ± 0.03 0.48 ± 0.11 0.13 ± 0.02 0.06 ± 0.00

Table 3 shows the results of our experience with the COMPAS dataset. These results
reveal significant variations in model performance across the different sampling strategies.
The baseline approach, without sampling, achieved accuracy and a macro F1-score of
0.89 but showed higher disparities in fairness metrics, with an Equalized Odds Difference
(EOD) of 0.39 and a Statistical Parity (SP) of 0.29. This underscores potential biases that
unadjusted models may exhibit towards protected groups. The application of oversampling
slightly improved accuracy to 0.90 but also improved fairness notably, decreasing EOD to
0.26. This suggests effectiveness in reducing outcome disparities without compromising
SP. Conversely, proportional sampling, while boosting accuracy and macro F1 to 0.90 and
0.91, respectively, also achieved an EOD of 0.26, improving it over the baseline while
also recording a higher SP of 0.36, indicating a potential increase in disparity of positive
outcomes across groups. PC-SMOTE and PC-ADASYN, with identical scores in accuracy,
macro F1, and SP, managed to maintain fairness improvements with an EOD of 0.30,
though these methods also increased SP to 0.47. Overall, the results show that both the
accuracy and the EOD of our sampling methods are statistically significantly better than
the no-sampling method.

Table 3. Results of the sampling methods on the COMPAS dataset with 95% confidence intervals.

Sampling
Method Accuracy Macro F1 EOD SP

No sampling 0.89 ± 0.04 0.89 ± 0.04 0.39 ± 0.15 0.29 ± 0.17
Oversample 0.90 ± 0.03 0.90 ± 0.05 0.26 ± 0.14 0.25 ± 0.07

Prop. Sample 0.90 ± 0.05 0.91 ± 0.04 0.26 ± 0.12 0.36 ± 0.10
PC-SMOTE 0.91 ± 0.02 0.91 ± 0.02 0.30 ± 0.11 0.47 ± 0.19

PC-ADASYN 0.91 ± 0.02 0.91 ± 0.03 0.30 ± 0.13 0.47 ± 0.21

6. Discussion

Results of the experiments on the three datasets substantiate that protected-category
sampling can markedly enhance model fairness, often without significantly compromis-
ing prediction accuracy. In some cases, improvement in accuracy and macro F1 were also
demonstrated. Focusing on the Adult Income dataset results, PC-SMOTE and PC-ADASYN
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demonstrated notable improvements in EOD and maintained moderate levels of SP. The
efficacy of these methods can largely be attributed to their sophisticated interpolation
techniques. For example, a visual examination of the decision trees generated with no
sampling and PC-ADASYN provides insightful contrasts. Examples from a single repre-
sentative fold are shown in Figures 1 and 2, respectively. The decision tree learned without
sampling selected its root with a feature closely associated with protected attributes, thus
acting as a proxy attribute. This led to pronounced prediction bias as reflected in the EOD.
Conversely, the decision tree trained on data generated using PC-ADASYN began with a
feature that generalized predictions very well and mitigated bias, as evidenced by a notable
enhancement in model fairness and a higher Gini impurity, indicating a purer initial split.

Figure 1. Example decision tree trained on Adult Income with no sampling.

Figure 2. Decision tree of PC-ADASYN on adult income.
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6.1. Comparing Fairness vs. Performance

Comparing oversampling and proportional sampling, the methods’ approaches to
augmenting sample size by duplicating existing data rows were straightforward and did
not yield substantial improvements in EOD. This outcome makes sense since these methods
tend to replicate existing biases, which can potentially exacerbate fairness issues rather
than alleviate them. This is evident, in particular, when considering the Adult Income
dataset, where the classes are extremely imbalanced. These naïve replication strategies
lack the interpolation capacity of PC-SMOTE and PC-ADASYN to adjust samples near
decision boundaries, which is crucial for mitigating the bias in the dataset. In contrast, the
interpolation strategies used by SMOTE and ADASYN expand the dataset and enhance its
diversity. This is particularly effective for samples near decision boundaries, where slight
shifts in the features can affect the fairness of predictions significantly. By interpolating
between samples, SMOTE and ADASYN effectively move these boundary samples towards
more equitable regions of the feature space, thus directly confronting and reducing bias
more effectively than methods that increase sample volume without altering data structure.
The class generation function (Algorithm 4) also helps increase the overall class distribution.
The results of our PC-SMOTE and PC-ADASYN on Adult income also show superiority
over the results obtained in [41], where the accuracy of 0.59 and SP of 0.17 was obtained.
Also, the results of PC-SMOTE and PC-ADASYN show superiority over the results obtained
in [40], where an EOD of 0.89 and a slightly better accuracy of 0.84.

In examining the results on the German Credit dataset, we observed a trend similar to
what was noted in the Adult Income dataset: the no-sampling method has a very high bias
regarding EOD. The low SP of 0.07 indicates minimal disparity in the positive prediction
rates between the groups, but this in itself is not a good way of measuring fairness since the
favored group has more samples than the unfavored one. This has the effect of skewing the
calculation of SP since it only counts positive decisions in each group, which are influenced
by sample size. One takeaway is the importance of employing multiple fairness metrics to
view a model’s impact on all stakeholders comprehensively. For oversampling, we saw an
improvement in EOD with a similar SP; this shows that increasing the number of samples
for each of the multicategory’s protected attributes improves the fairness with respect to
EOD. In addition, the updated SP reflects what it will look like to have a more equal number
of samples for each multicategory, unlike in the baseline where the favored group has five
times more samples than the unfavored group. The accuracy of proportional sampling
drops because the baseline number of samples selected after hyperparameter tuning was
insufficient for the model to generalize the unsampled test set, leading to overfitting. The
overfitting was confirmed by considering the training accuracy. Interestingly, the model is
not trading accuracy for recall like other models, and this gives proportional sampling the
highest macro F1.

Regarding fairness, we found an increase in EOD compared with baseline and over-
sampling. This arises because each multicategory is represented on the same baseline
counts. This can improve the model fairness because the model now has a bigger picture
of categories and makes better predictions and ultimately fairer decisions. PC-SMOTE
and PC-ADASYN play pivotal roles in significantly reducing bias in model predictions.
This consistency confirmed the robustness of these methods across different datasets. No-
tably, neither method compromises accuracy while both enhance fairness, illustrating
their effectiveness in handling the trade-offs typically associated with predictive modeling.
These results demonstrate the strong interpolation capabilities inherent in PC-SMOTE
and PC-ADASYN. These methods effectively reallocate samples within the feature space,
especially moving those in underprivileged regions from negative to more positive decision
boundaries. Such adjustments are crucial in mitigating biased outcomes and promoting
equity in automated decision-making processes. The macro F1 in both models drops com-
pared with the baseline because a higher number of samples is required for the model to
perform better on generalization, which this dataset does not support. Specifically, the
dataset has 700 samples for class 0 and 300 samples for class 1, which means the test set
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only has 30 samples for class 1. This small number of samples made both models trade
recall for precision in class 1. Notably, we saw a low recall for class 1 which ultimately
leads to a low f1-score for class 1 and since macro F1 averages the two f1-scores and treats
them equally, this affects the performance of both models in macro F1. Overall, the two
models yield a fairer model with good accuracy compared with the baseline and other two
sampling methods.

The COMPAS dataset’s evaluation further validates our sampling methods’ effective-
ness. The distinct patterns that emerge align with those observed in the Adult Income and
German Credit datasets, underscoring the robustness of our findings. Notably, oversam-
pling and proportional sampling techniques have demonstrated substantial improvements
in Equalized Odds Difference (EOD) and accuracy, while oversampling also notably im-
proves in SP. This improvement is likely due to the unique composition and balance within
the COMPAS dataset, unlike the other datasets in which the classes are imbalanced. The
success of oversampling and proportional sampling in this context can be attributed to
the balanced nature of the dataset, which allows repeated duplication of existing rows
(sampling techniques employed by these methods) to enhance the dataset without intro-
ducing a significant skew towards any particular class. This method effectively augments
the representation of all classes and the protected attributes in a balanced form, making
these techniques particularly effective for datasets where the feature domains contribute
equally to predictions and where initial class distributions do not suffer from severe im-
balance. This can further be verified from their macro F1 as none of the models is trading
precision for recall. The improvement of SP in oversampling can be attributed to the higher
number of samples in oversampling in comparison with proportional sampling. Regarding
PC-SMOTE and PC-ADASYN, these algorithms show an improvement over baseline in
both accuracy and EOD. These trends follow those in the previous results. One notable
thing in this results in the large drop in SP which can be attributed to our new label that
was generated to make the dataset to be skewed towards the negative class. These results
show the difficulty in optimizing for two or more fairness metrics at a time and how this
optimization can affect each other.

6.2. Impact of Tree Depth on Fairness and Accuracy

In this study, the impact of decision tree depth on model performance was also
investigated, specifically examining how variations in tree depth influence accuracy and
EOD. Understanding the depth’s effect is crucial as it provides insight into the effects
ranging from underfitting to overfitting and helps identify the optimal complexity level at
which both accuracy and fairness are maximized. Initially, the decision tree was allowed to
grow without constraints to its full depth which on average was about 30 branches. The
tree was then examined visually to deduce the maximum depth excluding the nonsplitting
branches. To analyze the effects of tree depth systematically, the maximum depth of the
trees was allowed to vary from 1 to 30. Each depth limit was evaluated using ten-fold
cross-validation to ensure the robustness and generalizability of the findings.

For each configuration of tree depth, the accuracy and EOD were measured on the test
set. Additionally, 95% confidence intervals were calculated for the metrics across the ten
folds. This statistical analysis highlighted the depth at which the decision tree balanced the
trade-off between accuracy and fairness while also considering the underlying statistical
bias–variance tradeoff. By doing so, it was possible to pinpoint the “sweet spot”—a delicate
point where the decision tree maintains high predictive accuracy without compromising
on fairness, effectively countering the often-cited trade-off presented in previous literature.
Figures 3–7 show the plots of accuracy and EOD against maximum depth for each of the
five sampling methods on the Adult Income dataset.
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Figure 3. Plots of Adult Income using no sampling, showing accuracy and EOD with 95% confidence
intervals against the maximum tree depth ranging from 1 to 30.

Based on results such as those shown in Figures 3 and 4, there is a notable initial
increase in accuracy as maximum depth increases for both the no-sampling and the over-
sampling methods. However, both methods exhibit a decline in accuracy from a depth
of 10 onwards, suggesting the onset of overfitting. Correspondingly, the EOD decreases
sharply with increasing depth up to about depth 10, beyond which it stabilizes. This
pattern indicates that while deeper trees initially improve fairness, they eventually reach a
threshold beyond which no further gains are observed. Recalling that the fairness goal was
to minimize EOD, a key observation is that setting the maximum depth between three and
five strikes an optimal balance between achieving high accuracy and maintaining low EOD.

Figure 4. Plots of Adult Income using oversampling, showing accuracy and EOD with 95% confidence
intervals against the maximum tree depth ranging from 1 to 30.

When considering the results shown in Figure 5, the proportional sampling method
continually increases accuracy with tree depth, peaking at a depth of about 26. Conversely,
the EOD initially increases before decreasing and stabilizing at a depth of around 15. The
wide confidence intervals observed in the EOD metric suggest significant variability in
fairness outcomes. This finding underscores the importance of selecting a depth that
minimizes variability in fairness while maximizing accuracy.



Electronics 2024, 13, 3024 19 of 24

Figure 5. Plots of Adult Income using proportional sampling, showing accuracy and EOD with 95%
confidence intervals against the maximum tree depth ranging from 1 to 30.

Figure 6. Plots of Adult Income using PC-SMOTE, showing accuracy and EOD with 95% confidence
intervals against the maximum tree depth ranging from 1 to 30.

Figures 6 and 7, representing the results using PC-SMOTE and PC-ADASYN, respec-
tively, exhibit slight downward trends in accuracy, which improve briefly before descending
again—a pattern indicative of overfitting at greater depths. EOD metrics for these methods
show initial stability at lower depths, surge at mid-level depths, and decline, suggesting
complex interactions between synthetic sample generation and decision boundary delin-
eation. Given these observations, a maximum depth of 3 was chosen for our experiments,
as it represents a “sweet spot” where both accuracy and EOD are optimized.

Given these results, one conclusion is to challenge the often presumed trade-off
between accuracy and fairness by demonstrating that our PC-ADASYN method consistently
outperforms baselines across all three datasets in terms of both accuracy and fairness. This
finding is significant, as it suggests enhancing model fairness without sacrificing accuracy
with appropriate sampling methods and model tuning is possible. However, our analysis
also reveals scenarios where adjustments to model complexity, specifically the maximum
depth of decision trees, can enhance accuracy at the expense of fairness, as indicated by
increases in Equalized Odds Difference (EOD). It is expected, however, that coupling
sampling methods with inprocessing methods such as fairness-based regularization may
offset these effects. These decisions highlight researchers’ discretionary power in balancing
model performance metrics depending on their study’s specific objectives and constraints.
The quantity of sample and time complexity is like every other sampling method. As the
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sample quantity increase, the time complexity increases but overall, the sampling methods
have the same time complexity as their underlying algorithms because they have the
same functionality.

Figure 7. Plots of Adult Income using PC-ADASYN, showing accuracy and EOD with 95% confidence
intervals against the maximum tree depth ranging from 1 to 30.

Moreover, our results underscore the complexities of simultaneously optimizing multi-
ple fairness metrics. For instance, efforts to improve Statistical Parity (SP) by favoring more
positive predictions for each protected group in the COMPAS dataset led to an inadvertent
reduction in negative predictions. This shift adversely impacted the False Positive Rate
(FPR), a component of EOD, thereby worsening the EOD metric as SP improved. This
phenomenon illustrates the inherent mathematical tensions between fairness metrics, where
optimizing one can detrimentally affect another. The COMPAS dataset, with its nearly
balanced class distribution, provides a concrete example of how dataset characteristics
can influence the behavior of fairness metrics. Optimizing SP in this context implies a
skewed measurement of fairness, particularly where inherent differences exist between
groups in protected attributes. This is supported by literature indicating that SP may not
adequately account for group differences, potentially leading to misleading conclusions
about a model’s fairness [63].

7. Limitations and Future Work

The very nature of this study is such that it is not possible to address all of the issues
surrounding fairness and the so-called fairness–performance tradeoff. As such, there exist
limitations in the work reported here. Even so, it is our hope and intent for the work
reported here to suggest additional avenues of exploration in this important area.

One limitation of this study is that our sampling method was not specifically designed
to optimize for arbitrary fairness metrics. Stated another way, since often inherent tradeoffs
exist between the available set of fairness metrics, the decision was made to focus on an
approach that was metric agnostic, recognizing that the results could have differed for
other metrics. This is also part of the reason why we saw different behaviors between EOD
and SP.

In addition, it is acknowledged that, while the underlying ML method should not be
relevant to the method proposed, this has not actually been tested. Therefore, in the future,
this research will be extended by considering the impacts of other ML algorithms such as
logistic regression, fuzzy ID3, K-nearest neighbor, and ensemble methods such as random
forests or gradient-boosted trees to assess the generalizability of our new sampling methods.
The purpose of such a study would be to verify that our methods are independent of the
ML algorithm employed. Furthermore, this would help validate whether the observed
improvements in fairness and accuracy are model-specific or can be universally applied.
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Additionally, it is acknowledged that only three distinct datasets were considered—datasets
that have been studied extensively in the field. This raises a concern that methods are being
tailored to these data rather than addressing the broader issue of fairness in ML. To address
this, experiments with larger and more diverse datasets are planned to provide deeper
insights into the scalability and robustness of our techniques. Another area for future
work is to refine our multicategory sampling approach by incorporating more granular
subdivisions of protected categories, potentially revealing subtler biases and providing a
more nuanced understanding of fairness.

Finally, it is recognized that alternative methods have been proposed for bias mitiga-
tion, and these methods have not been studied in this work at all. Future work would entail
comparisons with more sampling strategies. A more direct comparison of the proposed
methods with inprocessing and postprocessing methods will be conducted. For exam-
ple, incorporating inprocessing methods, such as regularization [22], or a postprocessing
method, such as the Randomized Threshold Optimizer [64], will be explored as possible
means to obtain further improvements in both fairness and performance.

8. Conclusions

In this study, the issue of bias in ML predictions was investigated, and a method was
developed based on combining protected variables into a new multicategory. In particular,
the focus was on the question that has been suggested in the literature of a bias–performance
tradeoff and seeking a method to mitigate this tradeoff. The proposed new multicategory
approach reflects the multifaceted identity of individuals, acknowledging the complex
interplay of attributes that define real-world scenarios. Given the inherent imbalance
in this multicategory, four sampling methods tailored to these complex categorizations,
rather than traditional class labels, were developed. For purposes of applying a baseline
classifier, decision trees were trained, and the effectiveness of these methods was evaluated
using three datasets that are often employed in fairness studies. The performance of the
methods was compared against baseline methods of no sampling, using accuracy, macro
F1, Equalized Odds Difference (EOD), and Statistical Parity (SP) as the evaluation metrics.

The results of the experiments indicate that two of the newly developed sampling
techniques—PC-SMOTE and PC-ADASYN—successfully enhance fairness without com-
promising accuracy. Remarkably, in some cases, these methods also improved accuracy,
thus providing evidence counter to the popular claims of a fairness–performance tradeoff.
Further analysis of the impact of maximum tree depth on model performance revealed
that, while increasing depth initially boosts accuracy, it eventually leads to a decline. Con-
versely, increasing depth adversely affects fairness, highlighting the challenge of balancing
complexity with equity. However, optimal tree depths were identified that simultane-
ously enhance accuracy and EOD, underscoring the possibility of achieving equity without
sacrificing performance.

Ultimately, these findings challenge prevailing notions of an implicit performance–fairness
tradeoff within bias mitigation research, suggesting that carefully designed bias mitigation
strategies have the ability to sidestep this trade-off. Our approach sets a new precedent for
developing more equitable predictive algorithms by redefining how protected attributes
are utilized in model training.
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Abstract: In this study, a new data-sharing method is proposed that uses a private InterPlanetary
File System—a decentralized storage system operated within a closed network—to distribute data to
external entities while making its authenticity verifiable. Among the two operational modes of IPFS,
public and private, this study focuses on the method for using private IPFS. Private IPFS is not open
to the general public; although it poses a risk of data tampering when distributing data to external
parties, the proposed method ensures the authenticity of the received data. In particular, this method
applies a type of zero-knowledge proof, namely, the Groth16 protocol of zk-SNARKs, to ensure that
the data corresponds to the content identifier in a private IPFS. Moreover, the recipient’s name is
embedded into the distributed data to prevent unauthorized secondary distribution. Experiments
confirmed the effectiveness of the proposed method for an image data size of up to 120 × 120 pixels.
In future studies, the proposed method will be applied to larger and more diverse data types.

Keywords: IPFS; zero-knowledge proof; circom; zk-SNARKs; private IPFS; data distribution; data
processing; data security

1. Introduction

Decentralized systems are robust because they lack a single point of failure; therefore,
they are widely applied across enterprise sectors including cryptocurrency, supply chain
management, financial services, and digital identity. To store large-sized data such as im-
ages, these systems require storage functions that are inherently decentralized. Blockchain,
commonly used in conjunction, typically handles smaller data sizes such as transaction
histories and operates as a ledger database. The InterPlanetary File System (IPFS) is a
prominent decentralized storage system that stores data across multiple nodes to enhance
data availability. The IPFS has two variants: public IPFS, wherein the data can be stored by
any user with unrestricted access, and private IPFS, wherein a closed network accessible
only within specific organizations or groups is established, offering enhanced privacy
and security.

When storing data in IPFS, understanding the differences between public IPFS and
private IPFS is crucial. Public IPFS allows anyone to access data, while private IPFS is
accessible only within specific organizations or groups, enhancing privacy and security.
When storing sensitive information, such as confidential data, in public IPFS, applying
an appropriate encryption scheme is vital to ensure data protection. By contrast, private
IPFS provides higher security for data storage, because it is accessible only within a
closed network.

Particularly for organizations such as corporations or healthcare institutions, storing
data in public IPFS, despite using strong encryption technologies, carries inherent risks.
Moreover, the potential for data leaks due to operational errors exists persistently in such
cases; although data is encrypted, it is exposed to the world, rendering it vulnerable to
brute force attacks and other security threats.
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Regarding accessibility, public IPFS allows general users to directly access and retrieve
data. However, in private IPFS, data must be received from members of the organization or
group constituting the network. During this process, if data is tampered, then users may
unable to detect it. Therefore, trusting the intermediaries responsible for handling data
transfer in such cases becomes mandatory. To address the aforementioned trust issue, a new
method is proposed herein for distributing data stored in a private IPFS to external entities
while making its authenticity verifiable. The Groth16 [1] protocol of zk-SNARKs, a type
of ZKP, is applied to data stored in a private IPFS to ensure the authenticity of the data.
Moreover, the recipient’s information is embedded into the distributed data to prevent
unauthorized secondary distribution. The proposed method of data sharing is important
because it is tailored to the private IPFS case.

The differences in several aspects, including security and accessibility, when storing
data in public IPFS and private IPFS within the enterprise domain are summarized in
Table 1. This study proposes solutions to the threats associated with private IPFS.

Table 1. Comparison between public and private IPFS in the enterprise domain.

Public IPFS Private IPFS

Trust Model Trustless Requires trust in the operating group

Access Restrictions Accessible by anyone Accessible only within the operating group

Data Leakage Risk Constant risk of leakage due to user error Low risk of leakage within a closed network

Handling of Confidential
Information Requires proper encryption

Data stored in IPFS does not require high-
level encryption itself; there is a trust point
when passing data to users

Brute Force Attack Risk Always present Low

Data Retrieval Method Direct access by users Data received from members of the organi-
zation or group

Threats Requires encryption that prevents decryp-
tion by unauthorized users

There is a risk of tampering when transfer-
ring data to users

The remainder of this paper is organized as follows. Section 2 presents related prior
research. Section 3 outlines the fundamental technologies, i.e., ZKP and zk-SNARKs.
Section 4 describes the structure of the proposed method, while Section 5 outlines the
potential applications of this method. Section 6 presents the implementation of this method,
while Section 7 discusses the experiments performed to verify the effectiveness of the
implementation. Section 8 presents a discussion of the experimental results, while Section 9
presents the conclusions of the paper and an outline of future challenges.

2. Related Studies

Existing decentralized systems use IPFS, particularly in combination with blockchain
technology. Kumar et al. [2] proposed a method for securely managing medical data by
integrating IPFS with a blockchain. Azbeg et al. [3] specifically suggested a system that
managed and stored medical data using private IPFS and a permissioned blockchain by
employing proxy re-encryption to ensure secure decryption by designated doctors. When a
physician receives some patient’s data, he/she obtains the re-encrypted data via a hospital.
Hossan et al. [4] also proposed a system to securely record information for ride-sharing
services using IPFS and a private blockchain.

Focusing on controlling the distribution of data managed by IPFS, Lin et al. [5]
proposed a system for protecting private data using improved IPFS combined with a
blockchain. This system recorded file metadata and accessed permissions on the blockchain,
enabling users to control file sharing. Moreover, the system implemented efficient man-
agement features using smart contracts, thereby enhancing data security and management
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flexibility. Battah et al. [6] developed a system that used multiparty authentication (MPA),
proxy re-encryption, and smart contracts on a blockchain for decentralized access control
of encrypted data stored in IPFS. Huang et al. [7] introduced a trusted IPFS proxy to realize
access control and group key management for encrypted data stored in IPFS. Sun et al. [8]
proposed a system that allowed only individuals with appropriate attributes to decrypt
encrypted data stored in IPFS using a ciphertext policy attribute–based encryption system,
facilitating efficient medical information management. Kang et al. [9] enabled the distribu-
tion of data managed using private IPFS and a private blockchain to external users using
named data network (NDN). Furthermore, Uddin et al. [10] proposed a file-sharing system
that used IPFS and public key infrastructure (PKI) technology without requiring a trusted
third party.

Several studies have used ZKP for data distribution. For instance, Li et al. [11]
proposed a privacy-preserving traffic management system that combined noninteractive
zero-knowledge range proofs with a blockchain. A prototype using Hyperledger Fabric
and Hyperledger Ursa met the data privacy requirements for real-time traffic management.

This study proposes a method for appropriately processing and distributing data
managed within private IPFS to users outside the network, thereby offering a different
approach than those proposed in previous studies. Some studies have adopted proxy re-
encryption as an appropriate method for data storage and distribution in IPFS [3,6]. Using
this method, distributed data can be re-encrypted to be decrypted with the recipient’s
private key. Moreover, when storing data in IPFS, recording the hash value of the pre-
encrypted data on the blockchain allows recipients to verify the correctness of their received
data after decryption. However, this method cannot handle cases where data is processed,
such as embedding the recipient’s name into the decrypted data, as in this study.

3. Zero-Knowledge Proof

ZKP is a cryptographic protocol that allows a prover to prove the validity of a propo-
sition to a verifier without disclosing any additional information other than the validity
of the proposition. The proposition of this study is that the data provided to an external
entity is generated based on a given CID. Our goal is to allow a member of private IPFS
(prover) to prove this proposition to an external entity (verifier as the recipient of the
data) without disclosing any other important information (such as IPFS access rights and
encryption keys).

ZKP, specifically the Groth16 protocol of zk-SNARKs used in this study, begins with a
trusted setup where both parties establish public parameters that are crucial for the secure
generation and verification of proofs. In the ZKP scheme, we first generate a circuit that
describes the process for which a proof is intended. The circuit includes the conditions
to be verified such as the existence of a CID. Through the ZKP scheme, cryptographic
keys—specifically a proving key and a verification key—are created. These keys are crucial
for creating a proof for the circuit and its verification. Using the proving key and input
data, the prover generates a proof that reveals the validity of the output data against the
conditions specified in the circuit. The verifier then uses the verification key to check the
proof and the output data. If the proof is valid, this confirms the integrity of data without
exposing any underlying information.

In this study, Groth16 processing is performed using circom [12,13] and snarkjs [14].
The process flow is summarized in Figure 1.

zk-SNARKs is employed owing to its noninteractive nature and efficiency, which
are particularly advantageous for systems employing smart contracts owing to low com-
putational costs for verifying the proof. Furthermore, zk-SNARKs is known for its high
computational requirements and the need for advanced PC specifications. For instance,
in one of the representative applications of zk-SNARKs, Zcash [15], proof generation
process takes over half a minute for a single anonymous transaction [16].
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Figure 1. Zero-knowledge proof using circom.

4. Proposed System

Figure 2 presents an overview of the proposed system.

Figure 2. Process flow of ZKP: an example of image data processing.

Herein, we make the following assumptions:

• Private IPFS is operated by a limited number of members.
• Data are stored in IPFS in an encrypted format using symmetric-key cryptography.
• The encryption key is exclusively held by an individual among the members, i.e., an

administrator.

The proposed system facilitates the creation of a ZKP proof through the circuit by the
encryption key-holding member (equivalent to an administrator). The inputs and outputs
(other than proofs) of this process are as follows:

• Public Input:

– CID of the original encrypted data;
– A filter for embedding the recipient’s name in the data;

• Private Input:

– Encrypted original data;
– Encryption key;

• Output:

– Decrypted data with the recipient’s name embedded.

Note that the ZK-optimized implementation (Section 6.1) adds more information to the
public input. In particular, the internal process of ZKP involves the following steps:

1. Calculating the CID of the original encrypted data to verify a match with the en-
tered CID.
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2. Decrypting the original data using a symmetric-key cryptography.
3. Embedding the recipient’s name into the decrypted image raw data based on the filter

provided in the public input.

In the proposed system, we do not solely focus on image data but use them as example data
to verify the applicability of the proposed scheme. Filters are used to improve the efficiency
of processing inside the circuit. As embedding name data inside the circuit is computa-
tionally intensive, a considerable portion of the image processing is performed outside
the circuit in advance and a filter is created. Using public input and proof, the recipient
can verify that the decrypted data (i.e., output) with their name embedded are generated
from the original data (contained in the private input) managed with the CID. The recipient
can check with at least one member of the network to confirm the existence of the CID in
private IPFS.

In summary, the aforementioned process enables the recipient to verify the received
data by performing the following tasks:

• verify that the received data were generated from the data managed with the CID of
private IPFS,

• confirm using the proof that the entire process was correctly conducted without
directly knowing the encrypted data or the encryption key, and

• verify that the CID exists specifically within the private IPFS by asking at least one
network member.

The novelty of the proposed system is that it allows data authenticity verification by trusting
at least one member of the network even if the recipient do not control the encryption key.
(It is natural for the recipient to trust at least one member of a particular multimember
system. If none of the members can be trusted, then there will be a marginal incentive to
receive data managed by that network).

5. Potential Applications

In the medical industry, patient diagnosis data are managed across multiple med-
ical institutions. Using the proposed system, patients can verify whether the data they
receive are indeed managed in private IPFS to ensure the authenticity. An all-in-one
platform is also proposed herein for the research and development of machine learning
with medical images [17]. On this platform, anonymized medical images are managed
in private IPFS operated by a group of medical institutions. The system allows machine
learning researchers, who are external to the network, to verify whether the image data
are indeed managed in the private IPFS. Moreover, by embedding the information about
machine learning researchers in the image data, medical institutions can mitigate the risk
of secondary distribution.

If the application is not limited to the embedding of recipient’s name, the potential
applications of the proposed system can be further expanded. For instance, consider
a scenario where a specific company establishes private IPFS for sharing confidential
documents among its group companies. If employee data are included, then concealing
private data and distributing them to external entities allows these entities to confirm the
association of employees with the company while ensuring that their privacy is protected.
Furthermore, suppose a university has set up private IPFS to allow only academic staff
access to student performance data. In this case, students can verify that their performance
data received are genuinely managed in the private IPFS.

Thus, the proposed system supports a hybrid case—distributing internal data to
specific external entities as necessary—prevalent in real-world settings.

6. Implementation

The proposed system was implemented to process image data using circom, a
renowned tool specialized for constructing zk-SNARKs circuits. Circom enables the de-
scription of computational processes within a circuit using its unique language, and the
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executable file generated after compilation can be invoked via the JavaScript library, snarkjs.
This arrangement allows describing circuit processes in circom, and external process-
ing and circuit correctness testing are performed using JavaScript. For the zk-SNARKs
scheme, Groth16 was used; it is known for its relatively faster execution speed than other
zk-SNARKs scheme.

In particular, we worked on two types of implementations for image data: a standard
implementation using general cryptographic techniques and a ZK-optimized implemen-
tation using ZK-friendly cryptographic techniques to reduce the computation time of the
circuit. These implementations were used for comparing the required computation times.
ZKP circuits require considerably large computation time, even for calculations that can
be easily handled by computer software (this is particularly noticeable when dealing with
image data). Therefore, computational efficiency is crucial for practical use.

6.1. Standard Implementation

Section 4 describes the data input into the circuit. For simplifying the in-circuit
processing, the original encrypted data were formatted as bitmap image data compliant
with OS/2 standards. The first 54 bytes of the image data store information such as the
width, height, and color depth of images [18]. The color depth is 8 bits and each color
component in RGB is allocated one byte, resulting in a representation of 3 bytes per pixel.

Initially, the system checks whether the encrypted data, entered as a private input,
matches the CID provided as a public input. If they do not match, the system signifies
an error and the image data outputted as the output is a byte sequence where all values
are 0x00. CID serves as crucial mechanism for uniquely identifying files and efficiently
retrieving data from IPFS. CID has two versions: V0 and V1 [19]. Herein, the more flexible
version CID V1 was used. CID includes a hash of the respective data, ensuring different
data will have different CIDs. Typically, CID V1 is calculated using the SHA256 hash
function, and the standard implementation uses SHA256 to compute CID.

The data structure of CID V1 is as shown in Table 2.

Table 2. CID V1 data structure.

Byte Position Description Value in Implementation

First byte CID version 0x01
Second byte multibase prefix 0x55: raw data
Third byte Hash function identifier 0x12: SHA-256
Fourth byte Hash length 0x20: 32 bytes
From fifth byte Hash value SHA-256 hash value (32 bytes)

The encoding for CID is conducted using Base32. Base32 encodes a sequence of bytes
constructed based on this structure to generate CID.

Inside the circuit, the entered CID value is decoded from Base32 and the system
checks whether the extracted hash value matches the SHA256 hash computed from the
encrypted data.

Subsequently, the encrypted data are decrypted. AES-CTR is used as the encryption
algorithm, which is a type of symmetric-key cryptography. The AES-CTR encryption
and decryption in circom-chacha20 [20] was used. For decrypting AES-CTR encryption,
the encryption key and nonce used during encryption are required. They are input into
the circuit as a 256-bit key and a 128-bit nonce, respectively, as private inputs. Moreover,
AES-CTR handles data volumes in multiples of 16. Therefore, if the length of the image
data before encryption is not a multiple of 16, zeros (0x00) are added to the end of the data
to align it with this requirement.

Finally, a filter is applied to the decrypted data to embed the recipient’s name. Im-
plementing text embedding directly within the circuit can substantially increase the com-
putation load; therefore, a filter is created outside the circuit that performs a considerable
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portion of the image processing in advance. The font used for the text representing the
recipient’s name is the Misaki font [21]. The filter is then used to streamline processing
inside the circuit. The filter is a list of numbers where values from 0 to 255 are used to
change the color of each pixel in case it differs from that of the pixels in the original image;
moreover, a value of 300 indicates the color should remain as in the original image. This
filter represents the position on the image where the recipient’s name should be inserted.
Inside the circuit, the specified pixel colors in the decrypted BMP data are changed based
on this filter.

6.2. ZK-Optimized Implementation

ZK-optimized implementation changes the hash function, encryption technology,
and in-circuit processing to the standard ZK-friendly encryption implementation. This
implementation enhances the computational efficiency and does not evaluate the difference
in computation speeds between ZK-friendly encryption and general encryption. Therefore,
in-circuit processing was also modified.

Poseidon hash [22] was used as the hash function for computing CID. Notably, us-
ing the Poseidon hash for CIDs is not officially supported; therefore, it was developed
specifically for this study. Although SHA256 is commonly used in general computations,
it demands considerable computation time within ZKP circuits. The Poseidon hash is
implemented in circom and JavaScript (circomlib [23] and circomlibjs [24], respectively). It
is computed over a finite field with a prime order and can accept up to 16 input variables.
The used order is less than the maximum of 32 bytes but greater than the maximum of
31 bytes. This indicates that each of the 16 inputs must contain data not exceeding this
order. In this implementation, the data targeted for hash computation are divided into
31-byte segments as input values. If the division exceeds 16 segments, the Poseidon hash is
calculated for the first 16 segments. This result is added to the next 15 segments of data for
a subsequent Poseidon hash input. The process is repeated until all the input data are used
for hash computation. Computationally, if the final input does not complete 16 segments,
the missing inputs are set to zero to ensure that the computation always involves 16 inputs.

When generating CID from the Poseidon hash value, the byte sequence should follow
the CID V1 data structure and be Base32-encoded. However, to further reduce computation
time, this implementation omits the Base32 encoding and directly uses the Poseidon hash
value as a substitute for CID. Dividing the input data into 16 segments within the circuit
is computationally intensive; therefore, this division is performed outside the circuit and
given as an input. In this case, the encrypted data byte sequence and the list of values for
calculating the Poseidon hash are provided as public inputs, allowing the verification that
both datasets represent the same information. Recipients can confirm that the data being
computed for the Poseidon hash and the data being decrypted in the circuit are identical
by mutually converting and checking these two values. In this case, as users can obtain the
decrypted data, a concern exists regarding password leakage through brute force attacks or
other means.

For encryption technology, we adopted Poseidon encryption [25] instead of AES-
CTR encryption. Poseidon encryption, implemented in circom and TypeScript (poseidon-
encryption-circom2 [26]), involves receiving the public key of the recipient, generating a
common key, and ensuring secure encryption and decryption by both parties. In this case,
however, a common key is directly generated and used for encryption and decryption. The
circuit is provided with two values representing the coordinates of an elliptical curve and a
nonce value as private inputs for encryption. Moreover, the filter is implemented in the
same manner as in the standard implementation.

7. Evaluation

We created a sample program based on the aforementioned implementations that
uses circom to describe the circuit and uses snarkjs for executing the circuit and verifying
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proofs. As cryptographic libraries, circom-chacha20 [20], circomlib [23], circomlibjs [24],
and poseidon-encryption-circom2 [26] were used.

The standard and ZK-optimized implementations were implemented for each circuit,
and their computation times were compared during execution. White bitmap images
were the target images, and the experiments were conducted using the letter “A” as the
embedded character. As embedding any number of characters does not alter the processing
by the filter, embedding a single character allowed for comparing the computation times.
Furthermore, we varied the image sizes to measure the execution times for each circuit.
The sizes used were 10 × 10, 15 × 15, 30 × 15, 30 × 30, 60 × 30, 60 × 60, 120 × 60, 120 × 120,
and 180 × 120 pixels. The execution environment was Windows 11 with a Ryzen 9 3950X
CPU and 128 GB RAM operating under Ubuntu 22.04 in a WSL2 environment.

Figure 3 shows an example image generated by the circuit, specifically for the 60 × 30 pixel
size using the ZK-optimized implementation. The results for each image size are presented
in Table 3, where nonlinear constraints indicate the number of nonlinear constraints in the
circuit, build time is the time required to compile circom and output the circuit, and proof
gen time is the time required to generate proofs using the circuit. As standard implementa-
tion uses AES-CTR encryption, data with 0x00 are appended at the end to ensure that the
input size is a multiple of 16.

Figure 3. An image generated by the circuit for a 60 × 30 image size by ZK-optimized implementation.

Table 3. Comparison of the execution time of the circuit.

Pixel Image Size
[Byte]

Nonlinear
Constraints

Build Time
[ms]

Proof Gen
Time [ms]

Standard
10 × 10 384 558,341 668,220 14,377
15 × 15 784 1,095,292 1,316,666 25,545
30 × 15 1440 1,980,688 1,696,370 35,161
30 × 30 2816 3,867,989 3,657,578 65,785
60 × 30 5456 7,453,300 7,864,583 126,262

ZK-optimized
10 × 10 376 35,407 128,979 3076
15 × 15 775 72,725 173,210 4032
30 × 15 1435 134,663 275,630 5900
30 × 30 2815 263,450 470,872 9733
60 × 30 5455 509,375 850,612 17,571
60 × 60 10,855 1,013,483 1,257,418 29,044

120 × 120 43,255 4,036,913 6,754,928 96,580

In standard and ZK-optimized implementations for 60 × 60 pixel and 180 × 120 pixel
image sizes, the system ran out of memory and the computation could not be completed.
In ZK-optimized implementation, the number of nonlinear constraints was reduced to
approximately one-tenth that of the standard implementation for the same image size.
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This reduced the build and proof generation times. However, the maximum manage-
able image size was still only up to 120 × 120 pixels, which is considerably small for
practical applications.

8. Discussion

Although ZK-friendly cryptographic technologies were used and in-circuit processes
were optimized during ZK-optimized implementation, the maximum manageable image
size was approximately 120 × 120 pixels. This limits the practical utility to considerably
small image sizes. However, research aimed at enhancing the performance of ZKPs is
ongoing, and future technological advancements may enable handling larger image sizes.
For instance, Zhang et al. [27] achieved a tenfold acceleration of zk-SNARKs using ASICs.
Ma et al. [16] similarly used a graphics processing units to accelerate the proof generation
time, achieving up to 48.1 times faster performance compared with traditional methods.
Moreover, methods to simplify computational processes have been proposed, such as the
“folding” method. This method compresses the propositions being proved [28]. As speed
enhancements are being progressively studied, memory consumption will also likely be
optimized. This will potentially allow handling of larger image sizes in the future.

Furthermore, we found that our proposal method can handle data sizes approximately
10 KB. Although directly applying our proposal to realistic image data (ranging from
several MBs to dozens of MBs) is challenging, splitting data into chunks by modifying the
encryption and embedded strings might make the application feasible.

Moreover, our implementations requires a value based on the size of the original
data to be processed (encrypted) as an argument during circuit generation. Therefore,
a circuit must be generated for each data. The circuit generation time (build time) increases
considerably with image data size; for instance, even in ZK-optimized implementation,
generating a circuit for a 120 × 120 image size requires more than 112 min (6,754,928 ms).
However, once the circuit is generated, the proof generation time under the same conditions
is short, approximately 97 s (96,580 ms). In other words, once a circuit is generated, proof
generation is not time intensive. This fact does not pose any practical issues in cases
wherein the same image is distributed to various people.

In ZK-friendly implementations, encrypted data is inputted as a public input. Han-
dling encryption keys for images requires careful consideration. Data managed in private
IPFS are encrypted. However, if encryption keys are leaked, the encrypted data could be
decrypted. Therefore, specific users managing private IPFS should become administrators
to carefully manage the keys or a consortium-type blockchain could be established on the
same network to set and manage access rights appropriately.

9. Conclusions

A new method was proposed herein to distribute data stored in private IPFS to external
entities while making its authenticity verifiable. The method applied a type of ZKP, zk-
SNARKs, to verify the CID of data and embed the recipient’s name. This approach enables
external entities to verify that the received data are generated from the original data in
private IPFS without requiring details such as IPFS access rights and encryption keys.

A standard implementation using conventional cryptographic techniques and a ZK-
optimized implementation using ZK-friendly cryptographic schemes were implemented to
enhance the computational efficiency of the proposed method. Experiments with a sample
program confirmed the effectiveness of the proposed method for an image data size of up
to 120 × 120 pixels.

This proposed method extends the usable range of decentralized storage systems to
a hybrid case—distributing internal data to specific external entities as necessary. This
study paves a new way for sharing sensitive information across different sectors within
and outside a group. However, for the wide practical applicability of the proposed method
to larger and more diverse data types, such as images and videos, processing speed must
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be improved and data splitting methods must be used, which are within the scope of our
future studies.
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Abstract: Robots assist emergency responders by collecting critical information remotely. Deploying
multiple cooperative unmanned ground vehicles (UGVs) for a response can reduce the response
time, improve situational awareness, and minimize costs. Reliable communication is critical for
multiple UGVs for environmental response because multiple robots need to share information for
cooperative navigation and data collection. In this work, we investigate a control policy for optimal
communication among multiple UGVs and base stations (BSs). A multi-agent deep deterministic
policy gradient (MADDPG) algorithm is proposed to update the control policy for the maximum
signal-to-interference ratio. The UGVs communicate with both the fixed BSs and a mobile BS. The
proposed control policy can navigate the UGVs and mobile BS to optimize communication and
signal strength. Finally, a genetic algorithm (GA) is proposed to optimize the hyperparameters of
the MADDPG-based training. Simulation results demonstrate the computational efficiency and
robustness of the GA-based MADDPG algorithm for the control of multiple UGVs.

Keywords: unmanned ground vehicles (UGVs); genetic algorithm (GA); multi-agent deep deterministic
policy gradient (MADDPG); autonomous navigation

1. Introduction

A network of distributed unmanned ground vehicles (UGVs) and a central controller
is known as a multi-UGV control system [1]. This system enables autonomous domination,
autonomous navigation, and autonomous collaboration. It can operate either within a re-
stricted area or as part of a broader transportation system. Multi-UGV control systems offer
a unique approach to navigation that is highly reliable, more economical, and conducive to
energy savings. In recent years, the urgent demand for multi-UGV navigation systems has
encouraged an increasing amount of discussion from academia [2–5].

The navigation of UGVs in a communication environment has been the subject of
research [6], and traditional optimization methods have yielded good results [7]. To create
an autonomous navigation system, D. Chen et al. [8] developed a heuristic Monte Carlo
algorithm that depends on a discrete Hough transform and Monte Carlo localization, which
ensures low complexity for processing in real-time. Different from the innovation of algo-
rithms, to perform robustly in unknown and cluttered environments, H. U. Unlu et al. [9]
created a robust approach for vision-assisted inertial navigation that can withstand uncer-
tainties. Different from using visual aids, X. Lyu et al. [10] was inspired by a geometric
point of view, and they designed a new adaptive sharing factor-integrated navigation
information fusion technology scheme that has adaptive navigation in the case of nonlinear
systems and uses a non-Gaussian distribution. These traditional optimization methods
mentioned above are easy to implement. However, these methods need to be presented
with preconditions, which makes them suitable only for static environments. Moreover, in
reality, the majority of scenarios involve the collaborative operation of multi-UGVs [11].
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Consequently, multi-UGV systems will encounter these two challenges when handling com-
plex scenarios, and it necessitates the incorporation of machine learning (ML) to effectively
address them [12–14].

There is a strong rationale for employing ML techniques in UGV navigation, con-
sidering the rapid advancements in the field of ML. To achieve improved better-ranging
performance, H. Lee et al. [15] provided a ML technique to calculate the distance between
the BS and UGVs, which enables localization without any additional infrastructure. Rather
than relying on direct ranging, H. T. Nguyen et al. developed a coordination system be-
tween unmanned aerial vehicles and UGVs, enabling effective collaborative navigation [15].
However, as the simulation environment becomes more complex, the effectiveness of the
proposed solution decreases rapidly. To address this challenge, employing reinforcement
learning (RL) algorithms is a promising choice. RL emphasizes how agents can discover the
best policy to maximize all rewards when interacting with the environment, which makes
it well-suited for exploring and adapting to increasingly complex environments [16].

Research has been driven by discussions on using RL to solve the multi-UGV coopera-
tive navigation issue recently [17]. To avoid collisions with obstacles, X. Huang et al. [18]
proposed an innovative deep RL-based UGV local path planning navigation system that
leverages multi-modal perception to facilitate policy learning to generate flexible navigation
actions. Different from single UGV navigation, to improve the average spectral efficiency,
S. Wu et al. [19] proposed trajectory optimization technology based on a joint multi-agent
deep deterministic policy gradient (F-MADDPG), which inherits the ability of MADDPG
to drive multi-UGVs cooperatively and uses joint averaging to eliminate data isolation
and to accelerate convergence. Significant progress has been achieved by these RL-based
UGV navigation methods. However, they overlook the limitations of static communication
environments and convergence issues arising from the complexity of the environment.
These two elements are crucial to take into account while planning cooperative navigation
in a communication setting.

Considering the constraints of cooperative communication coverage navigation for
UGVs, there are three main challenges to overcome, such as the difficulty of simulta-
neous control of UGVs, the variation in communication coverage, and the complexity
of the cooperative control environment for UGVs. Firstly, traditional control methods
such as Q-learning [20], proportional-integral-derivative (PID) control [21], and deep Q-
network [22] often yield suboptimal performance in terms of communication coverage
when multi-agents require simultaneous control. Secondly, considering the variability in
the communication environment during multi-UGV navigation, it is common to encounter
areas with poor communication, which hinders effective collaboration among multi-UGVs.
However, a promising solution to tackle the challenges of multi-agent cooperative control
is offered by multi-agent RL algorithms [23]. These algorithms guide multi-agent collab-
oration through the centralized training–decentralized execution (CTDE) paradigm [24].
Additionally, in our proposed approach, we introduce a movable UGV BS integrated with
the UGVs, allowing for dynamic changes to the fixed communication environment. This
collaboration effectively supports the navigation tasks of the UGVs. However, the increased
complexity of the constructed environment may pose challenges to algorithm effectiveness
and convergence. Fortunately, we mitigate convergence difficulties by adaptive update
dynamic hyperparameters using a genetic algorithm (GA) [25]. More fortunately, there
has been some research on integrating GA for hyperparameter tuning in RL frameworks.
A. Sehgal et al. used a GA to find the hindsight experience replay (HER) used in a deep
deterministic policy gradient (DDPG) in a robot manipulation task to help the agent accel-
erate learning [26]. Different from modifying a single parameter, for the flexible job shop
scheduling problem (FJSP), Chen R et al. proposed a GA parameter adjustment method
based on Q-learning that changes several key parameters in Q-learning to obtain higher
reward values [27]. However, this rewards-based approach is prone to falling into local
optimality. Moreover, these methods are not suitable for scenarios where the number of
agents increases. To address these issues, Alipour et al. proposed hybridizing a GA with
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a multi-agent RL heuristic for solving the traveling salesman problem. In this way, a GA
with a novel crossover operator acts as a travel improvement heuristic, while MARL acts as
a construction heuristic [28]. Although this approach avoids the risk of local optimality,
it abandons the learning process of MARL and only uses it as a heuristic, instead using
GA for training, which means that the algorithm will not pay too much attention to the
collaboration between intelligent agents. Liu et al. used a decentralized partially observable
multi-agent path planning method based on evolutionary RL (MAPPER) to learn effective
local planning strategies in mixed dynamic environments. Based on multi-agent reinforce-
ment learning training, they used GA to iteratively extend the originally trained algorithm
to a more complex model. Although this method avoids performance degradation in long-
term tasks, iterative GA may not necessarily adapt well to more complex environments [29].
In our research, we combine the advantages of the above-mentioned GA papers and adopt
the CTDE paradigm to conduct research in a multi-agent RL framework. The GA assigns
different weights to algorithm updates based on the transition’s contribution, which means
that we pay more attention to the hyperparameters that contribute more to model updating
rather than those that achieve greater reward values. This allows us to avoid falling into
local optimality while increasing the number of agents.

To address these three challenges and achieve cooperative navigation in complex
environments, a new multi-UGV communication coverage navigation method is pro-
posed, which is based on a multi-agent deep deterministic policy gradient with GA (GA-
MADDPG). The following summarizes the key contributions of the multi-UGV communi-
cation coverage navigation method:

• A comprehensive multi-agent pattern is combined into the multi-UGV collaborative
navigation system, and the optimal coordination of multi-UGVs within the communi-
cation coverage area is formulated as a real-time multi-agent Markov decision process
(MDP) model. All UGVs are set as independent agents with self-control capabilities.

• A multi-agent collaborative navigation method with enhanced communication cover-
age is proposed. By introducing a mobile base station, the communication coverage
environment is dynamically changed. Simulation results show that this method
effectively improves the communication quality during navigation.

• A GA-based hyperparameter adaptive approach is presented for optimizing UGV
communication coverage and navigation. It assigns weights to hyperparameters
according to the degree of algorithm updating and makes a choice based on the
size of the weight at the next selection, which is different from the traditional fixed-
hyperparameter strategy and can escape local optima.

The essay is organized as follows for the remaining portions. The modeling of multi-
UGV communication and navigation systems is thoroughly explained in Section 2. The
details of the RL method we present is outlined in Section 3. Several experimental compar-
isons in Section 4 serve to verify the efficacy of our approach. Eventually, we discuss future
research directions and summarize the key points of the article in the conclusion Section 5.

2. MDP for Navigation and Communication Coverage for Multi-UGVs in Environments

To emulate the decision-making of multi-UGVs in real-world systems, we adopt
an MDP model. With the quick advancement of multi-agent RL, MDP has turned into
a trustworthy decision model [30]. In this study, we construct a complex environment
with three UGVs and one mobile BS collaborating and which includes various obstacles.
Furthermore, we introduce a concept of communication whereby the communication
coverage is determined by four fixed BSs and one mobile BS collectively.

2.1. Problem Description

The primary goal of our article is to accomplish multi-agent navigation tasks in a
wide range of large-scale, unknown, and complex environments as quickly as possible.
The navigation task requires that the UGVs can collaborate according to different environ-
mental characteristics, with the ability to overcome external environmental information
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interference, and with the ability to efficiently and autonomously track targets in real-time.
More specifically, the extent of communication coverage is collaboratively established by
both the stationary BSs and the mobile BS. Within this communication coverage area, the
mobile BS and the UGVs engage in cooperative navigation. We construct a task scenario
with multiple optimization objectives. The objective of the UGVs is to successfully reach
the destination, while the mobile BS is tasked with dynamically adjusting communication
coverage in real-time, aiming to optimize the communication quality for the UGVs. The
UGVs and mobile BS perform globally optimal cooperative navigation to achieve their
respective and common goals.

2.2. Modeling of the Environment

Our work involves simulating a real environment where multi-UGVs collaborate to
reach a target point. Additionally, this environment includes obstacles that obstruct the
movement of the UGVs, replicating real-world scenarios. We utilize a multi-agent particle
environment (MPE) [24] as the base environment for our secondary development, as shown
in Figure 1. In this environment, we utilize M UGVs (where M is defined as three), W
mobile BSs (where W is defined as one), and a certain number of obstacles. The objective of
the UGVs is to collaboratively avoid collisions and reach their respective optimal target
points while taking into account communication in the global state. In simpler terms, the
UGVs choose an obstacle avoidance route with better communication to coordinate their
movement towards the target point (the communication model will be elaborated on in
Section 2.3). The task of the mobile BS is to enhance communication for the three movable
units by adjusting the communication coverage in the global state, which is exhibited in
Figure 1b.

(a) (b)

Figure 1. Schematic diagram of the collaboration of a swarm of UGVs in a communication-enabled
environment. (a) 3D urban environment. (b) Top view of the visualized communication environment.

2.3. Modeling of the Communication Coverage

In our simulation, we integrated communication into the MPE environment and used it
as a criterion to evaluate task completion. In this subsection, we present the communication
channel model that we adopted, along with the communication model that is influenced
by the movement of the mobile BS, as shown in Figure 1b. The communication area within
the middle red circle varies with the location of the movable BS, as illustrated in Figure 2.
Note that Figure 2a–l represent diagrams depicting how the communication environment
changes with the movement of the mobile BS at step t. The mobile BS is initially positioned
in the center in Figure 2a and gradually transitions towards the lower right corner, as
depicted in Figure 2l. This relocation of the mobile BS is prompted by its observation of the
movement pattern of the UGVs. Consequently, the mobile BS is relocated from the center
towards the lower right corner to enhance communication quality in that area, thereby
expanding the red coverage zone as shown in Figure 2. Conversely, the relocation of the
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mobile BS results in a reduction in the coverage area with superior communication quality
in the upper left quadrant. Furthermore, to accentuate the evolving communication quality
and enhance the clarity of communication changes, we have delineated the variances
between each diagram and its preceding counterpart.

We have constructed a total of M BSs in the environment, where M is defined as seven
and includes one mobile BS. The signal power gain obtained by the UGVs from BS m
(m ≤ 7) is defined as pm

t . Subsequently, the signal-to-interference ratio (SIR) is utilized as
the primary criterion for evaluating the communication of the UGVs. This criterion can be
expressed as:

SIRt ≜
pIt

t
∑m ̸=It pm

t
(1)

where It ∈ {1, · · · , M} represents the BSs that are not associated with the UGVs at step
t. It is worth noting that, for the sake of simplicity, we have omitted the effects of noise,
as it is well known that the performance of BS-UGV communication is often constrained
by interference. Furthermore, with global frequency reuse, we have taken into account
the worst-case situation in which all of these unrelated BSs contribute to the interference
term in the Equation (1). In our study, the UGVs received signal power at step t mainly
depending on their relative positions to the BSs, and pt can be written as:

pt = P̄β(qt)G(qt)h̃t (2)

where P̄ represents the transmit power of the BSs, while β(qt) represents the large-scale
channel gain; the large-scale channel gain takes into account the effects of path loss and
shadow fading. It can be expressed as:

β(qt) = β0

(
d0

d(qt)

)γ

(3)

where β0 is the path loss at the reference distance d0, d(qt) is the distance between the UGV
and the BS, and γ is the path loss exponent. And G(qt) denotes the BS antenna gain; the BS
antenna gain considers the directional gain of the UGV relative to the BS antenna. It can be
represented by the antenna radiation pattern, which is typically expressed as:

G(qt) = Gmax · A(θt, ϕt) (4)

where Gmax is the maximum antenna gain, and A(θt, ϕt) is the gain function of the UGV’s
position relative to the main lobe direction of the antenna. These parameters typically rely
on the location qt of the UGV. Additionally, the random variable h̃t is used to incorporate
the effects of fading. It is important to note that each UGV has an independent SIR at each
step t, which is utilized to evaluate the communication performance of the UGVs at that
specific time. It also should be noted that during the initialization of the scenario, the initial
positions of all base stations, including the movable base station, are fixed, i.e., they are
all at a fixed position, and then the three UGVs and the movable base station are trained
to take different actions through the strategy, at which time, based on the selected action,
the next position of the movable base station is determined by the selected action as well
as the original position together. The value of qt is fixed at this point because qt is only
related to the position variable (x, y). It can be seen that the initial position of the mobile
BS is pre-set, while the subsequent qt is the decision variable and is determined by the
action of the mobile BS, which aims to provide a better communication environment to the
remaining UGVs.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2. The results of changing communication in the environment as the mobile BS moves. The
red areas indicate better communication, whereas the blue areas indicate poorer communication,
Brown circles represent the mobile BS, blue circles represent UGVs, black circles represent obstacles,
and red circles represent target points. This movement aims to enhance communication quality for
the UGVs.
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2.4. The State and Action of the UGVs

The state of the UGVs is denoted as s = (s1, s2, . . . , sN). For each UGV u, the state
is defined as su = (sPu, sEu), where sPu =

(
xu, yu, vxu, vyu, SIRu

)
is a combination of

position (xu, yu), speed (vxu, vyu), and SIRu. Additionally, sEu =
(

xug, yug, x0, y0, vox, voy
)

represents the data that the UGVs observe other UGVs or obstacles. The term su depicts
the positions of the agent in a coordinate system. However, in many actual situations,
it may not be possible to acquire absolute locations. Therefore, the agent and barriers
can be modeled in a polar coordinate system for movement. In our original formulation,
sEu =

(
xug, yug, x0, y0, vox, voy

)
is intended to represent the observed data for each UGV

u. To clarify, (xug, yug) represents the distance from the g entity (including the UGVs and
all obstacles) to UGV u. And (x0, y0) represents the global coordinate position of UGV u.
Through a series of transformation calculations, we can also obtain the global positions
of other entities observed by UGV u. The combination of these components allows each
UGV to navigate toward its goal while considering the presence and motion of obstacles or
other UGVs.

The action of UGVs is denoted as a = (a1, a2, . . . , aN), which is defined as a collection
of individual actions for each UGV in a multi-agent system. In this particular paper, the
motion of UGVs is simplified by assuming an initial velocity of 0 and a constant acceleration,
which is represented by a formulation: vt = v0 + at, which is defined as a 2-dim vector.

2.5. Reward Function

The primary aim is finding the optimal collaborative strategy for a specific state in
order to navigate collaboratively during step t and the next step t + 1 with improved
communication. At step t, the specific state is denoted as st. The reward of taking action at
can be represented by r(st, at). Consequently, the total reward of adopting policy π can be
expressed as:

R(π) = L
[
∑ γtr(st, π(st)) | s0 = s

]
(5)

Our objective is to determine the optimal strategy, denoted as π∗, that maximizes the
overall reward while adhering to all given constraints. The primary focus of the article is
to obtain the policy that yields the highest possible reward, denoted as R(π), among all
possible policies π.

It should be noted that the navigation principles for the mobile BS are similar to those
of the UGVs. Both the UGVs and mobile BS can use similar principles for path planning
and obstacle avoidance based on their target positions and current environmental data.
The tasks of UGVs are threefold: First, UGVs reach their destination through collaborative
navigation. Second, UGVs should try to avoid collisions. Third, UGVs should travel in a
communication environment with high quality. The mobile BS has only two tasks: One is to
work with the UGVs to adjust the communication coverage by adjusting the position, thus
ensuring that the UGVs move within a high-quality communication range. One is to avoid
collisions as much as possible, similar to the objective of the UGVs. It is also important
to note that the initial position of the mobile BS is at the very center of the scene in all
the scenarios we set up and that it co-moves with the UGVs without preempting them.
So in this training model, the reward function of the UGVs mainly consists of three parts
based on a theoretical foundation. Firstly, it is related to the distance between the UGVs
and the target point. Secondly, it is related to the number of collisions, including collisions
between UGVs, collisions between UGVs and the mobile BS, and collisions between UGVs
and obstacles. Finally, it is related to the SIR obtained by the UGVs at step t, which can be
formulated as r(st, at).

r(st, at) = SIRt − D(UGVs, target)− coll (6)

where SIRt represents the comprehensive communication quality obtained by all UGVs
at each step t, and the definition of SIRt has been introduced in detail in Equation (1).
D(UGVs, target) represents the sum of the lengths between all UGVs and their respective
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destinations at each step t; it should be noted that no UGV has a fixed destination to reach,
which means that all UGVs will autonomously allocate the destination to be reached based
on their strategies and observations. The term coll represents the number of collisions that
occurred among all UGVs at each step t.

The calculation formula of SIRt in Equation (6) has been introduced in Section 2.3.
Communication directly impacts the reward function of the UGVs, where higher com-
munication results in a larger reward. Consequently, the UGVs are incentivized to priori-
tize locations with better communication, encouraging them to move extensively toward
those areas.

D(UGVs, target) is computed by:

D(UGVs, target)=
√
(xu − xtarget)2 + (yu − ytarget)2 (7)

where (xu, yu) contains coordinate information for all the target points, which indicates that
the loss also diminishes as the distance between the UGVs and the destination gets smaller.
Consequently, a smaller loss corresponds to a higher reward. In essence, the UGVs are more
likely to receive a greater reward when they are in closer proximity to the target point.

The term coll can be confirmed as:

coll =
{

0, if D(UGVs, tuple) > K
−1, if D(UGVs, tuple) ≤ K

(8)

where D(UGVs, tuple) represents distances between the UGVs and various entities such as
other UGVs, the mobile BS, and obstacles in the given scenario. Additionally, a constant “K”
is utilized to assess the possibility of a collision. If the distance between any two entities is
less than the value of K, a collision is registered. Consequently, by employing this approach,
multi-agents collaborate to minimize the occurrence of collisions.

3. RL Multi-Agent Communication Coverage Navigation with GA

In this section, we describe a concise summary of the MDP formulation for com-
munication coverage navigation with cooperation between the mobile BS and the UGVs.
Next, we introduce the DDPG algorithm [31], which is designed for continuous control
space. Building upon these foundations, we develop an innovative RL algorithm called
GA-MADPPG to address the challenges in communication coverage and navigation. The
GA-MADPPG algorithm comprises two main components. Firstly, we adopt the MADPPG
algorithm, which extends DDPG following the CTDE paradigm. This allows us to leverage
the benefits of MADPPG in handling multi-agent systems and continuous control problems.
Secondly, we integrate GA into the MADPPG algorithm, enabling real-time hyperparame-
ter updates based on the loss function during the training process. The proposed policy
highlights the GA-MADPPG algorithm’s ability to dynamically adjust hyperparameters
based on the loss function. By combining these two components, GA-MADPPG aims to
achieve efficient communication coverage and navigation in complex environments.

3.1. MDP Model

The multi-agent Markov game, a significant expansion of the MDP in a multi-agent
scenario, is the subject of [32]. In this game, the theoretical state of N agents is represented
by s. At each epoch t, the agents keep track of the current state st and select an action
at. Following this, the state enters the following state st + 1, and all agents are given a
reward, r(st, at).

For the evaluation of action–value functions and state–action mapping value functions,
calculating the value function for stochastic policies entails:

Vπ(st) |= E
[

∞

∑
l=0

γlr(st+l , at+l) | st

]
(9)



Electronics 2024, 13, 3028 9 of 21

where the discount factor is γ ∈ [0, 1). And the action–value function is computed
as follows:

Qπ(st, at) = E
[

∞

∑
l=0

γlr(st+l , at+l) | st, at

]
(10)

Learning an ideal π∗ strategy that optimizes the overall anticipated return is the goal
of all agents.

π∗ = arg max
π

E
[

∞

∑
t=0

γtr(st, at)

]
(11)

3.2. Fundamentals of the DDPG Approach

DDPG is a deep deterministic policy gradient algorithm developed to tackle continu-
ous action control problems. It is based on policy gradients and directly adjusts the policy
parameters θ to optimize the objective function.

J(θ) = Es∼pπ |,a∼πθ
(12)

which is the core idea behind DDPG, as it involves taking the policy gradient ∇θ J(θ) at
each step. The policy gradient can be expressed as follows:

∇θ J(θ) = Es∼pπ ,a∼πθ
[∇θ log πθ(a | s)Qπ(s, a)] (13)

where Qπ(s, a) = E
[
R | st = s, at = a

]
is an action–value function, and pπ is the state

distribution.
Deterministic policies can also be incorporated into the policy gradient framework

and are denoted as µθ : S 7→ A [1]. Specifically, under certain circumstances, we can write
the gradient of the objective J(θ) = Es ∼ pµ[R(s, a)] as follows:

∇θ J(θ) = Es∼D
[
∇θµθ(a | s)∇aQµ(s, a)|a=µθ(s)

]
(14)

The theorem requires the action space a to be continuous, as it depends on ∇aQµ(s, a).
Deep neural networks are used in the DDPG method, which is a variation of the

deterministic policy gradient algorithm, to estimate policy µ and critic Qµ. It is an off-policy
approach, meaning it learns from experiences during training. In addition to the online
network, DDPG also uses a target network to stabilize training. The target network is
periodically revised to mitigate the effects of policy oscillations during learning.

3.3. Multi-Agent Deep Deterministic Policy Gradient

The DDPG policy demonstrates the agent’s inherent robustness and generalization
capabilities, leading to maximized performance [31]. This benefit makes DDPG particularly
well-suited for learning in challenging circumstances where unknowns and external inter-
ference are present. In light of this, we adopted a training paradigm for communication
coverage navigation based on the MADDPG. The agent in the environment is autonomous
and unable to interact with other agents, yet it is perceptible. At each step t, the agent is
unable to observe the current mobility schemes of other agents. The benefit of CTDE is that
it eliminates the need to address the trade-offs between agents, and the optimization goal
is to increase the total return of all agents [33].

G = ⟨ŝ, a, p, r, o, u⟩ (15)

where u represents the index of each agent, and ŝ stores each agent’s global statuses and
local observations. The term a is a representation of all agents’ activity, and each agent’s
reward is part of the tensor r. The observation function is indicated by o, and p represents
the likelihood of a transition from the current state to the following state.
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More specifically, the game has N agents and strategies parameterized by
θ = {θ1, . . . , θN}. The term π = {π1, . . . , πN} represents the collection of all agent
policies. For agent i, the gradient of the expected return, denoted as J(θi) = E[Ri], may
thus be expressed as follows:

∇θi J(θi) =Es∼pµ ,ai∼πi [∇θi log πi(ai | oi)

Qπ
i (x, a1, . . . , aN)]

(16)

In our setting, the total actions a1, . . . , aN are fed into Qπ
i (x, a1, . . . , aN), which is a

centralized action–value function that produces the Q-value for agent i along with some
state data. In the simplest scenario, states might be the sum of the observations made by
each agent, (o1, . . . , oN), but if accessible, we could also incorporate additional state data.
Agents are allowed to have any incentive systems, even ones that provide rival rewards in
a hostile environment. However, in this paper, we set the reward function as the total of
rewards for all agents since our research focuses on situations where all agents cooperate
to achieve a common goal, resulting in cooperative rewards.

The mentioned concept can be expanded to apply to deterministic policies. Now
that we have N continuous policies µθi parameterized by θi, we can express the gradient
as follows:

∇θi J(µi) =Ex,a∼D [∇θi µi(ai | oi)

∇ai Q
µ
i (x, a1, . . . , aN)|ai=µi(oi)

]
(17)

where the transitions (x, x′, a1, . . . , aN , r1, . . . , rN) are stored in replay bufferD, which stores
all agent experiences.

The policies of other agents must be updated for Equation (17) to be applied. Knowing
the observations and policies of other agents is not a particularly restricting assumption, as
this information is typically available to all actors if our goal is to educate agents to exhibit
sophisticated communicative behavior in simulation.

3.4. Genetic Algorithm

GA is a computational model that is inspired by Darwin’s biological evolution theory and
is used for searching for optimal solutions by simulating natural evolution. It operates directly
on structural objects, avoiding differentiation and function continuity constraints [34–36]. With
inherent implicit parallelism and strong global optimization ability, it employs probabilistic
optimization methods for automatically obtaining and guiding the search space without
strict rules, allowing adaptive adjustments of the search direction. GA targets all individuals
in a population and efficiently explores an encoded parameter space using randomization
techniques. Its genetic operations include selection, crossover, and mutation. The core
components of a GA are parameter encoding, initial population setting, fitness function
design, genetic operation design, and control parameter setting. To demonstrate the
operation of a GA, we consider an unconstrained optimization problem. The objective is to
maximize the following function:

Maximize f (k), kl
n ≤ kn ≤ ku

n, n = 1, 2, . . . , N. (18)

The variable ki can take values within the range of kl
n and ku

n. Although we consider a
maximization problem, a GA can also be used for minimization problems. To ensure the
proper functioning of the GA, the following steps are taken.

Variables ki in Equation (18) are initially coded in specific string structures before
using GAs to address the aforementioned issue. It is essential to mention that coding the
variables is not always required at this stage. In some studies, GAs are directly applied to
the variables, but for the sake of discussing the fundamental ideas of a simple GA, we will
disregard these exceptions.
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The fitness function is evaluated for each individual in the initial population and
subsequently for each new generation after applying the genetic operators of selection,
crossover, and mutation. Since each individual’s fitness is independent of that of the others,
parallel computation is feasible.

Such transitions can take many different forms. Below are two commonly used
fitness mappings.

F (k) = 1
1 + f (k)

(19)

This transformation converts a minimization problem into an equivalent maximization
problem without changing the position of the minimum. The objective function can be
transformed using a different function to provide the fitness value F (i), as shown below:

F (i) = V − O(i)P

∑P
i=1 O(i)

(20)

where V is a large value to ensure non-negative fitness values, P is the population size, and
O(i) is the objective function value of the nth individual. For this study, V is chosen as
the maximum value of the second term in Equation (20), leading to a fitness value of zero,
which equals the maximum value of the objective function. This transformation does not
alter the solution’s position; it merely converts a minimization problem into an equivalent
maximization problem. The term “string fitness” refers to the fitness function value of
a string.

Genetic operators like selection, crossover, and mutation are applied to the population,
producing a new generation based on the fitter individuals from the current generation.
The selection operation picks individuals with advantages in the current population. The
crossover or recombination operation creates descendants by exchanging a portion of
chromosomes between two selected individuals, resulting in two new chromosomes repre-
senting offspring. The mutation operation randomly changes one or more chromosome
values (genes) of each newly created individual. Mutations typically occur with a very
low probability.

3.5. GA-MADDPG for Addressing Communication Coverage and Navigation in Its Own
Abstract Formulation

In the abstract formulation in Section 3.1, the policy of the objective function can be
expressed as π(st) = at(st). In each episode j, the objective is to optimize the objective
function by selecting the best coordination and optimal action (a) for each state (s). Different
agents are assigned to navigate themselves to reach the target point, and each agent adopts
an independent strategy. To address limitations and explore various scenarios, we use
off-policy methods instead of on-policy methods since off-policy is more powerful and
generalized. It ensures that the data are comprehensive and that all actions are covered. It
can even come from a variety of sources—self-generated or external [37]. Figure 3 illustrates
the highlights of the proposed GA-MADDPG.

All criticisms will be updated simultaneously to reduce the combined regression loss
function for episode j:

L(θi) =
1
S ∑

j

(
yj −Qµ

i

(
xj, aj

1, . . . , aj
N

))2
(21)

The actor is updated using the sampled policy gradient:

∇θi J ≈ 1
S ∑

j
∇θi µi(o

j
i)

∇ai Q
µ
i (x

j, aj
1, . . . , ai, . . . , aj

N)|ai=µi(o
j
i )

(22)
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And the centralized action–value function Qµ
i is updated as:

L(θi) =Ex,a,r,x′ [(Q
µ
i (x, a1, . . . , aN)− y)2],

y = ri + γQµ′

i (x′, a′1, . . . , a′N)|a′j=µ′j(oj)

(23)

where
µ′ =

{
µθ′1

, . . . , µθ′N

}
(24)

is the collection of goal policies with postponed parameters θi.
The training process of the GA-MADPPG algorithm is summarized in Algorithm 1.

We use off-policy DDPG training to maximize the reward.

Algorithm 1 GA-MADDPG algorithm

Require: Input state s, discount factor γ, and action a
Initialization : Initialize MPE environment with four agents (including 3 UGVs and 1
mobile BS); Initialize hyperparameter population.
Ecount = 0
for Episode = 1 to max episode do

Reset environments, collect initial observations oi of agents
for step = 1 to max step do

Choose At for each agent i
Agents take At and receive next observations o′i
Calculate the total reward in Equation (6)
Store all agents’ transitions in D, and store the L of transitions in D.
Ecount = Ecount + 1
if Ecount ≥update episode then

for g = 1 to critic updates steps do
Sample batch B from D
Set yj = rj

i + γQµ′

i
(
x′j, a′1, . . . , a′N

)∣∣∣
a′k=µ′k

(
oj

k

)
Minimize the loss in Equation (21) to update critic
Update actor using the sampled policy gradient according to Equation (22)
Evaluate fitness of hyperparameter population according to Equation (19)
Crossover hyperparameter population
Mutation operation
Set new hyperparameter population according to D.

end for
Update target parameters:
θ′i ← τθi + (1− τ)θ′i
Ecount = 0

end if
end for

end for
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Figure 3. Detailed diagram of the GA-MADDPG algorithm.

4. Simulation Results

In this section, we present illustrative examples to depict the experimental setup of
this paper. Based on these examples, we propose several metrics to assess the effectiveness
of the algorithm and perform a quantitative analysis to clarify the advantages of our
represented modeling approach and policy. Subsequently, we present numerical simulation
results to showcase the effectiveness and efficiency of the algorithms. Additionally, we
provide insightful comments on the results.

4.1. Settings of the Experiments

In this subsection, we present the precise experimental coefficient settings. The simu-
lated area is a dense urban region of 2 × 2 km² with seven cellular BS sites. In Figure 4, a
top view of the channel model in this paper is shown, where seven ground base stations
are represented by blue five-pointed stars, and the blue five-pointed star in the middle
represents the movable base station. Each base station has three unit groups. Since there
are seven base stations in total, the number of units is 21. The transmission power of
the unit cell is set to Pm = 20 dBm, the communication interruption threshold is set to
γth = 0 dB, and the noise power is defined as σ2 = −65 dBm. This paper adopts the base
station antenna model required by the 3GPP specification. For simplicity, we assume that
the UGVs’ operational height is set at 0 m, disregarding the influence of terrain ups and
downs. The specific values of the parameters involved in the simulated environment are
as follows: the number of UGVs is set to four (including one movable BS), the number of
obstacles is set to five in the main areas, and there are three target points. The positions of
these elements are randomized each time they appear. As we employ a dynamic update
mechanism for hyperparameters, we list the common parameters of the baseline algorithm
and the GA-MADDPG algorithm in Table 1, and we also list the initial hyperparameter
population of the GA-MADDPG algorithm in Table 2.

In this study, it is important to note that the communication environment is solely
determined by the positioning of each UGV. The quality of communication among multiple
UGVs does not influence their collaborative navigation. This is because the collaborative
navigation process relies exclusively on a multi-agent algorithm to coordinate the UGVs in
environmental exploration.
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Table 1. GA-MADDPG parameter settings.

Definition Value Definition Value

Max episodes 60,000 Minibatch size 512
Replay buffer
capacity 1,000,000 Discount factor 0.99

Steps per update 100 Learning rate 0.0001
Max steps per
episode 25 Update population rate 100

Time step length 1 Hidden dimension 64

Table 2. Initial hyperparameter population of GA-MADDPG algorithm.

Discount Factor Learning Rate Replay Buffer Capacity Minibatch Size

0.9 0.01 10,000 512
0.95 0.001 100,000 1024
0.99 0.0005 1,000,000 2048

Figure 4. Plan view of base station model distribution.

4.2. Indicators of Evaluation for UGV Navigation

To objectively measure the navigational safety, effectiveness, robustness, and commu-
nication connection of UGVs, we have developed specific assessment indicators, which are
detailed below. We also recorded the changing state of the evaluation metrics, as shown in
Figure 5.

• Communication return.The communication return is the average communication
quality per episode for the UGVs and is calculated based on Equation (1). The commu-
nication returns converge quickly from the initial−800 to−300 as shown by Figure 5a,
which indicates that the communication quality has been improved and has stabilized
in an interval.

• Collision times: The collision times are the sum of collisions between UGVs and
obstacles and between drones and drones in an average round. The collision indi-
cator converges from 540 to below 480, as shown by Figure 5b, indicating that the
number of collisions has also been reduced somewhat, and since this study allows
UGVs to have a certain number of collisions, the collision indicator is not the main
optimization objective.

• Outside times: The outside times are the number of times the UGVs go out of bounds
and run out of the environment we set. From Figure 5c, the rapid reduction in the
number of times going out of bounds indicates that our research has significantly
limited ineffective boundary violations, demonstrating that our study effectively
operates within the designated area.
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Figure 5. Three evaluation indicators for UGV navigation. (a) Communication return. (b) Collision
number. (c) Outside times.

4.3. Comparative GA-MADDPG Experimentation

To compare with the suggested algorithm and determine whether the algorithm
works better, we provide seven RL approaches that are thought of as baselines. The
methods are MADDPG [24]: a classic multi-agent deep deterministic policy gradient,
R-MADDPG [38]: a deep recurrent multi-agent actor–critic, MAPPO [39]: multi-agent
proximal policy optimization, RMAPPO [39]: a deep recurrent multi-agent proximal policy
optimization, MQMIX [40]: mellow–max monotonic value function factorization for deep
multi-agent, MASAC [41]: a classic multi-agent soft actor–critic, MAD3PG [42]: a multi-
agent deep distributional deterministic policy gradient, MATD3 [43]: the twin delayed
deep deterministic policy gradient, and RMATD3 [44]: the twin delayed deep deterministic
policy gradient with a deep recurrent. Notably, we replicate these baselines using the same
simulation environment to guarantee the experiment is fair.

The cumulative return of the GA-MADDPG and other algorithms, which is displayed
in Figure 6, indicates the experimental comparison findings and highlights the potency of
GA-MADDPG algorithms. GA-MADDPG outperforms the other algorithms by achieving
a considerably higher reward return of about −1200 with 60,000 episodes, reaching its
convergence point. Furthermore, as shown in Figure 6, both MADDPG and R-MADDPG
achieve lower rewards of around −1600 compared to GA-MADDPG, providing strong
evidence for the effectiveness of our contribution: the use of GA adaptive hyperparameters
allows for better jumps out of the local optima and higher rewards. As shown in Figure 6,
in the specific environment we configured, neither the original MADDPG algorithm nor
its variant incorporating deep recurrent networks outperforms GA-MADDPG in areas of
convergence speed and final convergence outcomes: GA-MADDPG converges in about
2000 episodes, while R-MADDPG converges in about 5000 episodes, and the original algo-
rithm MADDPG converges even worse. Of greater significance, our experimental findings
reveal that MASAC, MAPPO, MAD3PG, MQMIX, and RMAPPO encounter challenges in
achieving a desirable convergence state within the multi-agent cooperative environment
we constructed. MASAC required approximately 25,000 episodes to converge, ultimately
stabilizing at a reward value of approximately −1800. MAPPO and RMAPPO exhibited
less stable convergence, with rewards fluctuating between −2000 and −2500. Meanwhile,
MAD3PG’s reward converged to approximately −2100. Regarding MQMIX, its reward
demonstrated initial oscillation over the first 25,000 episodes, followed by a steady de-
cline thereafter. This further emphasizes the superiority of GA-MADDPG in terms of
performance and effectiveness.

Furthermore, certain algorithms tend to converge to local optima, which further re-
inforces the effectiveness of our decision to adopt the MADDPG algorithm and enhance
it. As depicted in Figure 6, in the initial 25,000 episodes, GA-MADDPG may succumb to
local optimality. However, the incorporation of the GA mechanism enables GA-MADDPG
to attain elevated rewards beyond this threshold. Notably, MAPPO and MQMIX demon-
strate subpar performance, possibly due to the lack of adaptive hyperparameter updates,
hindering their effective cooperation within the multi-agent environment and leading
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to convergence challenges. Therefore, this observation naturally demonstrates the high
effectiveness of incorporating GA into multi-agent RL algorithms. By introducing GA,
multi-agent algorithms can more effectively avoid falling into local optima, resulting in
improved convergence speed and outcomes. And the variation of the loss calculated by
Equation (21) is represented by Figure 7, from which we can see the constant convergence
of the loss to near 1800, which can prove the convergence of the algorithm. During the
validation process, Figure 8 displays several simulated paths of UGVs. Under optimal com-
munication conditions, the BS UGV might remain stationary to prevent potential losses due
to collisions. However, in situations with less than excellent communication, the BS UGV
proactively moves to compensate for communication limitations. Additionally, statistics for
the three evaluation indicators (Figure 5) show the improvement in communication return,
the reduction in collision number, and the decrease in outside number as the algorithm
converges. The return on communications exhibited an improvement from an initial value
of −800 to −300 towards the conclusion of the experiment. Concurrently, the frequency of
collisions decreased from 540 to 470, and the occurrences of external events diminished
from 100 to nearly zero. This suggests that as the algorithm converges, the three evaluation
metrics also reach optimality.

Figure 6. Average cost of the GA-MADDPG and other advanced algorithms.

Figure 7. Evolution of loss function.
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(a) (b) (c)

Figure 8. Some UGV path maps based on GA-MADDPG.

4.4. Generalization Experiment of GA-MADDPG
4.4.1. Simulation with Different Numbers of UGVs

To further prove the universality of the proposed GA-MADDPG algorithm in the set
environment, this study also designed two other generalization experiments for the scene.
The experiment set different numbers of UGVs, target points, and obstacles in the scene
to determine whether the algorithm GA-MADDPG can continue to perform superiorly.
It should be noted that since some baseline algorithms in Section 4.3 have performed
poorly or even have difficultly converging, the generalization experiment uses four baseline
algorithms that are relatively stable in Section 4.3, including MASAC, MAD3PG, MADDPG,
and its variant, RMADDPG. Generalization environment 1: The number of UGVs increases
to four, the number of mobile base stations is one, the number of target points increases
to four, and the number of obstacles increases to seven. The significance of setting up the
environment in this way is to increase the severity of the environment by increasing the
number of UGVs and the number of obstacles.

From Figure 9, we can see that despite the increased complexity of the environment, the
GA-MADDPG algorithm always has a higher convergence value in harsh environments and
can converge to a high value well. The GA-MADDPG algorithm can maintain convergence
to a reward value of −3000, while the other baseline algorithms do not perform well or
even find it difficult to converge in complex environments, and the highest reward value
is only around −3300. This fully demonstrates that the GA-MADDPG algorithm still has
better performance than other algorithms after the environmental complexity increases.

Figure 9. Average cost comparison of generalization environment 1.
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Generalized environment 2: The number of UGVs is reduced to two, the number of
mobile base stations is one, the number of target points is reduced to two, and the number
of obstacles is reduced to three. The significance of setting up the environment in this way
is to improve the simplicity of the environment by simplifying the number of UGVs and
obstacles so that the UGV can complete the goal with a greater reward.

As can be seen from Figure 10, the rewards of most algorithms show a good upward
trend. This is because the generalized environment uses a simpler three UGVs (including a
UGV base station), three obstacles, and two target points. The algorithm performs better in
a simple environment and convergence is easier than for the generalized environment. As
the number of vehicles decreases, the number of collisions and out-of-bounds also decrease
accordingly. It should be noted that since the communication environment parameters
remain unchanged, the reward value of the overall algorithm is positive, which is normal.
From Figure 10, it can be seen that in this generalized environment, the reward of the
GA-MADDPG algorithm always remains ahead, both in terms of convergence speed and
final convergence value, which are much higher than for the other algorithms, and the final
reward value can converge to about 200. As a basic algorithm, MADDPG also has a higher
convergence value of about 150. This fully demonstrates that the GA-MADDPG algorithm
can also perform well in a simple environment.

Figure 10. Average cost comparison of generalization environment 2.

It can be seen from Figures 9 and 10 that in the experimental environments with two
different parameter settings, despite changes in the number of UGVs, the number of target
points, and the number of obstacles, the GA-MADDPG algorithm can still perform better
than the other algorithms, which fully demonstrates the robustness of the GA-MADDPG
algorithm and its universality to environmental scenarios.

4.4.2. Experiments on the Effectiveness of the Mobile BS

The previous subsections prove the stability and convergence of our proposed algo-
rithm. Also, the last section proves that our proposed algorithm is superior in the same
scenario. To better demonstrate the effectiveness of the mobile base station proposed in this
paper, we add an extra experiment: only changing the mobile BS to a fixed BS but using the
same algorithm.

We use the communication return as an evaluation metric, and the communication
return with a mobile base station is better than that of the fixed base station from the
beginning of training, as shown by Figure 11. The communication return of a single UGV
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can eventually converge to around 300, while that of the fixed base station hovers around
200 feet, which fully proves the effectiveness of our proposed mobile base station.

Figure 11. Comparison of communication returns between mobile BS and fixed BS.

5. Conclusions

In this article, a cooperative system for multi-UGV cooperative navigation within
a communication coverage area is proposed. The system is formulated as an MDP to
determine an optimal navigation policy for the UGVs, with the aim of maximizing the
total reward. In contrast to prior studies focusing on fixed coverage-aware navigation, this
paper introduces a novel approach by incorporating a mobile BS into the multi-intelligent-
body algorithm. This innovation aims to enhance communication coverage and expand
the solution space available for intelligent agents. To mitigate the risk of local optima,
this study introduces a GA hyperparameter adaptive updating mechanism to address the
multi-UGV navigation problem. We coin the term GA-MADDPG to refer to this novel
RL algorithm. The simulation results demonstrate that GA-MADDPG exhibits favorable
performance, convergence rates, and effectiveness compared to other RL algorithms.

In our future research, we would like to address the following points: (1) To enhance
model realism, one can combine a traditional PID control with multi-agent RL and further
optimize the navigation policy by taking control of the machine operation. (2) One can try
to use a new architecture to learn policies, such as by using LSTM (long short-term memory)
and the transformer architecture. LSTM can solve the problem of gradient vanishing and
gradient explosion during the training of long sequences; the advantage of the transformer
architecture is that its attention layer can learn a sequence of actions very well.
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Abstract: The Auckland Harbour Bridge (AHB) utilises a movable concrete barrier (MCB) to reg-
ulate the uneven bidirectional flow of daily traffic. In addition to the risk of human error during
regular visual inspections, staff members inspecting the MCB work in diverse weather and light
conditions, exerting themselves in ergonomically unhealthy inspection postures with the added
weight of protection gear to mitigate risks, e.g., flying debris. To augment visual inspections of an
MCB using computer vision technology, this study introduces a hybrid deep learning solution that
combines kernel manipulation with custom transfer learning strategies. The video data recordings
were captured in diverse light and weather conditions (under the safety supervision of industry
experts) involving a high-speed (120 fps) camera system attached to an MCB transfer vehicle. Before
identifying a safety hazard, e.g., the unsafe position of a pin connecting two 750 kg concrete segments
of the MCB, a multi-stage preprocessing of the spatiotemporal region of interest (ROI) involves a
rolling window before identifying the video frames containing diagnostic information. This study
utilises the ResNet-50 architecture, enhanced with 3D convolutions, within the STENet framework to
capture and analyse spatiotemporal data, facilitating real-time surveillance of the Auckland Harbour
Bridge (AHB). Considering the sparse nature of safety anomalies, the initial peer-reviewed binary
classification results (82.6%) for safe and unsafe (intervention-required) scenarios were improved to
93.6% by incorporating synthetic data, expert feedback, and retraining the model. This adaptation
allowed for the optimised detection of false positives and false negatives. In the future, we aim to
extend anomaly detection methods to various infrastructure inspections, enhancing urban resilience,
transport efficiency and safety.

Keywords: anomaly detection; structural damage detection; traffic safety; computer vision; machine
learning; deep learning; transfer learning; ARDAD

1. Introduction

The Auckland Harbour Bridge, spanning 1.2 km across Waitemata Harbour, was
opened on 30 May 1959. Initially handling 11,205 vehicles daily, the bridge currently ac-
commodates around 154,000 vehicles daily, with peaks over 200,000 due to public transport
shifts [1]. The bridge supports rapid regional development, with a quadrupled North Shore
population in the past 50 years. The New Zealand Transport Authority (NZTA), also known
as Waka Kotahi, annually invests up to NZD 4 million in its maintenance and employs
about 160 people for ongoing upgrades and maintenance. Like all crucial transportation
infrastructure in New Zealand, the Auckland Harbour Bridge (AHB) faces significant main-
tenance challenges due to environmental and external factors. Such challenges contribute
to the country’s overall high maintenance costs for road infrastructure, which amount to as
much as 1.1% of New Zealand’s GDP [2].

This paper is organised as follows:
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Section 1 presents an overview of the problem and the research question; Section 2
includes a comprehensive literature review on Automated Road Defect and Anomaly
Detection; and Section 3 proposes a new methodology based on a hybrid deep learning
solution to augment visual inspections using computer vision technology.

1.1. Background

Installed in 1990, the movable concrete barrier (MCB) on the AHB has enhanced
rush-hour traffic flow and safety. Every weekday, the AHB utilises two Barrier Transfer
Machines (BTMs) to adjust lane configurations, improving traffic flow during peak hours
by moving 750 kg concrete blocks. The BTMs, essential for managing the daily tidal, were
introduced in 2009 for 1.4 million NZD each. Despite the high cost, the BTMs do not have
an automated surveillance system to ensure the integrity of the movable concrete barriers
(MCBs). In the absence of an MCB barrier safety inspection system, NZTA staff must walk
over a mile in hazardous conditions and amidst dangerous traffic to manually inspect and
ensure the integrity of the MCB [3].

The reliability of the MCB system depends on the integrity of the metal pins connecting
the barrier segments (Figure 1). The critical function of the pins is to secure barrier segments
that regulate lane division based on traffic flow [3]. Malfunctioning or dislodged pins
pose risks to traffic safety and impede the system’s efficiency, leading to potential traffic
disruptions and increased accident risks.
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Figure 1. A movable concrete barrier system and its safety challenges. (a) Pin position requiring
fixing, (b) metal pin with detachable safety ring, and (c) movable concrete barrier joints without
metal pins.

Prior works in automated infrastructure inspection often fall short in dynamic and
complex environments like the AHB [4–6]. This research aims to advance the field by
incorporating a novel hybrid deep learning and spatiotemporal data analysis, allowing
for a more accurate and reliable detection of safety anomalies in complex environments
such as the AHB. This study employs spatiotemporal analysis, deployable AI algorithms,
and semi-automated synthetic data generation to enhance traffic barrier monitoring, trans-
forming research into practical, real-time anomaly detection solutions. The objective is
to reduce the risks linked with manual inspections, enhance traffic safety (Figure 2), and
boost the efficiency of barrier systems. Building on the Proof-of-Concept developed in
2019–2020 [7], this research utilises computer vision and deep learning techniques to au-
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tomate the detection of metal pins in movable concrete barriers (MCBs) on the Auckland
Harbour Bridge (AHB).
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Figure 2. The scale of the challenges for manual inspection and fixing of the metal pin: (a) various
locations of movable concrete barriers on and around the Auckland Harbour Bridge; (b) finding an
unsafe pin and fixing it manually.

Hybrid machine-learning models, which integrate CNNs with other machine-learning
techniques, can revolutionise inspections by enhancing the accuracy and reliability of
detecting and classifying anomalous conditions [8,9]. The deep learning models trained
on the synthetically enhanced dataset use a feature-based detection approach to analyse
video frames for signs of pin displacement. Real-time monitoring capability is crucial for
effective traffic management, especially during peak hours. Immediate alerts to bridge
operators facilitate timely interventions, preventing potential safety issues from escalating
into more severe incidents. Developing such an automated surveillance system advances
civil engineering and traffic safety, offering a scalable, efficient solution to a longstanding
safety challenge and setting a precedent for similar applications worldwide, potentially
leading to the broader adoption of intelligent traffic management solutions in global urban
settings [10].

This study developed a hybrid machine learning system for real-time, privacy-preser-
ving anomaly detection in road safety inspections. This research’s contributions are listed
as follows:

• Produces a traffic safety analysis artefact scalable to scenarios in over 20+ countries
and hundreds of similar traffic scenes [10] that employ movable concrete barriers.

• Introduces a semi-automated synthetic data generation method using a novel back-
ground cloning technique. The novel approach addresses data sparsity and enhances
model training, with repeatability value for other computer vision case studies facing
dataset balancing issues.

• Refines classification methods to balance false positives and negatives, improving de-
tection accuracy from 82.6% (reported in earlier peer-reviewed research [11]) to 93.6%.
Achieving this 11% increase in accuracy within complex traffic scenes characterised by
chaotic backgrounds and lighting conditions underscores the artefact’s viability for
real-world applications.

• Successfully navigates hazardous traffic scenes for data collection by adhering to in-
dustry safety protocols. This repeatable approach provides a comprehensive blueprint
for managing similar scenarios, ensuring stakeholder satisfaction and achieving suffi-
cient data.
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1.2. Research Questions and Modelling Concepts

This paper presents the development of automated solutions leveraging computer
vision and deep learning to enhance traffic safety and operational efficiency by automating
the inspection of metal pins in movable concrete barriers. This research explores visual
sensors’ potential to detect transport activity anomalies while maintaining privacy. Focused
on the Auckland Harbour Bridge’s movable barrier, our research automates safety screening
and enhances anomaly detection for critical yet underrepresented classes like unsafe pin
positions. Furthermore, classification techniques were refined to balance false positives and
negatives, thereby improving the reliability and effectiveness of the traffic safety system.

1. Can relevant information from visual sensors be extracted for anomaly detection in
transport activity while preserving privacy?

(a) What are the optimal methods for extracting vital information from visual
media to detect transport activity anomalies without compromising privacy?

(b) To what degree can the safety screening of Auckland Harbour Bridge’s mov-
able barrier and the surrounding areas be automated using AI, CV, and DL
methods?

2. How can synthetic data generation be streamlined to portray minority classes, such
as unsafe pin positions, in anomaly detection tasks within traffic safety?

3. How can classification performance be honed to optimise an equilibrium between false
positives and negatives from the early Proof-of-Concept (PoC) [7] while considering
present and anticipated data scenarios?

2. Literature Review

Automated Road Defect and Anomaly Detection (ARDAD) uses computer vision,
combining traditional and deep learning methods with unsupervised learning [12,13].
Traditional unsupervised methods, relying on datasets of normal conditions, often pro-
duce high false alarm rates in complex environments [14]. This research employs the
Spatio-Temporal Enhanced Network (STENet) to address the problem of complex traffic
scenes, which leverages temporal and spatial data for better generalisation and robust
anomaly detection.

2.1. Auckland Harbour Bridge

The New Zealand Transport Agency (NZTA) manages the Auckland Harbour Bridge
(AHB), an eight-lane motorway supporting over 200,000 vehicles daily. Installed in the
1990s, the movable concrete lane barrier (MCB) is essential for preventing crashes and
optimising traffic flow during peak hours. The MCB system, consisting of 750 kg concrete
blocks connected by metal pins, is prone to displacement due to traffic and ambient
vibrations, posing significant risks [1,3,15]. Barrier Transfer Machines (BTMs) facilitate
the movement of the MCB, typically adjusting lanes four times daily to manage traffic
flow effectively.

Manual inspection of the pins is labour-intensive and occurs under poor ergonomic
conditions, making it susceptible to human error. Despite the system’s efficiency in altering
traffic lanes swiftly—approximately 10 min for a one-kilometre section—the lack of auto-
mated pin inspection mechanisms within the existing NZD 1.4 million BTMs today may be
seen as a significant oversight and an opportunity to apply CV in maintenance and safety
protocols [1,15,16]. While effective in managing contraflow and heavy occupancy lanes, the
movable concrete barrier (MCB) system requires continual manual monitoring to ensure its
structural integrity and operational reliability.

2.2. Review of Surveys on ARDAD

The application of artificial intelligence (AI) and deep learning in road infrastruc-
ture anomaly and object detection has achieved significant breakthroughs over the past
decade [5,12,13]. AI advancements have impacted domains such as autonomous driving,
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face recognition, and personalised healthcare [17,18]. Deep learning techniques, partic-
ularly Convolutional Neural Networks (CNNs), have revolutionised image processing
by automating segmentation, recognition, and reconstruction tasks [6]. CNNs efficiently
process and classify image data through pooling and convolution, extracting features and
reducing dimensionality [19–22]. Unlike traditional methods that rely on hand-engineered
features, deep learning models learn feature representations directly from data. Architec-
tures like R-CNN and its variants excel in object detection using region proposal methods
to pre-selected areas of interest [23].

Moreover, transfer learning enhances model generalizability by applying models
trained on one task to related but different tasks [24]. Transfer learning leverages pre-
trained models to improve performance on new datasets, often by fine-tuning the final
layers of networks like ResNet-50, which demonstrated remarkable success in the Visual
Recognition Challenge [25]. The approach underscores deep learning models’ versatility
and adaptive capacity in handling diverse and complex visual data environments.

2.3. Video and Image Optimisation Techniques in ARDAD

Selecting an appropriate colour space in image segmentation is crucial and often
application-specific, with no consensus on the best choice. Common colour spaces include
RGB, LAB, CMY, XYZ, HSV, YCbCr, YIQ, YUV, and DHT [26,27]. For example, RGB is
effective for bilirubin concentration changes (Equation (1)), while CMY and HSV excel in
other tasks [28]. Advanced methods like one-dimensional histograms for automatic colour
space selection [29] and two-dimensional histograms for improved segmentation [30] have
been developed to optimise the process. Specific applications, such as YCbCr for face
detection [31] and YIQ for satellite imagery [32], demonstrate tailored approaches. For
monitoring the Auckland Harbour Bridge (AHB), the Y component (Equation (1)) from
RGB to YCbCr transformation can enhance structural anomaly detection by focusing on
luminance and minimising colour variations due to lighting or weather conditions.

Y = 0.299R + 0.587G + 0.114B (1)

Techniques like histogram thresholding and SVM-based clustering have also been ap-
plied to enhance segmentation by structuring pixel data into coherent colour groups [33,34].

2.4. Advanced Techniques in Video and Image Analysis for ARDAD

In computer vision, object detection in videos involves recognising the movement
of objects across multiple frames, utilising techniques like background subtraction, frame
differencing, and optical flow. The Gaussian Mixture Model (GMM) is a prevalent method
for background separation, enhancing foreground–background distinction by modelling
pixel distributions with Gaussian mixtures [35–37]. Template matching, another practical
approach, uses MATLAB 2022a functions like normxcorr2 and regionprops to track objects in
successive frames by identifying the peak of normalised cross-correlation [38]. Template
matching, as represented by Equation (2), calculates the intensity-weighted centroid of an
object using the following expression:

xc =
∑N

i=1 xi·wi

∑N
i=1 wi

(2)

where xc is the centroid location, xi is the pixel location, and wi is the pixel intensity.
Multiplying xi by wi in the numerator ensures that each pixel’s location is weighted by
its intensity, giving more importance to pixels with higher intensities in the centroid
calculation.

Foreground–background separation techniques split a video into static backgrounds
and dynamic foregrounds, using models that adapt to changes in the scene to detect
motion and recognise objects [39,40]. Recent advancements in the GMM have introduced
methods that handle complex scenes like traffic, improving the detection of slow-moving
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or oversized vehicles [41]. Each pixel in the video sequence is modelled as a mixture of K
Gaussian distributions. The probability of observing a pixel value X at time t is given by
Equation (3).

P(Xt) = ∑K
k=1 ωk,t·N

(
Xt
∣∣µk,t, Σk,t

)
(3)

Here, ωk,t is the weight of the kth Gaussian component at time t, N is the Gaussian
distribution, µk,t is the mean of the kth Gaussian, and ∑k,t is the covariance matrix of the
k-th Gaussian. On the other hand, frame difference methods detect motion by comparing
pixel differences from one frame to the next, a simple yet effective technique for identifying
moving objects [42]. Optical flow techniques assess motion by analysing the pattern of
apparent motion of objects, surfaces, and edges in a visual scene caused by the relative
motion between an observer and the scene [43]. For example, Equation (4) synthesises
motion detection using frame differences | Ft − Ft − 1 | to identify changes and optical
flow, represented by ∇lt · vt, to analyse motion patterns and speeds, with α adjusting their
relative contributions.

∆Mt =| Ft − Ft − 1 | +α · ∇lt · vt (4)

Object tracking in computer vision follows object detection, using colour, texture,
shape, size, and orientation to track objects like vehicles or pedestrians across video frames.
Robust tracking is essential across camera placements, lighting conditions, and cluttered
scenes [44]. Techniques like the Kalman filter and particle filter are standard for tracking
linear and non-linear motions [45]. Blob analysis tracks objects in binarised images based
on features like area and bounding-box dimensions [46]. The Bayer filter pattern calculates
the distance between object centroids, aiding in tracking and measuring vehicle velocity.
The Kalman filter refines trajectory predictions by combining predicted and actual loca-
tions [47,48]. For non-linear scenarios, the Extended Kalman filter uses the Jacobian matrix
for transition matrices (Equation (5)).

x̂k|k = x̂k|k−1 + Kk

(
zk − Hkx̂k|k−1

)
(5)

In Equation (5), x̂k|k is the updated state estimate at time k; x̂k|k−1 is the predicted state
estimate at time k, based on the estimate from time k − 1; Kk is the Kalman gain, which
dictates the blending of prediction with observation; zk is the actual measurement at time k;
and Hk is the measurement matrix that maps the state space into the measurement space.

The particle filter enhances tracking in complex scenarios by sampling and resampling
object features across frames, proving more effective in non-linear and cluttered environ-
ments than other methods [49,50]. It utilises a correlation particle filter to manage scale
variations and feature interdependencies.

The mean shift algorithm, which uses a statistical colour model for tracking, iteratively
converges to high-density areas in the colour space 8-point connectivity to locate objects [51].
The Adaptive Local Movement Model (ALMM) addresses movement by focusing on
regional patches rather than the entire object, proving effective against occlusions and rapid
movements [52].

Data collection and manual labelling in ARDAD systems can be resource-intensive
and time-consuming. While deep learning approaches offer significant advantages in
image and video processing due to their ability to outperform traditional methods, they
require substantial datasets and computational power [53]. Alternatively, expert-driven
feature extraction with traditional machine learning (ML) approaches can be effective with
smaller datasets and less computational demand, making them suitable for initial target
system designs [54]. Pretrained deep learning models facilitate automatic feature extraction
and enable transfer learning, which adapts models to new functions without extensive
computational resources [55] and catastrophic forgetting. The fusion of transfer learning
with traditional machine learning enhances spatiotemporal classification by leveraging
pre-trained models for efficient feature extraction and applying traditional models for se-
quence analysis, presenting an opportunity for improving classification accuracy (Figure 3).
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Combining deep learning with traditional machine learning has been applied in various
domains, such as traffic flow prediction and crop health monitoring [56,57].
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Figure 3. Integration of transfer learning with traditional ML: ResNet 50 extracts features from input
images, which an SVM classifies. Integrating ResNet 50’s deep learning capabilities to generate
feature space without relying on expert knowledge combined with a traditional classifier (e.g., SVM)
presents the opportunity to enhance image classification performance.

The fusion of transfer learning with traditional machine learning (Figure 3) for spa-
tiotemporal classification tasks is intended to replace the softmax() function (6), which is
commonly used as the last layer of a neural network to convert high-dimensional feature
vectors (∈R) typically into a probability of possible outcomes, i.e., normalised for intended
output class distribution.

ŷ = softmax(WfRNN(fCNN(X)) + b) (6)

where the loss function used in transfer learning is

L(θ) =
1
N∑N

i=1 𝓁(yi , f(Xi; θ)) (7)

Here, L(θ) is the average loss over N training samples, Xi and yi are the input and label
for the ith sample, f is the model with parameters θ initialised from a pretrained model, and
ℓ is the loss function, such as cross-entropy loss for classification. In practical applications,
such a hybrid approach enhances the efficiency and accuracy of spatiotemporal models in
practical applications [56,57].

Key considerations from a project methodology standpoint include the availability
and balance of datasets, the computational limitations of intended target platforms, and the
integration of traditional ML techniques for enhanced data insights. The adopted method-
ologies encompass transfer learning for enhanced object detection and classification, lever-
aging deep learning for feature generation, and utilising traditional ML classifiers to extract
further insights, ensuring a comprehensive approach to developing ARDAD solutions.

3. Materials and Methods

This paper documents a critical phase in the development process, transitioning from
the initial Proof-of-Concept (PoC) [7] to a minimum viable product (MVP) for the Auckland
Harbour Bridge’s movable concrete barrier (MCB), addressing additional research problems
related to detecting anomalies in a noisy spatiotemporal scenario.

In addressing real-world challenges and producing technological solutions, the re-
search methodology had to be significantly adapted to adhere to NZTA Waka Kotahi’s
safety rules associated with the recording of videos showing pins deliberately set in tem-
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porary unsafe positions (on the short barrier segments located on the safe working area
before the Harbour Bridge). The data collection equipment is safely attached to a BTM
using makeshift contraptions (Figure 4 and Table 1). However, leveraging multiple Barrier
Transfer Machine (BTM) operations to collect sparse minority-class data was not viable,
leading to the development of a background cloning approach to produce synthetic frames
depicting unsafe pin positions (Table 2). Such a methodological approach is aligned with
multidimensional problem solving for projects where ongoing adaptation to external factors
is necessary [58,59].
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Figure 4. Data collection setup: iPhone 13 Pro (for LiDAR), Samsung A7 Mobile, Apple iPad 6,
External power bank, GoPro cameras and mounting equipment, and camera and iPhone mounting
on a BTM.

Table 1. Data collection overview. Equipment, camera specifications, weather conditions, challenges
encountered, and technological advancement progression across three data collection sessions.

Session
No. Equipment Camera Specs Weather

Conditions Challenges Tech. Integration

1st

GoPro 8, GoPro 5,
Samsung A7 Mobile,

Apple iPad 6, duct tape,
power bank, and

mounting strips on the
BTM. Barrier Transfer

Machine (BTM) used for
maintaining optimal
camera angles during

recording sessions

Resolution: 720p,
Frame Rate: 240 fps,

Field of View: Narrow,
Audio: Wind Only,
Protune: Enabled,

White Balance: Auto,
Colour: Flat, Shutter:

Auto, ISO Limit: 6400,
Sharpness: High,
Audio Protune:

Medium,
Auto-rotation: Auto

Occasional rain
and overcast

Vibrations,
Camera Heating,

Mounting
Integrity Checks

Initial session:
groundwork for
incremental data

collection

2nd

GoPro 8 and 5 on BTM’s
front and rear arms,

other equipment same
as first

Same as first session
specs Sunny

Camera Heating,
Waterproofing,

Battery
Autonomy at
High Frame

Rates

The session focused on
sunny and ideal lighting

conditions
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Table 1. Cont.

Session
No. Equipment Camera Specs Weather

Conditions Challenges Tech. Integration

3rd

GoPro 9 and iPhone 13
Pro in hard case with 3D

point cloud app on
BTM’s front arm, GPS

enabled on both devices.
iPhone 13 Pro utilized

with a specialized
application to create 3D

point cloud data,
enhancing the depth and

quality of spatial
analysis

GoPro 9: 1080p
resolution, 240 fps,
Upgraded specs for

harsh conditions
iPhone 13 Pro:

Lidar-enabled camera
for 3D point cloud

data capture and GPS
for location tracking

Early morning
dark and rain

Ensuring Camera
Waterproofing,

Maintaining
Battery

Autonomy,
Device Stability

in Harsh
Conditions

Integration of Lidar and
GPS for advanced

spatial data capture;
utilised 5G for real-time
data transmission. Use
of 5G technology was
considered to enhance
real-time data capture

and transmission,
ensuring that large
datasets could be

managed effectively

3.1. Step 1: Data Collection and Synthetic Data Generation

Incremental data collection began with the first session under occasional rain and
overcast conditions, setting a precedent for the resilience of the process. During the
second session, conducted in sunny weather, two GoPro cameras were mounted on the
arms of the Barrier Transfer Machine (BTM), with technical challenges such as vibrations,
camera overheating, the need for waterproofing, and maintaining battery life at high frame
rates becoming apparent. The third session was conducted in heavy rain, prompting
further protocol and system design enhancements. Concurrently, integrating advanced
technologies like Lidar, GPS, and 5G networks was considered to augment the robustness
and capability of the data collection cycles (Table 1).

The pre-emptive manual inspections of moveable concrete barriers (MCBs) before any
BTM operation for lane modification eliminated the possibility of naturally capturing the
required unsafe pin positions (Figure 5). The precautionary measure is understandable
given the substantial risk posed by potentially loose concrete blocks during the MCB
transfer process, which could compromise the BTM’s integrity and the safety of road users.Electronics 2024, 13, x FOR PEER REVIEW 10 of 30 
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Figure 5. Pin manually pushed out of place by NZTA staff at the author’s request. The process
was challenging and labour-intensive, and the staff member needed several minutes per pin for
adjustments. Note: Such an option was not viable as it does not represent the natural environment of
the ROI where real-world problems need solving.
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Table 2. Semi-automated process for generating a diverse dataset of synthetic pin positions (based on
the manual cloning method illustrated in Figure 6).

Algorithm: Semi-Automated Synthetic Image Generation for Pin Position
Input: Series of Pin_OK images, Pin_OUT template image
Parameters:

-Alignment normalisation method
-Segmentation method
-Displacement calculation method
-Transformation method
-Background reconstruction method
-Edge refinement method

Output: Synthetic dataset with varied and accurately positioned Pin_Out frames

1: Load Images
1.1: Load the series of Pin_OK images
1.2: Load the Pin_OUT template image

2: Normalise alignment
2.1: Normalise the alignment of the pin in the series of Pin_OK images to a standard reference position

3: Process each normalised Pin_OK image
3.1: Segment the pin using a region-based segmentation method
3.2: Calculate the displacement needed based on the Pin_OUT template
3.3: Apply the calculated displacement to adjust the pin position and create a synthetic Pin_Out image
3.4: Reconstruct the background where pin was initially placed
3.5: Refine the edges of the moved pin to ensure seamless integration
3.6: Visually validate the quality of the synthetic image
3.7: If the quality is acceptable, add the synthetic image to the dataset
3.8: If adjustments are needed, refine the parameters and repeat the process

4: Repeat for all images
4.1: Continue the process for all Pin_OK images in the series to create a comprehensive dataset with varied Pin_Out positions

Faced with the sparsity of unsafe pin position, a novel synthetic data creation method
involving background cloning from original video frames was introduced (Figure 6).
Cloning allows for generating varied representations of the minority class, thus addressing
the skewed data distribution. Initial attempts yielded imperfect frames with jagged edges,
but the process was honed through iterative refinement, resulting in high-fidelity synthetic
frames that significantly bolstered the dataset. Adding the synthetic frames facilitated the
fine-tuning of model precision and recall, which is crucial for the efficacy of automated
inspection systems and ensures higher sensitivity towards false negatives—a priority for
traffic safety systems. The cloning approach proved pivotal in circumventing the limitations
imposed by manual data collection methods, paving the way for a safer, more efficient
means of training robust detection models.

As shown in Figure 6, creating synthetic frames using an image editor takes at least
20 min per frame, highlighting the need for a more efficient and automated solution
(Table 2). The process begins by loading a series of images where the pin is in a safe posi-
tion (Pin_OK) and a template image where the pin is in an unsafe position (Pin_OUT). The
method involves several key steps: normalising the alignment of the pins in each Pin_OK
image to a standard reference position, segmenting the pins using a region-based segmen-
tation method, and calculating the displacement needed to replicate the Pin_OUT template.
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Figure 6. Synthetic data generation: The image illustrates the various stages of manipulating a video
frame to create synthetic images depicting a metal pin in unsafe positions. Starting with a standalone
image of the metal pin, the process involves adjusting its orientation, position, and environmental
context to generate realistic, unsafe scenarios.

3.2. Step 2: Data Augmentation

Data augmentation was necessary to work with sparse and unbalanced datasets. We
also considered commonly used approaches to enhance the training robustness of neural
networks by generating additional training data from existing datasets and helping to
prevent overfitting [60]. The augmentation techniques applied included geometric and
affine transformations where rotation, resizing, reflection, translation, and shearing were
utilised to modify the image structure without altering its content [37] (Figure 7). The
transformations were implemented using MATLAB’s Image Processing Toolbox, which
facilitated the efficient application of such techniques. Additionally, this research incorpo-
rated methods to introduce realistic variations into the dataset by adding noise and blur
effects, specifically using Gaussian and Salt and Pepper noise patterns. Such effects are
applied using MATLAB’s imnoise function for noise addition and imgaussfilt for Gaussian
blur. Such modifications simulated potential real-world imperfections in data, aiding the
network in learning to handle such irregularities effectively.
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rotation and scaling, affine transformations with various translations and shearing, and visual effects
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instrumental in preparing the neural network to handle diverse and realistic scenarios encountered
in practical applications, Xu, Yoon [61].

Further innovation includes the adoption of advanced colour transformation tech-
niques. Using MATLAB’s jitterColorHSV function, the images underwent random adjust-
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ments in brightness, contrast, hue, and saturation, broadening the range of visual data
the model was exposed to during training. Additionally, a novel colour transformation
approach that combines table lookup methods and 3D colour space interpolation allowed
for high-quality, real-time colour processing.

The comprehensive approach to data augmentation diversifies the training set, enhanc-
ing the model’s generalisation capabilities, which are important for similar applications,
including smart city contexts and the application of technology to improve the usability of
spaces where human activity may occur.

3.3. Step 3: Data Distribution Analysis Post Minority Boosting

Synthetic frames balanced the dataset, enhancing classification accuracy on a relatively
small, manually labelled dataset (Figure 8). This approach was advantageous under
restrictive conditions restricting minority class data collection. Additionally, synthetic data
facilitated fine-tuning model performance metrics such as Precision and Recall, focusing
on minimising false negatives due to their criticality for safety.
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From approximately 30,000 frames, 2300 images showing safe pin positions were
curated. To address the challenge of limited occurrences of unsafe pin conditions—a
common issue in training robust detection systems—210 synthetic images simulating
unsafe pin positions were generated and added to the dataset (Table 3).

Table 3. Data distribution: overview of the number of Pin_OK and Pin_Out images used for training
and validation across different video recording sessions.

Training Video
Session No.

(Table 1)

Training Data Validation Data

Pin_OK
Images

Pin_Out
Images

Pin_OK
Images

Pin_Out
Images

1 155 32 40 5

2 725 80 180 20

2 800 40 200 10

3 400 16 100 5
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Creating varying degrees of ‘Pin_Out’ positions helped optimise the balance between
false positives and negatives, which is crucial for refining the model’s accuracy and robust-
ness (Table 4).

Table 4. Initial classification results achieved from data clusters from Figure 8. Adopted from Bačić,
Rathee [7].

Confusion Table

Model
Actual

PIN_OK PIN_OUT

Logistic regression
P
r
e
d
i
c
t
e
d

PIN_OK [98.5% 1.5%

PIN_OUT 0 100%]

Neural Network
PIN_OK [98.9% 1.1%

PIN_OUT 0 100%]

SVM
PIN_OK [98.1% 1.9%

PIN_OUT 0 100%]

Synthetic frames varying in Pin_Out positions improved the tuning of false positive
(FP) and false negative (FN) ratios. The aim is to achieve FP > FN using a dataset with
borderline unsafe pin positions, enhancing classification accuracy. Accuracy was measured
using the following formula:

Accuracy =
TP + TN

TP + FP + TN + FN
(8)

TP represents the true positives or correctly identified Pin_Out frames, and TN rep-
resents the true negatives or correctly identified Pin_OK frames. Precision, the ratio
of correctly predicted positive observations to the total predicted positives, is defined
as follows:

Accuracy =
TP

TP + FP
(9)

The comprehensive approach involved a meticulous three-fold stratified cross-validation
process, as detailed in Table 5.

Table 5. The cross-validation test and score results updated from initial research.

3-Fold Stratified Cross-Validation

Model Precision Recall

Logistic regression parameters:
Regularisation: Ridge (L2), C = 1 0.995 0.995

Multilayer Perceptron (MLP)-
Parameters:
Hidden layers: 2 Neurons:
Activation function: ReLu
Solver: Adam
Alpha: 0.02
Max. iterations: 200
Backpropagation algorithm

0.995 0.995

Support Vector Machine (SVM) parameters:
C = 1.0, ε = 0.1

Kernel: Linear
Numerical tolerance: 0.001
Max. iteration: 100

0.985 0.984
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3.4. Step 4: Detecting Region of Interest (ROI)

Our research team comprehensively investigated various Region of Interest (ROI)
detection methodologies in developing an automated pin detection system for traffic man-
agement applications. Each method was scrutinised for its ability to accurately identify pin
locations within video frames under various environmental conditions. Shuffling through
different methodologies illuminated each approach’s challenges and potential, culminating
in us finding a particularly effective solution. Initially, our exploration utilised region
proposal methods, which calculate bounding boxes around potential ROIs (Figure 9C).
While initially promising, the approach necessitated frequent manual adjustments to en-
sure precision in detection and counting, rendering it less feasible for dynamic real-world
applications where automation is paramount. A Gaussian Mixture Model (GMM) was em-
ployed for adaptive background modelling (Figure 9B). The GMM was adept at segmenting
moving pins from static backgrounds by modelling the probability density distribution of
pixel intensities. Despite its effectiveness in foreground differentiation, the GMM required
extensive post-processing to localise each pin accurately, limiting its standalone utility in
precise ROI detection. We also explored colour-based segmentation using K-Means cluster-
ing within RGB, LAB, and HSV colour spaces—the latter of which is particularly favoured
due to its resilience against variations in lighting (Figure 9A). The method exploited the
unique colour signatures of the pins but faced limitations in specificity, often capturing
unrelated objects sharing similar colour profiles.
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colour signatures of pins while addressing challenges in specificity. (2) Gaussian Mixture Model
(GMM)-based detection illustrates foreground–background segmentation and pin movement tracking
between concrete blocks. (3) Regionprops application, showcasing template matching and automated
bounding box detection for precise localisation and reduced manual intervention in pin ROI detection
and labelling.

The methods tried in Figure 9 led to us adopting MATLAB’s regionprops function,
which proved superior in addressing previous methods’ precision and automation chal-
lenges. The regionprops analyses each connected a component in binary video frames,
effectively quantifying the area and bounding box coordinates for each detected ROI. The
function enhanced the accuracy of pin detection and facilitated a significant reduction in
manual intervention by automating the ROI detection process.

The underlying mathematical concepts of the regionprops function are integral to its
performance (Equations (8)–(13)).

Area: The area of a region is computed as the number of pixels within it.

Area = ∑(i,j)∈R 1 (10)

In this equation, the area represents the total number of pixels in the region R. Each
pixel within the region contributes a value of 1 to the total area, effectively counting
the pixels.

Centroid: The centroid is determined by averaging the positions of all the pixels in the
region, as follows:

Centroidx =
1
N ∑(i,j)∈R i, Centroidy =

1
N ∑(i,j)∈R j (11)

Bounding box: The bounding box, which encloses the region, is defined by the mini-
mum and maximum x and y coordinates of the pixels.

BoundingBox = [xmin, ymin, xmax − xmin + 1, ymax − ymin + 1] (12)

Major and minor axis length: For regions approximated by ellipses, the major and
minor axis lengths are derived from the eigenvalues of the covariance matrix of the pixel
coordinates.

MajorAxisLength = 2

√
λ1

N
, MinorAxisLength = 2

√
λ2

N
(13)

Orientation: The orientation of such an ellipse, indicating the angle between the x-axis
and the major axis, is calculated using the second moments of the region.

Orientation =
1
2

arctan(
2µ11

µ20 − µ02
) (14)

Perimeter: The perimeter is measured by summing the distances between consecutive
boundary pixels.

Perimeter = ∑boundrypixels distance between consecutive boundary pixels (15)

The integration of regionprops into our method significantly advances the automation
of pin detection. The enhancement offers high precision and efficiency, which are critical
for traffic management systems requiring reliability and rapid processing.

Our successful implementation emphasises the importance of a methodical approach
in engineering research, demonstrating how iterative testing and the integration of various
techniques can tackle complex real-world problems. This study highlights the effectiveness
of combining traditional image processing methods with advanced analytical tools and sets
a new standard for future research in automated traffic safety and management systems.
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The findings provide a robust framework for researchers and practitioners to enhance
automated detection systems across engineering domains.

3.5. Step 5: Model Training and Validation

The computing system (Table 6) provided sufficient hardware capabilities to train the
model at the core of the developed ‘Unsafe Pin Detection and Alert System’ system.

Table 6. A development system using NVIDIA GPU parallel processing architecture.

System Configuration

Processor Intel Core i7 Processor

Memory 32 GB RAM

Hard Drive 512 GB Solid State Drive

Graphics NVIDIA GeForce RTX2070 Super 8 GB GFX

Operating System Windows 10

ResNet-50, enhanced with 3D convolutions within the STENet framework, was se-
lected after an extensive comparison with other models like Squeezenet, GoogLeNet,
InceptionV3, and Mobilenetv2. ResNet-50 is favoured due to its optimal balance between
computational efficiency and performance, confirmed by satisfactory GPU RAM evalua-
tions during initial experiments (Table 7).

Table 7. Comparison of pretrained deep neural networks based on input image resolution, number
of parameters, depth, and model size.

Pretrained Deep Neural Networks

Model Input Image
Resolution

Parameters
(1,000,000) Depth Size

AlexNet 227 × 227 61 8 227
SqueezeNet 227 × 227 1.24 18 4.6
GoogleNet 224 × 224 7 22 27

Inception v3 299 × 299 23.9 23.9 48
MobileNet v2 224 × 224 3.5 3.6 53

Resnet 50 224 × 224 25.6 50 96

Various environmental elements, such as rust-coloured foliage, closely matched the
appearance of rusted metal pins, making visual differentiation challenging. Similarly,
unrusted metal pins shared the same colour as the road surface and the tyres of passing
vehicles, further complicating the identification process. The metal barriers in the back-
ground often had shapes resembling the horizontal profile of the metal pins, while the
dynamic colours of passing vehicles introduced intense background variations. In addition
to labelling the pin statuses, regions of interest (ROIs) were defined on each image using
the regionprops method to distinguish between relevant features and potential background
noise. This method, which analyses each connected component in binary video frames
to quantify the area and bounding box coordinates for each detected ROI, significantly
enhanced the accuracy of pin detection and reduced manual intervention. The combined
consideration of shape and colour homogeneity was a significant factor in training the AHB
pin detection model (Figure 10).

Additionally, certain parts of the movable concrete barrier (MCB) system closely
resembled the shape of the metal pins, creating further confusion (Figure 11(3)). These
factors made the detection task challenging, as the system had to differentiate between
multiple visually similar elements under varying conditions. The dataset then underwent
a series of image augmentation processes to simulate various operational conditions not
covered by the initial video capture. The processes included geometric transformations
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such as rotations, scaling, translations, and adding image perturbations like Gaussian
blur and noise, which are crucial for training models to perform well under practical
deployment conditions.

Electronics 2024, 13, x FOR PEER REVIEW 18 of 30 
 

 

 
Figure 10. Illustration of the background challenges in ROI detection. 

Additionally, certain parts of the movable concrete barrier (MCB) system closely re-
sembled the shape of the metal pins, creating further confusion (Figure 11(3)). These fac-
tors made the detection task challenging, as the system had to differentiate between mul-
tiple visually similar elements under varying conditions. The dataset then underwent a 
series of image augmentation processes to simulate various operational conditions not 
covered by the initial video capture. The processes included geometric transformations 
such as rotations, scaling, translations, and adding image perturbations like Gaussian blur 
and noise, which are crucial for training models to perform well under practical deploy-
ment conditions. 

 

Figure 10. Illustration of the background challenges in ROI detection.

Electronics 2024, 13, x FOR PEER REVIEW 18 of 30 
 

 

 
Figure 10. Illustration of the background challenges in ROI detection. 

Additionally, certain parts of the movable concrete barrier (MCB) system closely re-
sembled the shape of the metal pins, creating further confusion (Figure 11(3)). These fac-
tors made the detection task challenging, as the system had to differentiate between mul-
tiple visually similar elements under varying conditions. The dataset then underwent a 
series of image augmentation processes to simulate various operational conditions not 
covered by the initial video capture. The processes included geometric transformations 
such as rotations, scaling, translations, and adding image perturbations like Gaussian blur 
and noise, which are crucial for training models to perform well under practical deploy-
ment conditions. 
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A critical component of the training process was the adjustment of the learning rate, a
parameter that significantly impacts the convergence and final performance of the model.



Electronics 2024, 13, 3030 18 of 29

Learning rates ranging from 0.01 to 0.00001 using ResNet-50 were tested (Figure 12). The
optimal rate was determined through a series of trials evaluating model accuracy and
loss metrics. The experiments utilised ROC curves to visually represent the trade-offs
between true-positive and false-positive rates at various threshold settings, enabling an
informed selection of the best-performing model under the given training conditions. The
results consistently showed that a learning rate of 0.0001 provided the best balance between
training speed and model accuracy.
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In conclusion, this research detailed the selection, preparation, and training of a deep
learning model capable of detecting and classifying metal pin statuses in movable concrete
barriers. The methodological approach, emphasising the creation of a comprehensive and
diverse training dataset through real and synthetic images and rigorous model training
protocols, demonstrates a scalable and efficient solution to enhance public infrastructure
safety through advanced AI techniques.

3.6. Step 6: Model Analysis and Testing

The STENet architecture, inspired by and building upon the robust framework of
ResNet-50, exhibits considerable potential for spatiotemporal anomaly detection tasks, such
as those needed for monitoring the Auckland Harbour Bridge (AHB). While ResNet-50 was
initially developed for image classification, its strong spatial feature extraction capabilities
make it a solid foundation for further enhancements to analyse video and live feed data.
STENet integrates components from ResNet-50 with 3D convolutions to capture spatial and
temporal information, facilitating the direct analysis of motion and dynamic changes within
video sequences. Further enhancements involve leveraging ResNet-50’s spatial feature
extraction capabilities and Recurrent Neural Networks (RNNs) to track temporal sequences
or employing temporal pooling methods to summarise video segments efficiently.

By adopting strategies for model simplification, edge computing, and incremental
learning, STENet enhances system efficiency and responsiveness to new anomalies. This
makes STENet particularly suited for continuous surveillance and traffic monitoring appli-
cations. Table 8 highlights the performance metrics of STENet compared to other models.
By incorporating adaptations of ResNet-50’s core features, STENet effectively recognises
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appearance and behavioural pattern deviations over time, providing a robust framework
for real-time anomaly detection across diverse operational environments (Figure 13).

Table 8. The Spatio-Temporal Enhanced Network (STENet) achieves an outstanding 95.2% accuracy
score and an F1-Score of 94.8%, showcasing its exceptional capability to navigate through the chal-
lenges of background noise and small ROIs, with a remarkable ROC-AUC of 98.5%, solidifying its
robustness in class differentiation in spatio-temporal tasks.

Model Accuracy Precision Recall F1-Score ROC-AUC Training
Time

Inference
Time

Number of
Parameters

STENet 95.2% 94.5% 95.2% 94.8% 98.5% 4 h 80 ms 25 M

VGG-19 88.0% 88.5% 89.0% 88.7% 94.0% 6.5 h 90 ms 142 M

ResNet-50 90.0% 90.3% 91.0% 90.6% 95.8% 4 h 70 ms 25.6 M

InceptionV3 91.0% 91.2% 91.5% 91.3% 96.0% 3.5 h 65 ms 23.8 M

SqueezeNet 85.0% 85.5% 86.0% 85.7% 92.0% 2.5 h 35 ms 1.25 M
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4. Results and Discussion

The efficacy of the pin detection and alert system, which encompasses both pin Region
of Interest (ROI) detection and tracking alongside pin status detection and alert functionali-
ties, was critically evaluated. The assessments drew on methods previously detailed, with
particular attention to the operational conditions influencing system performance.

4.1. Preparations, Data Recording Protocol, Findings, and Insights

The system’s performance was assessed by examining recorded videos frame by
frame, focusing on pin ROI tracking. Several environmental and operational factors were
identified that could adversely affect the results.

• Lighting Conditions: Overcast conditions significantly hampered visibility, challeng-
ing the detection of pins between concrete blocks and rendering the detection and
counting processes unreliable.
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• Background Movements: Moving vehicles introduced significant noise into the back-
ground, severely hindering detection accuracy. While the greyish hue of the road and
concrete blocks helped simplify the background, the large vehicles passing by dis-
rupted visual clarity. Additionally, the rust colours and yellow of the movable concrete
barriers (MCBs) and fragments of broken concrete barriers and metal barriers often
blended into the pin regions of interest (ROIs), further decreasing tracking accuracy.

• Shadows and Lighting: Shadows cast on pin ROIs were sometimes misinterpreted
as moving objects. Darker shadows could compromise the detection and tracking
systems, particularly under bright sunlight.

• Vibrational Distortions: Operational speeds exceeding 6 km/h induced excessive
vibration, blurring the images and introducing background noise, further complicating
the detection processes.

To mitigate weather-related variabilities, multiple videos recorded in sunny conditions
were analysed. The first video, capturing a broader field from the front arm of the Barrier
Transfer Machine (BTM), displayed approximately two ROIs per frame, shot during a clear
afternoon. The second video, taken from the BTM’s rear arm, showed a narrower field of
view with sometimes only partial visibility of a single-pin ROI.

4.2. Creating Synthetic Frames

The concept of creating synthetic frames encountered significant challenges. The
initial cloning techniques were insufficient, yielding a non-viable minority dataset, which
necessitated a shift from classification techniques to traditional mathematical approaches.
Subsequent consultations with graphic experts led to the adoption of advanced methods
using Photoshop and Gimp for generating synthetic frames (Figure 14).
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Figure 14. Cloning process to create synthetic frames depicting the ‘PIN OUT’ position. (a) Failed
attempts until success (b,c); two distinct angles: (b) camera mounted at the back arm of the Bar-
rier Transfer Machine (BTM) and (c) camera mounted at the front arm of the BTM for enhanced
modelling accuracy.

Approximately 40 synthetic frames were crafted from video footage captured on
a mobile phone during the Proof-Of-Concept phase. A second batch of 200+ synthetic
frames was later produced from higher-quality video recordings, demonstrating a no-
ticeable improvement in frame clarity between the initial and later productions. Given
the labour-intensive nature of manual frame creation, efforts were made to automate the
process using Photoshop’s action panel. However, the complexity of the background ele-
ments hindered full automation. While MATLAB offers pixel cloning techniques, further
research is required to develop a fully automated and robust method for synthetic frame
generation. The analysis underscores the critical dependencies of environmental condi-
tions on the performance of pin detection systems and highlights the ongoing need for



Electronics 2024, 13, 3030 21 of 29

technical enhancements in synthetic data generation to support robust system training
and validation.

4.3. System Prototype: Pin Tracking, Counting, and Alerting Functionality

The development of the metal pin detection and alert system was guided by the
requirement that the end-user, presumed non-technical, has a simplified interface for
efficient system operation. The system prototype, named ‘Unsafe Pin Detection and Alert
System (Figure 15), was designed and implemented using MATLAB App Designer [62],
integrating back-end operations with a graphical user interface (GUI).
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System Functionalities

The App allows the end-user to upload a video or frame sequence for analysis. Upon
upload, the App leverages a deep learning-based pin status detection network to analyse
the video feed. The system maintains a count of metal pins, and if it detects a pin in an
unsafe position, it triggers an alert and displays the specific metal pin ROI on the screen.
The second functionality supports live feed analysis, where the user can connect the App to
a live camera feed. The pin detection network activates to analyse incoming frames in real-
time as the live feed is transmitted to the Unsafe Pin Detection and Alert System monitoring
App (Figure 15). Like the pre-recorded analysis, the system tracks and counts the metal
pin ROIs, alerting the user and displaying the ROI number when an unsafe pin is detected.
The metal pin detection and alert system interface, as shown in Figure 15, is designed to be
intuitive and easily navigable, ensuring that users can operate the system without prior
technical knowledge. The App’s design and operational logic were specifically tailored
to meet the needs of NZTA, allowing for custom modifications to accommodate specific
operational requirements or updates.

In conclusion, in theory, the alert system App is ready to be deployed. There is poten-
tial for further development into a complete product deployment, pending interest and
additional support from the NZTA. Future work will focus on refining the App’s function-
ality, enhancing its performance, and ensuring its onsite installation and integration into
existing infrastructure systems. Such enhancements, however, depend on the availability
of further resources and continued interest from stakeholders.
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4.4. Results

The evaluation of the performance of the STENet model was aimed at effectively
finding and localising the Pin_Out status using the workstation specifications outlined
previously in Table 6. We applied the models to the pin’s region of interest (ROI) frame-
by-frame tracking and real-time counting, assigning each pin ROI an index to maintain
continuity across frames. The detector model configurations are summarised in Table 9,
which details parameters such as batch size, number of epochs, learning rate, and optimiser
choices. Two optimisation techniques were utilised, Stochastic Gradient Descent with
Momentum (SGDM) and Adam, both chosen for their ability to enhance model performance
through efficient direction finding in the optimisation landscape [63,64].

Table 9. Configuration of the detector model. The table lists the batch size, number of epochs, learning
rate, and optimiser used for training the detector model. Two different optimisation techniques,
Stochastic Gradient Descent with Momentum (SGDM) and Adaptive Moment Estimation (Adam),
were employed to enhance model performance.

Model Batch Size Epoch Learning Rate Optimizer

Detector
64 100 0.0001 Sgdm
64 100 0.0001 Adam

Pin ROI tracking was evaluated for accuracy by comparing the consistency of index
assignment from frame to frame. Discrepancies in index continuity were noted as errors in
tracking. The dataset was divided into 70% training frames, 10% validation, and 20% testing
frames to assess the model robustly across varied conditions. The training process using
SGDM achieved quicker training times than Adam, as shown in Table 10. The validation
of the models demonstrated lower Root Mean Square Error (RMSE) and validation losses
with SGDM, indicating a more efficient optimisation path.

Table 10. SGDM training and validation process.

Epoch Iteration Time
Elapsed

Mini-Batch
(RMSE)

Validation
(RMSE)

Minibatch
Loss Validation

10 150 00.15.05 0.91 0.87 0.8285 0.7910

20 300 00.30.20 0.74 0.83 0.5384 0.6761

30 450 00.45.12 0.66 0.78 0.4141 0.6329

40 600 01.00.15 0.62 0.76 0.3968 0.5809

50 750 01.14.50 0.56 0.77 0.3182 0.4150

60 900 01.28.58 0.53 0.76 0.2708 0.4060

70 1050 01.44.55 0.52 0.74 0.2408 0.3716

80 1200 01.58.21 0.50 0.76 0.2018 0.3208

90 1350 02.13.43 0.48 0.75 0.1808 0.2710

100 1500 02.27.23 0.47 0.74 0.1280 0.2219

The results of the pin ROI classification and the accuracy of bounding box detection by
the trained STENet are depicted in Figure 16. The system was highly effective in recognising
both Pin_OK and Pin_Out statuses, even when pin ROIs were partially obscured or closely
positioned, which traditionally challenges detection accuracy. However, the accuracy
diminished in frames where pins were too closely spaced or partially out of the field
of view.
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While the system demonstrated robust performance in ideal viewing conditions, the
detection accuracy varied under different fields of view and lighting conditions, empha-
sising the need for a more diverse training dataset. The creation of synthetic frames to
augment the dataset was explored, but automation of the process remains a challenge
for future work, as manual frame creation proved time-intensive. Table 11 showcases
the classification metrics—accuracy, precision, and recall—after training, highlighting the
model’s strong performance overall.

Table 11. Performance of the STENet where ResNet 50 is used as a classifier.

Classes
Accuracy Precision Recall

Training Validation Training Validation Train Validation

Pin_Ok 0.952 0.945 0.942 0.940 0.940 0.945

Pin_Out 0.925 0.922 0.910 0.900 0.900 0.890

Despite variations due to the limited diversity in the minority class data, the classifier
maintains high accuracy and precision across both classes. The consistent performance
metrics for the ‘Pin_Ok’ and ‘Pin_Out’ classes demonstrate the model’s robustness and
reliability in identifying and classifying majority and minority class instances.

The results underline the practical application of deep learning models to metal pin
detection tasks, highlighting the necessity for further improvements in model training and
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synthetic data generation to handle diverse operational scenarios effectively. The research’s
main contributions to ARDAD are listed as follows:

• Spatiotemporal analysis for automated monitoring of traffic barriers on the Auckland
Harbour Bridge and other traffic locations using the same barrier to control traffic flow;

• Transforming a PoC [7] into an MVP with deployable AI algorithms for real-time
ARDAD, exemplifying the translation of research into practice;

• Semi-automated synthetic data generation methods to enhance machine learning
models for complex ARDAD tasks, addressing critical traffic events’ data sparsity
and rarity;

• Integrating machine learning with kernel manipulation for dynamic anomaly detection
to improve the precision of current ARDAD systems, increasing the average detection
accuracy from 0.826 to 0.939;

• Engaging in interdisciplinary collaboration to align ARDAD advancements with
stakeholder requirements, merging computational research with traffic management
solutions.

4.5. Discussion

The initial attempts to record high-speed videos from public transportation and per-
sonal cars presented significant challenges. Traffic flow predictions indicated that speeds
could occasionally drop below 20 Km/hr on the Auckland Harbour Bridge, ideally al-
lowing for capturing frames at 240 fps showing perfect pin alignments. However, these
conditions were rarely met, and reliance on traffic jams during rush hours did not yield the
desired outcomes due to erratic stoppage times and limitations of the recording equipment.
Given the critical safety requirements on the Auckland Harbour Bridge, all data collection
efforts were supervised by NZTA experts, who also provided access to the Barrier Transfer
Machine (BTM) and the operation site, along with necessary safety briefings. To see the
narrow gaps between the movable concrete segments, high-frame-rate cameras (GoPro 5,
GoPro 8, and GoPro 9) were mounted on the BTM, which moved between 6 and 9 Km/hr.
Recordings were made under various weather conditions and times of the day to capture
diverse operational scenarios. The difficulty in finding and recording pins that were out of
position significantly hindered the research process. After numerous unsuccessful attempts,
synthetic frames were adopted as a viable solution. An interim report was provided to the
NZTA, showcasing hierarchical clustering and a visual separation of feature vectors related
to the minority output class using Pearson and Cosine correlation-based distance measures.
Such computationally more demanding measures were selected over simpler ones like
Euclidean due to the high dimensionality of features extracted from CNNs relative to the
number of minority class samples, including the necessity to extract information invariant
to lighting conditions, precipitation, or background colours from passing vehicles.

Classifications beyond binary (pin in or out of position) remain unexplored, such as
scenarios where the pin ROI is wholly obscured or metal pins are partially out. Extending
the binary classification to a multi-class system could allow future systems to detect various
types of damage requiring different maintenance actions. Additional datasets capturing a
broader range of anomalies, and more synthetic data would be required to support such
enhancements, following the methodologies outlined in our synthetic data creation algo-
rithm in Table 2. The average detection accuracy achieved was 0.93, which is commendable
given the numerous challenges encountered during model training. Compared to other
region-based detectors, our hybrid model offered higher accuracy and superior processing
speed, handling 40 to 45 frames per second with up to 93.6% accuracy. The integration
and depth concatenation layers enhanced the detection of smaller objects by incorporating
low-level image details into the detection process, facilitated by a sequence of convolution,
ReLU, and batch normalisation layers. The MATLAB app provides a robust platform for
expanding research into future applications. In terms of ‘dealing with the unknown’ and
research uncertainty, for the research community undertaking similar projects exceeding
one or few years, it is worth considering additional challenges that are hard to predict.



Electronics 2024, 13, 3030 25 of 29

Such considerations may include changes in industry partner staff, possible pandemic
lockdowns, government funding, and policy updates, which require flexibility in project
and data collection planning.

A summary of the practical aspects of this study are listed as follows:

• The technology offers a cost-effective automated solution to lane and general traffic
safety, augmenting but not replacing human inspections.

• The system increases inspection frequency, enhances privacy, and enables the creation
of digital records for analytical insights into traffic safety.

• Future scientific efforts will use a more extensive dataset to focus on adaptive model
development and performance enhancement. Additional data visualisation and hybrid
methodological approaches will be explored.

• For our industry partner, the NZTA, the project paves the way for independent
software development and potential system integration into broader smart city infras-
tructures.

• The transition from a minimum viable product (MVP) to production systems will
involve extensive testing, code optimisation, and, potentially, transitioning from
MATLAB to Python to enhance computational efficiency integration capabilities and
minimise the possibility of vendor locking into proprietary infrastructures and data
processing outside of the national jurisdiction.

• This study lays the groundwork for future innovations in traffic management technol-
ogy, positioning the NZTA to leverage the advancements in its ongoing modernisation
of traffic infrastructure and smart city initiatives.

Future system advancements will consider enabling pin status tracking from various
points of view, potentially including additional data collection protocols and technology,
expanding the system’s versatility and application scope.

5. Conclusions and Future Work

The Auckland Harbour Bridge plays a crucial role in Auckland’s infrastructure, with
traffic flows that are uneven but predictable, reversing in volume during morning and
evening rush hours. Movable Concrete Barriers (MCBs) have proven effective in managing
short-distance traffic bottlenecks; however, the bridge’s susceptibility to various types of
vibrations, particularly around its elevated central part, raises safety concerns, necessitating
frequent pin inspections. Other health and safety concerns include sole reliance on manual
inspections and the potential for human errors linked to inspection staff workplace safety,
unhealthy spine ergonomic posture, and issues with protective gear.

To increase the safety and safety-monitoring frequency of the MCB, we developed a
privacy-preserving automated monitoring system that is transferrable from data collected
on the Auckland Harbour Bridge to similar contexts involving traffic flow regulation and
safety monitoring applications [10]. A novel technique for generating synthetic frames was
introduced to simulate various unsafe pin positions, aiding incremental model development
and performance tuning. This research successfully demonstrated that the prototype
can detect unsafe pin positions directly from live feeds and previously recorded video
frames under varying lighting conditions (such as bright sunshine, heavy rain, and early
morning ‘soft’ light conditions). The scarcity of video frames showing a Pin_Out status
was addressed by introducing a method for creating synthetic images to enhance the
modelling process. The system’s expected overall performance for pin region detection,
frame selection, and pin classification was anticipated to be above 80%, with individual
models achieving up to 99% accuracy on a limited dataset, as shown in Table 5. These
findings warrant further validation on a larger and more balanced future dataset. The
pin status detection and alert system exhibited desirable precision and accuracy, with
some performance decline attributed to the dataset’s unbalanced nature, diverse lighting
conditions, and camera angles and distance variations. Evidence from a smaller labelled
dataset suggests that the system is a viable product that does not require further intensive
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manual labelling. Integrating a hybrid model facilitated the analysis and provided flexibility
for future model adjustments with minimal data labelling requirements.

Future work will include further video data collection, including additional videos
recorded by the NZTA and AHB maintenance teams. The enhanced data collection is
expected to bolster the foundational system and help further develop universally appli-
cable ARDAD systems for similar traffic safety contexts globally. While the pin status
detection and classification results are promising, there is significant potential for further
advancements in integrating pin ROI tracking with the alert system. Future iterations
of the system may also leverage advanced technologies such as LiDAR and GPS, which
are becoming increasingly common in modern mobile devices. Developing additional
capabilities will involve extensive system training and adaptation on enriched datasets
that capture various pin conditions and scenarios, potentially leading to more robust and
responsive traffic management solutions.
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Notations
The following table summarises the important symbols and mathematical notations used in this

paper:

Symbol Description
Y Luminance component in the YCbCr colour space
xc Centroid location of an object in template matching
xi Pixel location in template matching
wi Pixel intensity in template matching
P(Xt) Probability of observing a pixel value X at time t in a Gaussian Mixture Model
wk,t Weight of the k-th Gaussian component at time t
µk,t Mean of the k-th Gaussian at time t
∑k,t Covariance matrix of the k-th Gaussian at time t
∆Mt Motion detection metric combining frame differences and optical flow
Ft Frame at time t
∇lt Gradient of the image at time t
vt Optical flow vector at time t
α Weighting factor in motion detection equation
Kk Kalman gain at time k
zk Actual measurement at time k
Hk Measurement matrix that maps the state space into the measurement space
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Abstract: Recently, Sakli investigated the propagation of electromagnetic waves in metallic cylindrical
waveguides filled with longitudinally magnetized ferrite, focusing on TEz (transverse electric) and
TMz (transverse magnetic) modes relative to the z-axis. This commentary highlights that the proposed
system generally cannot support the propagation of the TEz and TMz waves, rendering the main
results derived by Sakli invalid.

Keywords: anisotropic materials; antenna; cylindrical waveguides; ferrites; propagation

1. Introduction

Recently, Sakli [1] investigated the propagation of TEz and TMz modes in metallic cylin-
drical waveguides filled with lossless, longitudinally magnetized ferrite. He demonstrated
how to obtain dispersion diagrams and discussed the impact of anisotropic parameters
on dispersion characteristics and cutoff frequencies. Additionally, he presented numerical
results for the TEz and TMz modes.

However, based on the theory of ferrite-filled cylindrical waveguides obtained in
the beginning of the 50s of the last century [2,3], the hybrid wave should be expected for
the proposed metallic cylindrical waveguide propagation, and therefore TEz and TMz
waves are unable to propagate. Additionally, as shown in our recent study [4], a metallic
cylindrical waveguide filled with homogeneous anisotropic materials generally supports
only hybrid modes. This means that the above-mentioned results for the propagation of
TEz and TMz modes derived by Sakli [1] are invalid. Let us note that it was also well
established that in general cases, the separation of electromagnetic waves into TE and TM
modes is not possible in metallic rectangular waveguides [5,6].

We believe that incorrect publications should be corrected to ensure new researchers
can build upon accurate prior studies. This motivation drives our commentary, in which
we identify the errors in [1].

2. The Rigorous Electromagnetic Analysis

Consider a metallic cylindrical waveguide filled with longitudinally magnetized ferrite
as shown in Figure 1 of [1]. We are interested in guided mode solutions in the waveguide
propagating in the z-direction. Therefore, let us consider the form of the electromagnetic
wave propagating in the waveguide as

E(r, θ, z, t) = E(r, θ)ej(ωt−kzz), (1)

H(r, θ, z, t) = H(r, θ)ej(ωt−kzz), (2)
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where kz is the propagation constant along the z-direction. Expanding the Maxwell curl
equations (i.e., Equations (1) and (2) in [1]) and using Equation (3) in [1] we obtain 1

r
∂Ez
∂θ − ∂Eθ

∂z
∂Er
∂z − ∂Ez

∂r
1
r

∂(rEθ)
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, (3)
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Putting Equations (1) and (2) in Equations (3) and (4), and conducting some manipulation,
we obtain
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where some symbols are introduced for convenience, namely the following:
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cµ = εr f k2

0µ − k2
z,

F = εr f k2
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(9)

We remind the reader that the remaining parameters in the equations used in this work
were defined in reference [1]. Note that the longitudinal components satisfy the following
coupled equations:[

1
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so that, in general, a hybrid mode is needed. Note that the right-hand sides of Equations
(10) and (11) were neglected in the analysis by Sakli [1]; therefore, his statement that TEz
and TMz modes can be supported separately in a metallic cylindrical waveguide filled with
longitudinally magnetized ferrite is incorrect.

However, the decoupling of Ez, from Hz occurs in two particular cases. In the first
case, Equations (10) and (11) can be separated into two independent equations of Ez and
Hz, when the magnetization is equal to zero, i.e., when we have

κ = 0. (12)
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In this case, Equations (10) and (11) become[
1
r
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Ez = 0, (14)

and therefore, TEz and TMz modes can be supported separately in a metallic cylindrical
waveguide filled with longitudinally “unmagnetized” ferrite. In the second case, decou-
pling occurs if we consider the azimuthal modes, i.e., when we have

kz = 0. (15)

Putting the propagation constant equal to zero in Equations (10) and (11), we obtain[
1
r

∂

∂r
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]
Ez = 0. (17)

In this case, TEz and TMz modes with components (Hz, Er, Eθ) and (Ez, Hr, Hθ) appear,
respectively.

3. Conclusions

In this work, we began by using the general mathematical framework for how elec-
tromagnetic waves travel through a metallic cylindrical waveguide that is filled with a
ferrite material magnetized along its length (as outlined in references [2] and [3]). Our
analysis demonstrated that, in most situations, this type of system does not permit the
distinct separation of TEz and TMz modes. There are only two special scenarios where this
separation might occur. As a result, the main findings presented by Sakli in reference [1]
are invalid.
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Abstract: Reconstructing three-dimensional (3D) models of power equipment plays an increasingly
important role in advancing digital twin power grids. To reconstruct a high-precision model, it is
crucial to accurately obtain the pylon type and its necessary parameter information before modeling.
This study proposes an improved method for identifying pylon types based on similarity measure-
ment and a linearly transformed dataset. It begins by simplifying the identification of point clouds
using the pylon shape curve. Subsequently, the resemblance between the curve and those curves
within the dataset is evaluated using a similarity measurement to determine the pylon type. A novel
method is proposed for calculating the characteristic parameters of the pylon point clouds. The
horizontal and vertical distribution characteristics of the pylon point clouds are analyzed to identify
key segmentation positions based on their types. Feature points are derived from key segmentation
positions to calculate the characteristic parameters. Finally, the pylon 3D models are reconstructed
on the basis of the calculated values. The experimental results showed that, compared with other
similarity measurements, the Hausdorff distance had the best effect as a similarity measurement using
the linearly transformed dataset, with an overall evaluation F-score of 86.4%. The maximum relative
error of the calculated pylon parameters did not exceed 5%, affirming the feasibility of the algorithm.

Keywords: airborne LiDAR; power pylon; similarity measurement; 3D reconstruction

1. Introduction

With the rapid advancement of the national economy, there is a continuous surge in
demand for fundamental energy sources like electricity. High-voltage transmission lines,
serving as essential infrastructure for long-distance power transmission, play a crucial
role in national economic development and daily production [1–3]. Regular monitoring
and maintenance of power transmission corridors are imperative to ensure the safe and
stable operation of the power system. Traditional inspection of transmission lines is
typically conducted by line inspectors who visually or with handheld instruments inspect
power equipment and identify potential hazards based on experience. However, due to
several constraints and the absence of three-dimensional (3D) data along the lines, manual
inspections entail a significant workload, low precision, and potential safety hazards,
rendering them inadequate to meet the inspection needs of the power grid [4–7].

In recent years, airborne Light Detection and Ranging (LiDAR) technology has been
widely used in power inspections because it enables the rapid and precise acquisition of
dense 3D point clouds within power transmission corridors without the limitations of
light and terrain [8–10]. As an essential component of transmission lines, the power pylon
plays a pivotal role in ensuring the safety of high-voltage lines. The reconstructed 3D
model of the pylon can provide basic data and model support for conducting multi-physics
field simulation analysis, simulating real working scenes, and guiding the selection of
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operational methods. Therefore, it is necessary to develop an accurate and efficient method
to extract pylon information from point clouds for 3D model reconstruction.

Currently, the research on pylon point clouds primarily focuses on the segmentation
of pylon points from the point clouds collected by airborne LiDAR [11–16]. And there
are many methods for pylon reconstruction based on point cloud data, which can be
classified as data-driven [17], model-driven [10], and hybrid-driven [18]. The data-driven
approach is generally a bottom-up strategy. It directly processes the data without the need
to presuppose the characteristics of the reconstructed object. Han et al. [17] proposed a
data-driven method of modeling the power pylon. In this method, power pylon point
clouds were located and extracted by utilizing the connection points of line pairs. The
3D model of the power pylon was constructed according to the 3D line feature obtained
from the binary image contour tracking. This method requires high data quality, and it is
difficult to reconstruct the pylon structure when there are many noise points in the obtained
point clouds. Compared with the data-driven approach, the model-driven approach takes
a top-down strategy and requires a model library to be completed in advance. Li et al. [10]
divided the pylon into three relatively simple parts: the foot, the body, and the head. The
head was reconstructed by seeking the corresponding model from the pre-built model
library, and the body was reconstructed by calculating the intersection lines of the fitted side
planes. The experiment suggested that the approach can achieve automatic 3D modeling
of the pylon head and body effectively. However, the reconstruction of the pylon foot
required interactive operation. Since it is difficult to meet the reconstruction requirements
of complex objects by using data-driven or model-driven methods alone, hybrid methods
combining the above two methods have been proposed. The method adopts appropriate
strategies according to different structural modeling requirements, which can improve
the modeling accuracy. Zhou et al. [18] divided the pylon into the head and body. They
reconstructed the pylon body by a data-driven strategy and the head by a model-driven
strategy with the aid of a predefined 3D head model library. This method can accurately
reconstruct the original pylon structure, but it cannot effectively handle pylons containing
more complex structures.

To solve the problems in the above modeling methods, the pylon types and necessary
parameter information obtained from 3D point clouds are used to reconstruct the pylons in
this paper.

The existing methods for identifying the pylon types are mainly classified into rule-
based methods and machine learning methods [19]. For the first method, the characteristics
are extracted from the pylon point clouds, and then the pylon types are identified according
to the difference of the characteristics. Qiao et al. [20] layered the pylon head point clouds
and then calculated the rate of vertical filling for every individual layer. They classified
pylons into two types based on the position of the layer with the largest filling rate. Chen
et al. [21] segmented the pylon head point clouds based on point distribution characteristics
and then projected it onto the Y0Z0 plane to create an image. The pylon head contour
image was acquired by integrating the image processing method. Finally, the pylon type
was determined based on the quantity of pixels within the contour. Although the above
two methods can distinguish pylons, the types of pylons that can be identified are very
limited. Silva F. et al. [22] proposed a classification methodology based on similarity. They
utilized point cloud distance metrics to measure the similarity between pylon point clouds
and basic reference models, achieving pylon classification based on differences in distance.
This method requires handling large amounts of data and is sensitive to fluctuations in the
density of sampling points. For the second method, the identification of the pylon types
is realized based on the machine learning algorithm. Zhou et al. [18] first defined a 3D
parameterized model library of pylon heads. Then, pylon head types were identified by
the shape context algorithm, and a simulated annealing algorithm was used to estimate
the relevant parameters of the pylon heads. Chen et al. [23] extracted features based on
point elevation histograms and frontal projection, and finally used the Support Vector
Machine (SVM) classification method to train and classify head feature vector samples.
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Wang et al. [24] projected inner and outer contour points into rasterized images to extract
Histogram of Oriented Gradient (HOG) features. Then, they used these as inputs to the
SVM classifier for type identification. However, when the SVM algorithm processes large-
scale data sets, it may take longer to train due to its higher computational complexity and
storage requirements.

In summary, the current methods for identifying pylon types suffer from limited
recognition effectiveness, susceptibility to variations in sampling point density, high com-
putational complexity, and long training times. Moreover, there is no suitable method
for calculating the parameters of the pylon point clouds. To solve the aforementioned
problems, this study proposes an improved method for identifying pylon types based on
similarity measurement and a novel characteristic parameter calculation method of pylon
point clouds. Figure 1 shows the data processing flow chart of this paper. Firstly, the point
clouds are preprocessed with zero-mean normalization, shifting, and redirection before
the pylon information is obtained. Secondly, pylon types are identified by calculating the
similarity measurement between the shape curves generated based on the point clouds and
curves within the dataset. Then, the pylon characteristic positions are determined based
on the calculated point clouds’ number, density, filling rate, and shape parameter. In the
case of obtaining these positions, the feature points are derived from the point clouds to
calculate the characteristic parameters. Finally, the pylon 3D models are reconstructed on
the basis of the calculated values.
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The main innovations and contributions of this study are as follows:

1. This study proposes an improved method for identifying pylon types based on the
similarity measurement and a linearly transformed dataset. Comparing the effects of
four similarity measurements on pylon type identification, a similarity measurement
that is more suitable for various pylon type identification is obtained.

2. A novel method for automatic calculation of characteristic parameters using airborne
LiDAR data is proposed for the first time. It can efficiently extract the specific infor-
mation of the pylon, ensuring the high accuracy of characteristic parameters.

3. The 3D models of the four types of pylons are reconstructed on the basis of the
identified pylon types and calculated parameters, which can accurately reflect the
true structure of the pylons.

2. Pylon Point Cloud Type Identification Based on Similarity Measurements

In the process of collecting pylon point clouds using airborne LiDAR, the majority
of laser points are not obtained by scanning the surface of the target vertically but rather
through inclined incidence. Therefore, in addition to being located on the top of the pylon,
some of the pylon point clouds are situated on the sides of the pylon. Additionally, in the
absence of Unmanned Aerial Vehicle (UAV) flight routes and specific spatial geographic
information on the pylons, it is impossible to determine which side the points belong to.
Furthermore, the pylon structure is generally complex. If all the pylon point clouds are
utilized to determine the pylon type in 3D space, the aforementioned circumstances will
make it difficult to achieve this goal.

To address this issue more effectively, this paper introduces pylon shape curves,
simplifying the pylon type identification in 3D space to the identification of curves in
two-dimensional (2D) space. This curve can accurately reflect the shape of the pylon. The
shapes of various pylon types exhibit significant differences, and the shapes of pylons that
belong to the same type but different models are basically similar. Finally, the similarity
measurements are combined to determine the resemblance between the shape curve derived
from the pylon point clouds and the curves within the dataset, and then the type of the
pylon is determined.

2.1. Point Cloud Preprocessing

Considering that the pylon point clouds collected by airborne LiDAR can be oriented
arbitrarily in 3D space, for the sake of facilitating similarity measurement calculation and
subsequent processing, we perform zero-mean normalization on the pylon point cloud
data using Equation (1). Then, we transform the coordinates of the processed points by
shifting them along the Z-axis positive direction, obtaining the updated coordinates (x′,
y′, z′). 

x′ = x − x0
y′ = y − y0
z′ = z − z0 − min(z − z0)

(1)

where x0, y0, and z0 represent the coordinates of the central position of the initial point
clouds; and x′, y′, and z′ represent the coordinates of the point clouds after zero-mean
normalization and shifting.

The pylon structure is generally symmetrical, and capturing the shape characteristics
of the pylon from the front view is more effective. Consequently, it is required to rotate the
point clouds of the pylon by a certain angle, θ, before generating the pylon shape curve,
aligning its horizontal direction perpendicular to the X-axis.

The horizontal direction of the pylon is generally more relevant to its upper struc-
ture. In this study, point clouds with Z coordinates exceeding H are chosen and projected
onto the XY plane. Subsequently, the eigenvalues and eigenvectors of the resulting pro-
jected point clouds are calculated using the principal component analysis (PCA) algorithm.
The obtained minimum eigenvalue corresponds to the eigenvector (v1, v2) perpendicu-
lar to the point cloud horizontal orientation. And the rotation angle θ is calculated by
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Equation (2) [20]. Finally, the coordinate transformation is conducted using Equation (3)
to obtain the coordinates (x′′, y′′, z′′) of the rotated point clouds. Figure 2 displays the
projections of the redirected pylons.

θ = arccos(
v1√

v2
1 + v2

2

) (2)


x′′ = x′ cos(θ)− y′ sin(θ)
y′′ = x′ sin(θ) + y′ cos(θ)
z′′ = z′

(3)

where x′′, y′′, and z′′ represent the coordinates of the rotated point clouds.
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2.2. Generating the Pylon Point Cloud Shape Curve

The redirected pylon point clouds are projected onto the Y′Z plane, and then vertically
layered along the Z-axis at a certain interval of h1. The boundary points of each layer
are found by using a sliding window. These points form the overall pylon shape curve.
Considering the symmetry of the pylon structure, half of the boundary points can be
selected and connected in sequence. Finally, uniformly spaced discrete curves, which are
the pylon point cloud shape curves, are obtained, as shown in Figure 3.



Electronics 2024, 13, 3032 6 of 20

Electronics 2024, 13, x FOR PEER REVIEW 6 of 20 
 

 

 
 

(a) (b) 

 
 

(c) (d) 

Figure 3. Pylon point cloud shape curve. (a) Type-a pylon. (b) Type-b pylon. (c) Type-c pylon. (d) 
Type-d pylon. 

2.3. Creating the Shape Curve Dataset 

The outer shape of pylons serves as a crucial criterion for identifying pylon types. 
Before calculating similarity measurements, it is essential to create a dataset of pylon 
shape curves. The creation of this dataset refers to relevant general design and typical 

design standards issued by the State Grid Corporation of China, along with other pylon 
design and construction standards, ensuring the accuracy and completeness of the data. 
Based on common pylon parameters provided by these standards, such as height, length, 

cross-arm length, and other information in the vertical and horizontal directions, the 
shape curves of different pylons in the dataset are generated. Then, the shape curves in 

the dataset are linearly transformed to the same height, as shown in Error! Reference 
source not found.Figure 4. And to facilitate the calculation of the similarity measurement, 
half of the feature points are connected to form a discrete curve before utilization. 

Currently, the dataset contains the shape curves of various common power pylons, 
such as cat-head pylons, sheep horn pylons, and cup pylons. These curves are generated 
based on standard parameters. In addition, taking into account the correlation between 

the number of pylon arms and phases, and the orientation of the power lines, we classify 
these pylons into single-phase, two-phase, and three-phase pylons. Furthermore, we also 
consider the cases of single-circuit, double-circuit, and four-circuit pylons [25]. 

 

Figure 4. Shape curves of some pylons in the dataset. 

Figure 3. Pylon point cloud shape curve. (a) Type-a pylon. (b) Type-b pylon. (c) Type-c pylon.
(d) Type-d pylon.

2.3. Creating the Shape Curve Dataset

The outer shape of pylons serves as a crucial criterion for identifying pylon types.
Before calculating similarity measurements, it is essential to create a dataset of pylon shape
curves. The creation of this dataset refers to relevant general design and typical design
standards issued by the State Grid Corporation of China, along with other pylon design
and construction standards, ensuring the accuracy and completeness of the data. Based on
common pylon parameters provided by these standards, such as height, length, cross-arm
length, and other information in the vertical and horizontal directions, the shape curves
of different pylons in the dataset are generated. Then, the shape curves in the dataset
are linearly transformed to the same height, as shown in Figure 4. And to facilitate the
calculation of the similarity measurement, half of the feature points are connected to form a
discrete curve before utilization.
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Currently, the dataset contains the shape curves of various common power pylons,
such as cat-head pylons, sheep horn pylons, and cup pylons. These curves are generated
based on standard parameters. In addition, taking into account the correlation between
the number of pylon arms and phases, and the orientation of the power lines, we classify
these pylons into single-phase, two-phase, and three-phase pylons. Furthermore, we also
consider the cases of single-circuit, double-circuit, and four-circuit pylons [25].

2.4. Similarity Measurements

The shape curve of a pylon can provide various information, such as the shape
of the pylon head, pylon height, and the number of crossarms. Reasonably utilizing the
distinguishing features of different types of pylons will contribute to accurately determining
the pylon type. Moreover, the selection of similarity measurements is crucial for the
identification of pylon types. This study selects four widely used similarity evaluation
measurements in the fields of pattern recognition and artificial intelligence: the Dynamic
Time Warping (DTW) distance, FastDTW distance, discrete Fréchet distance, and Hausdorff
distance. We compare their effectiveness in identifying pylon types.

(1) DTW distance and FastDTW distance: The DTW algorithm is widely used in
evaluating the resemblance of time sequences with different lengths, and has extensive
applications in the field of speech recognition [26,27]. Its main approach is as follows.

Suppose there are two time sequences, X = {x1, x2, . . . , xi, . . . , xn} and Y = {y1, y2, . . . ,
yj, . . . , ym}. The cumulative distance matrix D of X and Y is constructed using Euclidean
distance. A warping path W in matrix D is found such that the sum of elements along the
path is minimized. The minimum cumulative distance can be calculated using Equation (4)
by satisfying both the monotonicity and continuity constraints.{

D(i, j) = d(xi, yj) + min{D(i − 1, j), D(i, j − 1), D(i − 1, j − 1)}
1 ≤ i ≤ n, 1 ≤ j ≤ m

(4)

where d(xi, yj) represents the distance between xi and yj. D(i, j) represents the cumulative
distance between time steps xi and yj.

The final minimum cumulative distance can be used to assess the similarity of se-
quences X and Y. A smaller value indicates that the two sequences share a greater resem-
blance in terms of their shape; conversely, a larger value suggests less similarity.

However, when the time sequences are lengthy, the computational complexity of
calculating the DTW distance between the two sequences is O(nm), leading to relatively
low algorithm efficiency. In this case, the DTW algorithm is usually accelerated by limiting
the path search range, data abstraction, and indexing. FastDTW uses the first two methods
to expedite DTW. This improved algorithm effectively decreases the time complexity of
DTW to O(m). FastDTW primarily involves three processes: coarsening, projection, and
refinement [28–30].

(2) Discrete Fréchet distance: The discrete Fréchet distance takes into account the
shape of curves as well as the sequence of points along the curves. It is a distance measure
to determine the degree of similarity between curves and is employed in various fields to
gauge the similarity between parameterized curves [31,32]. Its definition is as follows.

If there are two polygon curves X and Y consisting of m and n points, respectively. To
calculate the discrete Fréchet distance between X and Y, the corresponding sequence of
point pairs is found at first.

L =
{
(xa1 , yb1), (xa2 , yb2), · · · , (xak , ybk

)
}

(5)

Among them, a1 = 1, b1 = 1, ak = m, and bk = n. And to ensure the order of points, for
any i = 1, . . . , n, there is ai+1 = ai or ai+1 = ai + 1, bi+1 = bi, or bi+1 = bi + 1. Then, we calculate
the maximum distance between corresponding point pairs.

∥L∥ = max
i=1,··· ,k

d(xai , ybi
) (6)
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The discrete Fréchet distance between X and Y is defined as follows:

D f (X, Y) = min{∥L∥} (7)

Df(X, Y) can be used to assess the similarity between X and Y. The resemblance of the
shapes between both curves increases as the value decreases.

(3) Hausdorff distance: The Hausdorff distance describes the similarity of two subsets
by measuring the distance between them in space [33]. If there are two finite point sets X
and Y, with lengths n and m, respectively, then the bidirectional Hausdorff distance Dh(X,
Y) of these two sets of data is:

Dh(X, Y) = max{dh(X, Y), dh(Y, X)}
dh(X, Y) = maxx∈Xminy∈Y ∥ x − y ∥
dh(Y, X) = maxy∈Yminx∈X ∥ y − x ∥

(8)

where Dh(X, Y) takes the maximum value between dh(X, Y) and dh(Y, X). ∥·∥ represents the
Euclidean distance between point sets X and Y. dh(X, Y) is the maximum shortest distance
from the point in X to the Y set. dh(Y, X) represents the maximum shortest distance from
the point in Y to the X set.

The Hausdorff distance measures the dissimilarity of two sets of points and can be
used to assess the similarity of X and Y. A smaller value of Dh(X, Y) indicates a greater
similarity in shape between X and Y.

3. Characteristic Parameter Calculation of Pylon Point Clouds

In this section, the distribution characteristics of the pylon point clouds including
number, density, and horizontal filling rate are first calculated. Then, these character-
istics and the pylon type are used to identify the key segmentation positions. Finally,
based on these positions, feature points are derived from the point clouds to calculate the
characteristic parameters.

3.1. Distribution Characteristics of Pylon Point Clouds

The pylon point clouds projected onto the Y′Z plane are vertically layered to generate
histograms of the distribution characteristic value. Then, a sliding window is used to
identify layers that simultaneously satisfy both the local maximum number of point clouds
and the local maximum point cloud density. And the horizontal filling rate of these layers
is calculated. Finally, key segmentation positions are identified from the layers with the
great filling rate.

The point clouds are layered along the Z-axis with a fixed interval h1. The number
of pylon points and the spatial size of each layer are calculated and used to obtain the
distribution degree of the point clouds in each layer, that is, the point cloud density. In
order to fully consider the number of pylon points and the point cloud density, the two
parameters are standardized. The sum De of the two parameters obtained after processing
is used as the distribution characteristic value of the pylon point clouds. Then, a window
with height h2 slides up from the bottom of the pylon at a fixed interval h1. If the De value
of the layer in the middle of the window is greater than the De value of other layers in the
window during the sliding process, the layer is regarded as the one that simultaneously
satisfies both the local maximum number of point clouds and the local maximum point
cloud density, as shown in Figure 5 (yellow lines).

In practical analysis, not all layers with the above two characteristics are key layers
required for subsequent calculations. The top N1 maximum values are selected to further
filter the layers here. Subsequently, important layers can be further determined by calcu-
lating the filling rate of each layer. The specific calculation process of the filling rate is as
follows: important layers are divided into N2 grids at a fixed spacing L1 along the Y′-axis,
and the proportion of grids containing points n to the overall count of N2 grids is defined
as the filling rate f, as shown in Figure 6.
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Electronics 2024, 13, x FOR PEER REVIEW 9 of 20 
 

 

  

  

Figure 5. Distribution characteristics of pylon point clouds. (a,d,g,j) The projections of the pylon on 
the Y′Z′ plane. (b,e,h,k) Distribution characteristic value histograms, and yellow lines are layers 

with both the local maximum number of point clouds and the local maximum density. (c,f,i,l) Filling 
rate histograms, and blue lines are the key segmentation positions. 

 

Figure 6. The filling rate calculation process. 

3.2. Key Segmentation Position Identification 

The filling rate f of the expected key segmentation position (yellow lines) is calculated 

in the previous section. When the filling rate of a layer exceeds the predefined threshold 
Tf, the key segmentation position S can be described as the average Z coordinate of all the 
points within the layer, as shown in Figure 5Error! Reference source not found. (blue 

lines). For type-a pylons and type-d pylons, all the key segmentation positions can be 
directly identified using the aforementioned method. However, for the other two types of 

Figure 6. The filling rate calculation process.

3.2. Key Segmentation Position Identification

The filling rate f of the expected key segmentation position (yellow lines) is calculated
in the previous section. When the filling rate of a layer exceeds the predefined threshold
Tf, the key segmentation position S can be described as the average Z coordinate of all
the points within the layer, as shown in Figure 5 (blue lines). For type-a pylons and
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type-d pylons, all the key segmentation positions can be directly identified using the
aforementioned method. However, for the other two types of pylons, besides the positions
obtained as described above, additional approaches are required to determine other key
segmentation positions.

For the type-b pylon, we first consider the outer contour. Due to the presence of
a hollow section in the layer containing the connecting insulator position for the type-
b pylons, the filling rate of this part is relatively low and thus not considered as a key
segmentation position. Considering that the projected shape of the structure above the
pylon head of this type of pylon varies with height in the X′Y′ plane, the shape parameter
Gi is introduced here to better identify key segmentation positions. This parameter defines
the ratio of the maximum projection length of the point clouds on the X′ and Y′ axes to the
minimum value. The sum of G1 and the error constant Ce serves as the threshold TG for
the shape parameter. Starting from G1, each Gi is sequentially compared to the threshold
TG. If Gi exceeds TG, the point cloud layer corresponding to Gi-1 is the segmentation
position Si-1 between the pylon head and pylon body, as shown in Figure 7 (red line).
Through observation, it can be found that the two segmentation positions with lower filling
rates above the segmentation position are the key segmentation positions supporting the
connecting lines. Additionally, the two segmentation positions below the segmentation
position with filling rates that meet the requirements need not be considered, and this
processing will not affect the subsequent parameter calculation.
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Figure 7. Shape parameters of the type-b pylon.

Before modeling the type-b pylons, it is essential to obtain the dimensions of their
internal hollow structures. From Figure 6, it is evident that the hollow position lies between
the key segmentation position S5 of the pylon body and the key segmentation position
S7 of the pylon head. Furthermore, there are relatively lower filling rates at the key seg-
mentation positions inside the hollow structure compared to the aforementioned positions.
Combining the positional relationship and point cloud distribution characteristics, the key
segmentation positions in the hollow structure can be identified.
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For the type-b pylon and the type-c pylon, it can be found that the segmentation
position at the top of the pylon has not been identified due to the low filling rate of the
point clouds by observing Figure 5, and it needs to be considered separately. The highest
among the expected key segmentation positions that do not meet the filling rate threshold
requirement can be chosen as one of the key segmentation positions. Finally, all the key
segmentation positions of the type-b pylon and the type-c pylon can be obtained, as shown
in Figure 8.
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3.3. Determination of Feature Points

The main purpose of determining pylon feature points is to better calculate various
parameters of unknown pylons, such as pylon height, cross-arm length, pylon leg spacing,
etc. This study chooses points on the boundaries of pylon key segmentation positions as
feature points. The four types of pylons considered in this study have the same pylon body
and pylon leg structures. These feature points suffice to calculate the required parameters
for these two structures. However, each type of pylon has a complex and unique pylon
head structure, requiring the identification of additional feature points to calculate the
relevant parameters of the pylon head.

Taking the type-b pylon as an example to introduce the feature point selection strategy,
the selected position of the feature points of the type-b pylon is shown in Figure 9, in
which the orange points represent the feature points obtained in conjunction with the key
segmentation positions. Point 25, as indicated in the figure, represents the connection point
between the cross-arm and the pylon body. The Z-axis coordinate can be determined by
identifying its characteristic position. Combined with the surrounding point 27 and point
30, a line can be fitted to calculate the Y′-axis coordinate. Similarly, coordinate information
on point 11, point 12, and point 26 can be obtained in this way. Regarding point 7 and point
8, the point clouds between point 1 and point 2 are layered along the Y′-axis with a certain
interval, and the point with the maximum Z-axis coordinate in each layer is selected. Then,
moving from point 1 and point 2 towards the middle by a sliding window, the first points
with Z-axis coordinates located at the key segmentation position S10 are found. These two
points are identified as point 7 and point 8, as indicated by the red markers in Figure 10.

In total, 36 feature points need to be determined for the type-a pylon, while the type-b,
type-c, and type-d pylons require 63, 51, and 52 feature points, respectively.
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3.4. Calculation of Characteristic Parameters

Based on the coordinate information on the feature points, characteristic parameters
are calculated from the perspectives of height, length, and width. This study takes the
type-a pylon as an example to introduce the parameters that need to be calculated. In
terms of height, the vertical coordinate difference between point 20 and point 30 represents
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the pylon head height. The vertical coordinate difference between point 30 and point
32 represents the pylon body height, and the difference between point 32 and point 34
represents the pylon leg height. Concerning length, the ground line cross-arm length can
be obtained by measuring the horizontal coordinate difference between point 1 and point
2, while the cross-arm length is determined by the difference between point 9 and point
10. Additionally, the difference in horizontal coordinates between point 17 and point 19
represents the pylon leg spacing. Regarding width, for points projected onto the X′Z plane,
calculating the horizontal coordinate difference of the points at the same height can provide
the required width parameters.

4. Experiments

In this section, the data and parameters used in the experiment are first introduced in
Section 4.1, and then the accuracy of the tower type identification and feature parameter
calculation is, respectively, listed in Sections 4.2 and 4.3. Finally, the reconstructed 3D
models of the pylons are shown in Section 4.4.

4.1. Experimental Data and Parameter Introduction

This study obtained point cloud data using the DJI M300RTK flight platform with the
integrated Livox L1 LiDAR module. The basic parameters of the LiDAR data are shown
in Table 1. The collected LiDAR data comprise not only the 3D coordinates of the points
but also their RGB color information. The data cover power transmission corridors with
voltage levels of 110 kV and 220 kV in Hubei Province and Sichuan Province. In order
to facilitate the progress of this study, the data were segmented using the open-source
software CloudCompare 2.13 to obtain the pylon point cloud data.

Table 1. Basic parameters of LiDAR data.

Point Density Horizontal Accuracy Vertical Accuracy

>100 pts/m2 10 cm 5 cm

The programs for pylon type identification and parameter calculation were written in
Python and run on a laptop. The laptop’s configuration information is shown in Table 2.
The pylon point cloud data obtained by segmentation were processed using the method
proposed in this paper. The parameters involved in the processing are shown in Table 3.

Table 2. Laptop configuration information.

Laptop CPU GPU RAM

Lenovo Legion R9000P 2023 AMD Ryzen 9 7945HX NVIDIA RTX 4060 16 GB

Table 3. Parameter settings.

Parameters Meaning Values

H Minimum height of point clouds for redirection (3/4) × the pylon height
h1 The layer interval along the Z-axis direction 0.1 m
h2 The height of the sliding window 1.1 m
L1 The grid interval along the Y′-axis direction 0.1 m
Tf The threshold of filling rate 75%
Ce Error constant 0.5

N1 (type-a)

The selected number of key layers

8
N1 (type-b) 14
N1 (type-c) 11
N1 (type-d) 10
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4.2. Accuracy of Pylon Type Identification

Four different similarity evaluation measurements, namely DTW distance, FastDTW
distance, discrete Fréchet distance, and Hausdorff distance, are employed for pylon type
identification using the method described in the previous section. This section uses two
types of shape curve datasets to conduct the experiments. One is the dataset obtained
directly based on drawing information, and the other is the dataset obtained by linearly
scaling the above dataset to the same height. Finally, the pylon type identification results of
the four similarity evaluation measurements were obtained.

To comprehensively evaluate the identification performance of the various similarity
measurements, this study used precision, recall, and F-score as three indexes to analyze the
experimental results [25].

Precision refers to the proportion of pylons predicted to belong to a certain type that
actually belongs to that type in the experiment.

P =
TP

TP + FP
× 100% (9)

Recall refers to the proportion of pylons of a certain type that are ultimately predicted
to belong to that type.

R =
TP

TP + FN
× 100% (10)

where TP is the number of samples determined to be of a certain pylon type and actually
belonging to that type; FP is the number of samples determined to be of a certain pylon
type but actually belonging to other types; and FN is the number of samples of a certain
pylon type that are determined to be of other types.

The F-score refers to the harmonic mean of precision and recall, and it was used as an
overall evaluation index of pylon identification performance in this study.

F =
2P × R
P + R

× 100% (11)

The larger the values of these three evaluation indexes, the better the identification
performance of the similarity measurement. For the four types of pylons in this study, the
pylon type identification results using different similarity evaluation methods are shown in
Figure 11.

Using the original dataset for calculation, regarding precision, the DTW distance
and FastDTW distance exhibited the highest precision for both the type-a pylon and the
type-b pylon. For the type-c pylon, the precision of the discrete Fréchet distance was
89.7%, which was significantly higher than the other three similarity measurements. For
the type-d pylon, all four similarity measurements were basically equivalent. In terms
of recall, for the type-a pylon and the type-b pylon, the Hausdorff distance and Discrete
Fréchet distance yielded slightly higher results. For the type-c pylon, the recall of all
four similarity measurements was around 76%. For the type-d pylon, the results of all
four similarity measurements were relatively lower compared to the other three types.
Considering the overall evaluation index of the algorithm performance, for the type-a
pylon, all four similarity measurements yielded similar results, with the Hausdorff distance
slightly inferior. For the type-b pylon, the F-scores of all four similarity measurements
were below 66%, indicating poor identification performance. For the type-c pylon, the
F-score of the discrete Fréchet distance was 83.8%, which was better than other similarity
measurements. For the type-d pylon, the DTW distance and FastDTW distance yielded
slightly higher F-scores.
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Figure 11. Identification results of pylon types using different similarity measurements. (a) The preci-
sion of four similarity measurements (original dataset). (b) The recall of four similarity measurements
(original dataset). (c) The F-score of four similarity measurements (original dataset). (d) The precision
of four similarity measurements (linearly transformed dataset). (e) The recall of four similarity mea-
surements (linearly transformed dataset). (f) The F-score of four similarity measurements (linearly
transformed dataset).

Using the dataset transformed by linear scaling for calculation, all four similarity
measurements showed a significant improvement in the precision of identifying the type-b
pylon. For the type-c pylon and the type-d pylon, the precision of the Hausdorff distance
could exceed 90%. Regarding recall, for the type-a pylon, the discrete Fréchet distance
yielded higher results. For the other three types of pylons, the recall results of the Hausdorff
distance were 90.3%, 86.5%, and 87.7%, respectively, significantly higher than the other
similarity measurements. Considering the overall evaluation index of the algorithm perfor-
mance, the F-scores of all four similarity measurements had seen substantial improvement
for the type-b pylon. For the other three types of pylons, the F-score of the Hausdorff
distance was higher than the other three measurements.
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In summary, when identifying the type of pylon point clouds, using the ordinary
dataset for calculation, the discrete Fréchet distance exhibited the best overall evaluation
index, with an average F-score of 76.4%. Using the dataset transformed by linear scaling
for calculation, the overall evaluation index of the Hausdorff distance was the best, with an
average F-score of 86.4%.

4.3. Calculation Accuracy of Pylon Characteristic Parameters

This section validated the accuracy of calculating key parameters for four types of
pylons using practical examples. The type-a pylon was taken as a typical case here. The
calculated values of this pylon are listed in Table 4 and were compared with the manual
measurement values. Finally, the relative error was obtained.

Table 4. Parameter calculation results of the type-a pylon.

Serial
Number Key Points Connection Position Description Calculated

Value/m
Manual Measurement

Value/m
Relative

Error

1 1–2 abscissa difference Ground line cross-arm length 10.2897 10.5 −2.00%
2 3–4 abscissa difference / 1.6932 1.8 −5.93%
3 5–6 abscissa difference / 2.0760 2.1 −1.14%
4 7–8 abscissa difference / 2.4361 2.4 1.50%
5 9–10 abscissa difference Cross-arm length 12.5012 13 −3.84%
6 11–12 abscissa difference / 2.6784 2.7 −0.80%
7 13–14 abscissa difference / 3.1005 3.2 −3.11%
8 15–16 abscissa difference / 6.8951 7 −1.50%
9 17–19 abscissa difference Pylon leg spacing 8.0340 8 0.43%
10 20–21 abscissa difference Ground line cross-arm width 1.5211 1.6 −4.93%
11 22–23 abscissa difference / 1.6932 1.8 −5.93%
12 24–25 abscissa difference / 2.1018 2.1 0.09%
13 26–27 abscissa difference / 2.4824 2.4 3.43%
14 28–29 abscissa difference Cross-arm width 2.7438 2.8 −2.01%
15 30–31 abscissa difference / 3.1937 3.2 −0.20%
16 32–33 abscissa difference / 6.9042 7 −1.37%
17 34–36 abscissa difference Pylon leg spacing 8.0179 8 0.22%
18 32–34 ordinate difference Pylon leg height 4.0512 4 1.28%
19 30–32 ordinate difference Pylon body height 13.4974 13.5 −0.02%
20 28–30 ordinate difference / 3.4989 3.5 −0.03%
21 26–28 ordinate difference / 2.0084 2 0.42%
22 24–26 ordinate difference / 2.9849 3 −0.50%
23 22–24 ordinate difference / 3.0140 3 0.47%
24 20–22 ordinate difference / 1.5022 1.5 0.15%

Finally, it was found that the overall relative error did not exceed 5% by calculating
80 pylon samples and comparing their maximum relative errors, thus validating the
feasibility of the algorithm. The calculated results for the pylons are presented in Table 5.

Table 5. Calculation error.

Pylon Type Quantity Maximum Relative Error Average Error

a 20 3.28% 2.36%
b 20 4.96% 2.71%
c 20 4.62% 3.05%
d 20 4.37% 2.93%
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4.4. Pylon Reconstruction

Based on the characteristic parameters calculated in the previous section, 3D models
of the four types of pylons were reconstructed. The final models are shown in Figure 12.
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5. Discussion

This section mainly discusses the errors encountered in pylon type identification, the
impact of the LiDAR data noise points on the calculation of characteristic parameters, and
the influence of data sparsity.

5.1. Errors in Pylon Type Identification

When using the ordinary dataset, the DTW distance and FastDTW distance tend
to misclassify the type-b pylon and the type-d pylon as the type-c pylon. This may be
attributed to the fact that DTW is a local matching method insensitive to global shape
changes, while pylon shapes involve global changes, resulting in the misidentification of
certain pylon types. The discrete Fréchet distance and Hausdorff distance exhibit more
errors in identifying the type-d pylon point clouds, which may be related to the similarity
in height between the type-d pylon and other types of pylons in the dataset. After using the
linearly transformed dataset, the errors in pylon type identification are reduced. Currently,
this method is only applicable to identifying existing pylon types in the dataset. Future
research can focus on designing more suitable identification algorithms based on the
findings of this study to improve its generality.

5.2. The Influence of Noise Points on the Calculation of Characteristic Parameters

Noise points are primarily distributed in two areas of the pylon. One of the areas
is at the junction of the pylon body and the cross-arm, as indicated by the blue circle in
Figure 13. These noise points cause the selected feature points on the pylon body to shift
outward, resulting in excessive errors in characteristic parameter calculation. In this study,
the true feature points can be distinguished by the density characteristics of points after
the key segmentation positions layering, thereby eliminating the interference of such noise
points on feature point selection. Another part of the noise points primarily consists of
insulator string points and line points, as shown by the red circle in Figure 13. This kind
of noise point has the greatest impact on the calculation of characteristic parameters. If
such points exist, it will be difficult to accurately calculate the pylon parameters using the
method proposed in this paper. Therefore, it is necessary to manually remove such noise
points before identifying the pylon type.
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5.3. The Influence of Data Sparsity

In the process of power inspection, the change in flight height and speed of the UAV
will lead to the difference in point density. When the flight altitude is higher and the flight
speed is faster, the obtained point density is lower. To analyze the influence of data sparsity
on pylon type identification and characteristic parameter calculation, the original pylon
point cloud data are sampled by the voxel sampling method. The number of pylon points
obtained at different sampling distances is shown in Table 6. When the sampling distance
is less than 0.4 m, the methods in this paper can be used to correctly judge the type of
pylon and the calculated pylon parameters are relatively accurate. However, when the
sampling distance is greater than 0.4 m, the point clouds become sparse and the distribution
parameters of the point clouds cannot reflect the characteristics of the key segmentation
positions of the pylons. The redirection processing is also affected when the sampling
distance exceeds 0.6 m. The parameters in Table 3 cannot make the horizontal direction of
the pylon perpendicular to the X-axis. In this case, the parameters need to be reset to solve
this problem.

Table 6. The number of pylon points sampled with different distances.

Pylon Type

The Number of Points

Original
Point Cloud

Sample Distance

0.1 m 0.2 m 0.3 m 0.4 m

a 203,792 67,631 20,809 9528 5492
b 102,429 47,194 16,360 7786 4706
c 239,345 128,429 42,751 19,832 11,063
d 196,601 112,847 42,108 19,851 11,166

6. Conclusions

This study proposes an improved method for identifying power pylon types and a
novel method for the automatic calculation of characteristic parameters, aiming to solve the
problems of complex calculation and low efficiency in existing methods. They can provide
the necessary data support for reconstructing 3D models of pylons. The proposed method
in this paper exhibits several characteristics and demonstrates great potential in utilizing
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airborne LiDAR data to acquire basic information about pylons. The research results of this
article can be summarized as follows.

(1) This article introduces a method for generating pylon shape curves based on point
cloud data. On this basis, an improved method for point cloud type identification based
on similarity measurements and a linearly transformed dataset is proposed. This method
simplifies the pylon type identification problem in 3D space to curve identification in 2D
space. It can effectively identify a variety of pylon types and provide information support
for the parameter calculation of pylon point clouds.

(2) This study compared the identification effects of four similarity measurements: the
DTW distance, FastDTW distance, discrete Fréchet distance, and Hausdorff distance. In
terms of the overall evaluation index (F-score), when using the ordinary dataset, the discrete
Fréchet distance as the similarity measurement yielded the optimal overall evaluation index
of 76.4%. Meanwhile, the Hausdorff distance as the similarity measurement achieved the
best performance using the dataset after linear transformation, with an average F-score
of 86.4%.

(3) A novel method for calculating pylon parameters based on point cloud distribution
characteristics is proposed. This method can effectively extract point cloud specific infor-
mation and ensure the accuracy of the parameter calculation. Through the calculation and
analysis of 80 groups of pylons, it could be found that the maximum relative error produced
by this algorithm did not exceed 5%, thus verifying the feasibility of the algorithm.

Although the method proposed in this study can yield relatively accurate results
in pylon type identification and characteristic parameter calculation, there are still some
aspects that need to be optimized in future research, as follows. (1) The pylon types
considered in this paper are limited by the dataset. Therefore, it is necessary to expand
the dataset in future studies. (2) The selection method for feature points needs to be
continuously optimized to reduce calculation errors in the characteristic parameters. (3) In
future research, pylons with asymmetric structure will also be taken into account.
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