Who are These Scholars?

Rare books are only disposed of by useful mechanisms. We are always concerned with the subject of publishing books, which is, in my first opinion, a sublime message. If you are unable to publish books, do not at least send them to an office endowment for the benefit of all students and researchers. The inherited library is a scientific library of the first degree and distinguished in all fields of knowledge. It is more appropriate to make use of it as much as possible for everyone and those who wish to do so, or to pay it to the scientific trustees and specialists who are interested in this matter.

My intention is to make use of the books, if possible, for safe display in publishing houses, so that researchers can benefit from them. If the scientific series in the office is also undesirable, it can be paid to the publishing houses willing for that. The office is an effect on the past, and it is an investment for generations, so it is better to keep it and pay it to the beneficiaries as a matter of priority in cases.

I wanted to make a large library and invite specialists with thought and leadership to benefit from it especially that the library fields represent important scientific fields at Oxford University and Cambridge University, where I live. And I wanted the library to collect enough fields of science and human knowledge, which could make it distinct, and therefore there is safety for us to benefit from this project or to pay the books we have available to the new beneficiaries of it. Therefore, the money invested in that library should not be wasted, and the scientific ranks of the beneficiaries should be taken into account.

Human knowledge in cosmology and different behaviors, and knowledge of sciences and literature are among the best of human disciplines. It is worth noting that the Scientific University had many artistic and literary disciplines historically. The books acquired represent a mark of a specific historical period. The knowledge of sciences and literature are signs of the different scientific eras. And the vast universe is full of scientific opinions, private, and public, with scientific, technical, pioneering, and distinguished, sometimes and without, opinions.

It is our safe duty to take care of all branches of science and literature together so that we can advance in this vast universe. In particular, I mention many libraries, which had a distinguished scientific place in raising the taste in science and literature. We are in this era no different from the previous eras. The fine arts and literature are always a witness to the era. It is our duty to derive science and knowledge from its respected sources, from an intellectual point of view, and from the same literary point of view. The artistic and literary methods are distinguished methods scientifically, and these methods are a main path and a continuous source during the scientific journey of all distinguished scholars...

The availability of distinguished scientific sources is a war against the evil of ignorance of cosmic laws and laws. And the advancement of scientific aspects is a beautiful cosmic effect. And we, as scholars and researchers in arts and literature, must always be careful in the methods of scientific research, focus on what is original and new, and always develop the scientific aspect by all scientific and literary ways. We must also not forget the important scientific implications for learning those sciences and literature.

The vast universe has many and varied safety valves. The sciences and arts have a distinguished scientific leadership and arts. We must preserve our long pioneering history and not transgress the cosmic laws derived from science. The distinguished sciences and literature are the greatest indications of the splendor of this beautiful universe. We derive from the masterpieces of literature and arts what is worthy of respect.

Throughout the ages, arts and literature have been characterized by a long human history. The methods of extracting these arts were characterized by accuracy over the long history. Those who are familiar with the technical fields of humanity take the history of this noble human identifier. They are followed by those with long thought and human literature. We always appreciate that human knowledge in its long artistic and literary history.

We must not abandon our history. We are at the crossroads of multiple paths. We have to be more accurate and secure. The generations and history are long anchors. And human judgment is the master of this anchor. In this era, we greet you around us with all the noble opinions, with respect for thought and literature, and we ascend them in the sky of noble cosmic creativity. The important scientific and research methods are the product of the long human heritage.

Scholars in literature, history and creativity have made the most precious and precious during their lives between history and science. The scholars of literature and creativity were distinguished and blessed by their societies in different ages. The glories of the history of these scholars represent a sober autobiography that reflects the importance of their contributions to their sober societies, as well as different degrees of thought. It is a symbol in human history throughout the ages.

The World languages are important to support human life being. We must not tamper with the capabilities of these people. The distinct aspects of thought and manners are evidence of the sincerity of the aspects of noble human thought. Human techniques have changed over the ages, and the result is those artistic and literary enrichments with a glorious history. Throughout human history, our scholars have excelled in these noble arts, sciences, and literature.

The real human scientific heritage is priceless. And human ignorance is the basis of those wars. And human knowledge is nothing but campaigns and pauses for references in that long human history. Drawing on human knowledge is one of the greatest duties of humankind. It must be useful one day.

Through these eons and through that history, many innovators emerged, and through their creativity, they enriched that long human history. History, literature, language, arts and modern sciences are among the most important features of the creators. Our message in science and literature never stops. We live to determine the fate of these peoples. We find what is amazing is the preservation of the chains of that amount of science. It is necessary to know the limits of those sciences with artistic, literary and noble scientific inspiration. It is always important to be informed.

We are in a noble artistic wedding. We do not know the extent of these sciences and manners, but we feel this vast space. The scientific awe is the evidence of the successful scholars. We do not rise to this kingdom. Science is important in people's lives. We must know this life. She saluted these scholars. They are scholars in the arts and literature. We are in the unknowns of the deep universe. We must be careful. Operations have been broken in this time, and there is nothing more wonderful than the facts in science and literature. We have many techniques and methods, and we must choose.

Our long history and the lives of these nobles represent us. We aim to live in peace. Our history is a witness to human artistic creativity. The nobility of our mission is always the charter. We excel in many sciences, and we must spread those sciences. I am a noble historical legacy. Rest in peace, scholars. The land where peace prevails. And the creations of human beings are still continuing throughout this time. We inherit these scholars.

There are many things that are not without mention. And I found the knowledge of human beings in the utmost awesomeness. I found some useful science. It is indeed many sciences. It is over ninety and a hundred sciences. It is necessary to know these many important sciences in our long history. Man has been interested in various knowledges throughout the ages, and he has incurred this hardship. The collection of these sciences is a noble message. We do not really know our fate. We cannot know the fate of these sciences.

Leadership requires us to be noble in opinion. Scientists are pioneers. These scholars are signs of their era. They lived those ages. I used many techniques. But I could not ignore the knowledge of these scholars. I feel in love with these sciences. These sciences collectively are the circle of human knowledge.

I have a noble message. Stop stealing science! The messages of scholars are sacred and noble. It is my duty to preserve the sources of these sciences. There are many books and references, but I am not confused. I chose many artworks from my books. Write the flag in every way. That was his will. Noble science depends on the content of these materials. The circle of human knowledge is a human development in the ingenuity of thought, arts and literature over our long history.

It is my duty to preserve these noble sciences and legacies in our long history. Our legacies relate to history, literature, economics, sociology, law, politics, and all branches of knowledge and language. Our scholars have developed their scientific and professional methods in the arts and literature. I was no less fortunate than before. I learned a lot about them. I convey alive these scholars. They are luminous jewels on that date.

Search for many legacies in my large library. I have looked at many sciences, and I can't find any alternative to choosing one of the sciences. Rising in the skies of science has many advantages. Rising in the skies of science was through the book. I searched many ways, and only found my old valuable book. The sky of creativity has no limits. My end depends on those ends. And science has no limits. My issue is the search for the foundations of the rational scientific view.

Except, O you creators in the sky of creativity! I glorified every art and art and came out with a beautiful effect. I am swimming in the kingdom of creativity. We have gleaned from it enough creative scientists. And my case was not taken into account. My case was not

mathematics or geometry. My cause is the cause of those peoples. My case is the scientific implications; on those peoples. I found myself overwhelmed, but I cared about what was and what will be.

I am happy in the sky of creators and I pledged my knowledge steadily, but my art is the first art. And my history in creativity is not long. All arts, not some arts, have a beautiful scientific luster. I wished that my scientific sky had a creative impact, and I wished that I had an impact on the sky of creators. The pioneering sciences and arts in the time of humankind have traces in this human life. And those technologies in which man lived had the greatest impact on our lives and the lives of human beings.

I live firmly in this vast. I was guided to many of the works of Nabil. It is the direction of these scholars. I wanted to be affected in the sky of creativity and thinkers. But, as usual, I love thought and literature, and I am not one of the great creators. I used my limited creative ways to reach the sober creative ceiling. I didn't expect what happened to me. What I've read about previous scholars has been my biggest inspiration. I wanted to rise in the kingdom of creativity for a long time. I learned the nobility of my purpose and my palaces from time to time. The sky of creativity has closed its sober door.

I am suspended between heaven and earth, observing the many human eras and choosing ideas from them. The sky of creativity almost closed its door. I chose from those eras what I did not see in time. I have read about everything and about human actions in the eras of time. I chose a historical nobility in the rational time to cross the sky of creativity. The sky of creativity is brimming with life. And the arts of human beings are inexhaustible. I found these arts underlined in a book. My book has every title.

I wanted to think and present my thinking safely. I stood on the ruins of a large office. I don't have all the thought. The aspects of human creativity are linked to his deep thought. And the experiences of human beings are many. I do not have that rational science. My experiences are almost limited. Books have written what I want. I found my wish not underlined in a book. I have not found my wish yet.

I am searching for the truth. I am a researcher in many sciences and arts. From a logical standpoint swim in the sky of science. I wanted to reflect my idea in the book. It's time to publish my thoughts. The book is distinguished by a good brochure. I mentioned my thoughts in the book. It is only one of the models. I wish I had completed the book. I had many ideas on the horizon. I would like to complete in the book all the good ideas of all people. I followed many paths. I haven't finished the walk yet.

Constructive dialogue is the basis for building many civilizations. The treasures of those civilizations are built on multiple foundations. The foundations of various civilizations have had an impact on the reconstruction of this great universe. Many international movements and bodies were formed to preserve the legacies of those civilizations. These archaeological legacies and treasures were represented by many formations at various levels of arts, with a beautiful cultural archaeological form. Researchers and scholars wanted to add different aspects to these legacies through different historical periods.

I am on a long journey through time, benefiting from these human legacies, from time to time. I do not despair of any catastrophic failure. Failure is the title and measure of success, and by repeating it, accidents that are important to humans occur. The person depends on his failure and success. And success is dinning many scholars. Those seeking the truth are in an international struggle for survival. There are still treasures hidden throughout the history of civilizations and through the gates of time legislated for knowledge and creativity in human history and the essence of its formation hidden through time.

This universe is full of civilizational legacies is that distinguished creators and scientists. Those treasures are hidden in those ancient cities. And these creators are a symbol of those civilizations. I found that the Department of Knowledge contains the miracles that took place throughout the long human history. Innovators of different ideologies contributed to the construction of history. The building is tight and human civilizations perish, but they do not die. Life has been granted to me through the exploits of humankind.

My journey is long and the ships of life are open. And I received a future full of life. The signs of time left by the scholars are the greatest evidence of the enrichment of these scholars and their various intellectual contributions in the fields of science and literature. Intellectual ideologies and methods of humanistic scientific thought have varied among scholars in literature, thought, creativity and science. We write a single civilization with a united face or scattered content, but this does not diminish the desired scientific benefit. This journey, even if it is prolonged, is a supporter of every scientific and literary arts during the long human history.

My library still contains many sciences. My library is the office of economics and politics, literature and law. And my journey was the journey of searching for the truth about the history of those sciences. I like that my trip is full of all that is useful. And my search for the truth was through an encyclopedia of literature, arts and sciences. My journey started at a young age and my interest was abundant in these sciences. On my journey, I wanted to consult all the scholars. I have prepared what is worth in this regard. I have prepared the report since then.

I researched many sciences and arts in various literatures. I focused my efforts on reliable scientific sources and distinguished technical aspects that were carried out by most of these scholars. My journey in arts and literature was shaped over a long time, and I experienced the sayings and works of great scholars. I did artistic and literary studies and did not get tired of those studies. My journey was what I got from the content of those studies. My journey was full of trouble. And his history has an impact on every art. I have written many art books. But sometimes I could not understand these implications.

I have devoted my life to researching these scholars and their scientific and literary materials in the various arts. I wanted to investigate what happened throughout human history and learn through the events of that history. Human history is full of tragedies that have emerged throughout the history of humankind. And human civilizations reached their climax with those sciences. The intellectual and literary aspects were the product of the sciences of those civilizations.

The circle of human knowledge is the product of human experience in all fields of science and literature. The various intellectual and literary aspects and ideologies were based on issues related to the long human history. We still remember those scholars who showed us the way. I swim in the kingdom of God. I believe in science and the rational arts. Many news has been revealed to me throughout this history. The circle of human knowledge is still a source of these sciences and arts throughout this history.

There are many sources of modern science. And science and literature are multiple sources scattered here and there. I am collecting my articles from deep human thought through this book. And my encyclopedia is full of various scientific chapters. I was guided by these scholars to various aspects of original research. My guide through time is a guide of loyalty to these scholars. I reached the unknowns of the vast universe and did not feel the trouble. I am on a journey, being full of noble scientific relics. Science has developed in this era.

We are in an era of ages and we have received knowledge from the sky. We are still studying those ancient sciences from the civilizations that prevailed through time. Among those civilizations are Greek, Roman, Greek, Chinese, Persian, and ancient Indian. These civilizations have a long life and depth in long-term human history. And those civilizations have different arts, literature, sciences and languages, but their scientific contents are rich and deep in history.

There were many ancient civilizations with scientific contributions in various sciences such as mathematics, engineering, physics, chemistry, language sciences, techniques of authentic arts, in the fields of architecture, construction and building, in the fields of medicine, economics, law, in the various literary fields and in various arts. The original search takes a long time. These scholars are still my path of guidance and light in the hall of knowledge. Scientific research is the basis of a skilled civilization, and scientific and intellectual techniques are beacons of those civilizations that will last throughout civilizations.

Modern publishing houses have the upper hand in establishing the principles of science, thought and literature in our modern countries and extending through the eras of human history, and the original publishing sources have a long history in supporting scientific, intellectual and literary movements and supporting those countries and organizations that protect them and always apply the rule of law with high scientific and professionalism. Those countries rule by the sovereignty of those laws.

It is still the scientific publishing houses always supports Almas spread movements in our modern history. Thought and literature are not exclusive to these organizations that adopt the protection of sciences and literature. Those organizations and others may seek to monopolize thought, but they will not be able to. Our scholars are beacons of thought and creativity. With the death of scientists, some sciences and literature disappear. But the death of thought is always impossible. We are in a noble scientific revolution worthy of praise. And publishing houses throughout history are the products of those revolutions.

The scientific and intellectual revolution in the East and the West is a true series of scientific and literary revolutions throughout history. And the law is what created God. This role is certainly a product of those scientific and literary revolutions. Education in our country is still free and the paths of research and development are the original paths. The laws of intellectual development are among the most important laws. Referring to the historical intellectual courts is a matter of the utmost importance. And seeking assistance from committees to protect the intellectual and moral sanctities is one of the passages of history.

Revolutions took place in history, and one of their goals was the liberation of the movements of science, thought and literature and the building of civilized societies, building for the ages of the many universes, with the various data of those civilizations. Despite the different history of thought and literature, the goals of those civilizations were important humanly, socially, intellectually and philosophically, and the human intellectual experiences through them were numerous. Those revolutions had important aspects in intellectual development in all its forms. Modern international history plays an important

role in defining the methods of eliciting these sciences and literature. The various intellectual aspects of science and literature are actually matured by the action of these peoples.

I sailed through a ship at the end of those seas. And I found my desire in the search for a sober thought. And the search for what I want did not know his source. And the ship set off to the new world. I found one of the beaches. Then my ship docked on the banks of this long beach. I am in the office of the Sea of Science, Thought and Literature. I have some ideas. I don't need new ideologies. I own those ideologies. The original scientific methods above are sufficient. It is imperative to search for a reference from the references. The sources of the research are complete in every science. It's the new world.

The new world has many continents. And I'm moving between its borders. I did not cross those borders between those continents. I write in my encyclopedia about the new science. I sew it with a new wording. And my ways are many artistic ways. I do not retreat from the formation of the House of Science. I love Dar Al Uloom Publishing to have a great impact. The effects of Dar Al-Uloom artistic and literary movements transcend to formations of the various sources of different types of science. Science, thought and literature have original sources in Dar Al Uloom.

In the House of Science, I use some modern techniques. My papers are not in order. And I always need time. Literary and intellectual movements have different visions. I have to choose what represents me among those ideas, visions, methods and manners. My papers need whispers. Pauses stood across those old leaves. My papers were decorated with many ideas, visions and principles. My thoughts and principles are the ideas and principles of Dar Al Uloom Publishing. The originality of human thought is the charter of the original intellectual principles in the House of Science for Ideas, Literature and Human Arts.

From my long voyage I have realized that I am navigating through the many new sciences of splendor into the unknowns of this abyssal universe. Through all these paths I always take, I find myself constantly renewing intellectual ideologies and thus contributing to the formation and writing of numerous publications of great value and profound human origin. The roots of this information in that encyclopedia and those first intellectual articles represent part of this ancient intellectual advancement. I took into account the accuracy of that information in my articles. I explained everything that is useful in the new world. I went submissive to the unknowns of the abyssal universe. And I selected everything that is impacted on the eye of time. I found myself navigating between these civilizations with a sober science, and I distanced myself from everything that is not so sober.

My experience has been a deeply rooted one. And the basis of all these sciences were scientific articles for literature and the arts. The series of articles for literature and arts magazines is a series rich with deep information. It is a collection of literary, scientific and artistic articles of interest to readers and opens up horizons for scientific investigation through my encyclopedia through scientific models and topics presented for discussion among all scholars and researchers in the arts and literature. There were many opinions and I found myself among various currents and parties with different opinions. I still believe in sound scientific opinion. And my school is the school of history and nobles through the ages. And my experience still extends through those educational houses and various intellectual schools of art throughout the long, complex intellectual history.

Where are these scholars? Scientists are stars of different eras. Whatever the scientific and intellectual disciplines differ; it is an indication of the artistic depth of those disciplines. My library is in Paris or in Geneva. My library is the Great Library of London. My library is in my little house at Oxford University. Whatever the libraries, they have noble effects mentioned and impact. I like to read politics, economics, English literature, world history, philosophy, mathematics, chemistry and physics in my library. I found that the cognitive disciplines in my library are over ninety. There are those who care about the lives of these researchers. Research, intellectual, literary and artistic production is the production of senior scholars and researchers. Scientific research sometimes has a multi-directional logic. Scientific research has many bases and goals with varying degrees of sophistication and creativity.

And the truth, as the author says, is that the main task that scientists, and all philosophers, face is the replication and rooting of scientific theories and intellectual sayings, and finding an objective standard with little interest on the part of many researchers, professors, and scholars specializing in many important aspects with the first assertions related to the role of the dissemination of modern science through institutions. Scientific, research, institutes and the role of thought in different places and varying messages. The role of these institutions is to launch into the vast space of thought and translate these scientific theories and present them in line with the first scientific proofs. The intellectual and theoretical factor has theoretical and scientific frameworks that translate these hypotheses and deal with them in a manner consistent with the gradual natural theoretical laws to serve those laws.

The basics of creative writing and philosophical proposition

Scholars of all kinds form the foundations of creative methods and the presentation of texts and creative textual speech in which many intentions and conflicting interests combine to receive them with the awareness and unconsciousness of the creator. In the best case, creative writing constitutes a work in which the intent of the creator may not be denied at all, as the works may be among the repeated emotions that make the work intended as a whole without a precise definition, so the purpose comes hidden sometimes. The creator's awareness is nothing but to add the factor of doubt in the text and the intended meaning. Intellectual affiliation may deeply define the features of the creator in front of his audience, which may qualify him to solve all the issues raised in a deep way.

A number of factors, including the creator's intent and awareness, and the creator's subconsciousness, determine the intent of the text, in addition to his circle of interests and intellectual affiliation, the basis of valuable creative interpretation. Interests diminish in importance in front of the intentionality of the text as it is limited to elements of the text that intertwine among themselves to play that exciting role. In fact, the process is complex, for between intent and interests there is something of excitement, and between interests and creative interpretation there is something of response. For philosophers, the text represents the open universe, although its language reflects the incompatibility of thought. For philosophers, the text represents the machine that produces an endless series of references. This is because its truth is that it falls within the limits of the author's creative imagination and that it erases the limited horizon from a good creative text.

The text opens to produce a series of infinite meanings. It means writers with infinite textual vocabulary. With textual interpretations, the texts gain the character of sensationalism. The basic textual components refer to the corners of the text, and the multiple meanings of textual interpretation refer to the transitive texts, and we become the makers of the meanings we understand. The meaning is obtained from what the text and the interpreter agree upon, taking into account the intermediaries between them and a

kind of intuitive experience. In the beginning, the data is revealed, that is, the structuring of meaning. In the second step, attention is focused on how the meaning appears, and it follows that this is a model of creative models with wide public acceptance. The text makes interpretation a means of reproducing it as a new understanding and then a new formation and structure. The torch is handed over to the interpreter as if to prove the saying "there is no real meaning of the text," which means that whatever you interpret may mean it.

As soon as a science emerges from the sciences, it carries within its own organization the folds of knowledge that surrounds it and surrounds it on all sides. So, knowledge is not that workshop that disappears once the science that requires its existence is complete. And science or what is considered science takes its place within a field of knowledge where it plays its role. A role that changes by changing the rhetorical formations and overturns its coup. And this exemplary role was the role of the circles to which the competence refers in deciding and making decisions. In every discursive formation, there is a qualitative link between science and knowledge, and instead of the fossil analysis establishing between them a relationship of exclusion by searching for what leaked from knowledge to science and remained hidden within it. From the eyes and from what remains of the science suspicious of him due to his mixing with knowledge and being affected by it, it highlights in a positive way how science emerges in a positive way and performs his work in it.

Here, within the interconnected space, the relations of ideology with science are inevitably determined and acquire its qualitative scientific characteristics. This is because the relationship of ideology and science does not appear in the domination of ideology over the scientific discourse, and also that the ideological activity of science does not appear sometimes at the level of the intellectual structure or at the level of technical independence in a particular society, nor in the awareness of the level of individuals who make up the society, but rather at the point where science is distinguished About knowledge and highlights them clearly. And if it is possible to raise the issue of ideology to science, it is because the latter, without matching or simulating knowledge, and without erasing its trace or excluding it, takes a place for itself in it, constructs some of its themes, lends some system to some of its expressions, and legitimizes some concepts. The drafting strategy is sometimes sham.

This allows to raise many issues. The first is that ideology is not an exclusion of science. That is because the number of discourses that made a certain space for ideology is similar in its spaciousness to that which the scientific or technical discourse did in a small way, and this is not a sufficient argument to describe the totality of its statements as error, contradiction, and absence of objectivity. The contradictions, gaps and theoretical contradictions may be an indication of the ideological presence in a science or in a discourse claiming scientific, which may be a guide that guides us to the places of that presence within the scientific edifice. However, its analysis should take place at the level of positivism and the relations between formative rules and scientific structures. The discourse in correcting its mistakes and correcting its mistakes and adding the quality of accuracy to its formal premise does not necessarily sever all the bonds that the ideology holds. The role of the latter is not contradicted by the increasing accuracy and exposure of error.

Addressing the analysis of the ideological presence in a science in order to highlight and transform it does not mean returning to the foundations that justify it, but rather means asking it again as a rhetorical formation. It means addressing not the fictitious contradictions in its cases, but rather the structure of its themes, modes of expression, concepts and theoretical choices. Any consideration again as a practice among the rest of the other practices.

The guard of the house of the great judge

We live in a time with controversial ways of living. The judge's house is one of the homes that enjoy prosperity. The story of the judge is a well-known story among many of the scholars of this time. Sociologists enrich their social views in all directions. It came to my knowledge that the great family of the judge had moved between several countries and had settled for a while in the port of Port Sudan. Suakin was the capital of the East, but it came to my knowledge that the great judge lived in Zahrat Al-Modon, which is the city of Port Sudan. Knowing history is important to all the chains of people who made up that

history. Preserving tribal heritage is very important because of its role in stimulating the spirit of social development in any country.

Cinemas have produced documentaries and natural dramas that are almost always important in revealing the social condition of a society. Politics and administration were the ideal sciences in managing our societies in the post-revolutionary era during the nineteenth century. Each of these human revolutions in its society was the necessary leadership for the sovereignty of those societies. If social issues are represented, you will find that the courts have been buzzing with them for ages. Issues of marriage, divorce and marital rights have been the talk of societies for long ages, even before laws existed.

Social and ethnic studies, followed by politics and economics studies, have been characterized by an encyclopedic richness that is reflected in people's lives, on the simplicity of the study cases from time to time, as is the case with the complexity of these studies' theses and the communities of statistical samples according to them. Ancient historical periods were characterized by social practices that led to complications in those ancient societies in the absence of those laws. The solution is always through the creation of social courts that are endorsed by different ethnicities and whose function is to implement laws.

Modern technologies in the nineteenth and twentieth centuries

Many scholars contributed in the development of television; we cannot identify a specific person as the inventor of television. The existence of television became possible in the nineteenth century, when people learned how to send communication signals through the air by means of electromagnetic waves, and this process is called wireless communication.

The first radio operators sent symbolic signals through the air. By the early 1900s, wireless operators could transmit words. At the same time, many scholars have Experiments include sending pictures. And in the year 1884AD, invented by Paul Gottlieb Nebikov of Germany A scanning device that was able to send images over short distances, and its system was automated and not electronic, as is the case now. And in the year 1922m, developed by Philo Farnsworth from the United States Electronic scanning system. And in the year 1926M, invented by John Baird and he is an engineer Scottish infrared television system for taking pictures in the dark. It was invented by Vladimir Zworykin, a Russian- American scientist Born television camera stored Alaeconoscob · as well as the valve's Elkinscob in 1923M The econoscope was the first television camera valve suitable for broadcasting.

The kinescope is the picture valve used in television receivers. They offer Zworykin first practical TV system in the electronic full year 1929 AD. Several experiments with television broadcasting were conducted in the late 1920s and 1930s, the British Broadcasting Corporation in Britain and CBS And the National Radio in the United States is the leader in television broadcasting experiments. The BBC began first service general public television 1936AD, by broadcasting from Alexandra Palace, in London. And in the year 1936m, developed a company Wireless America (Later RSA company), which owns the company National Radio NBC receivers in 150 homes in New York. New York station started Affiliated with the National Broadcasting Company, the first experimental television broadcast for these homes. Its first program was an animation program. The National Broadcasting Corporation began the first regular television broadcasts in the United States in a year 1939M.

Television broadcasting resumed in Britain and the United States after World War II (1939-1945 AD). At first the broadcasting was experimental, and few people owned TVs. By 1951, television broadcasts covered the United States from east to west, and people were fascinated by television. In the fifties there was a huge increase in the use of television in Western countries. There was only one television service in Britain until 1955, when the commercial television network began operating. Australia opened Its first national and commercial station is in Sydney Melbourne in 1956 AD, television and the Irish began in 1961 AD. In the 1960s, the development of television became more rapid; By introducing color television in several countries. The BBC began regular color broadcasting in 1966 on Channel Two.

first programs, Hilarious shows and westerns were the most popular shows in the 1950s. Then competition programs, with large financial prizes, became the favorite programs on commercial stations. Drama series, such as Britain's Coronation Street, attracted millions of viewers. This was in the 1960's, and it still attracted a huge number of viewers in the 1990s.

Most television broadcasts were initially live broadcasts or programs drawn from films. The films needed time to show. The equipment and techniques used were also producing poor quality pictures and sounds. Recording programs on video tapes began in the midfifties, and thus recording on these tapes became an essential production method. Video tapes can be played directly after recording. It produces high quality pictures and sounds, and allows flexibility in program scheduling. Subsequently, scientists developed equipment and techniques that improved the quality of film presentations.

The first commercial communications satellite was launched in 1965 AD, and satellites made television broadcasting worldwide. Viewers all over the world can now see events like the Olympics in real time. See: communications satellite.

recent developments. Television continued to be a primary means of entertainment, and played its role in covering important events. For example, in 1973, American television networks canceled their regular programs to broadcast the Watergate case hearings of the US Senate investigations into illegal practices during the 1972 presidential election campaign.

In the early years of television in the United States, broadcasters avoided controversial topics such as abortion, divorce, drug abuse, political satire, and sex. They feared that these topics would offend some viewers. But in the late sixties, American broadcasters found that it was possible to address these topics without much objection. American drama has criticized Mash, which aired in the seventies and early eighties wars. The highly successful Neighbors program produced in Australia also addressed the problems of drugs and AIDS, and the East End residents' program addressed the problems of downtown residents with crime, poor family relations, and racism.

Some people believe that television has gone too far in displaying controversial topics. The scenes of violence and sex that are shown on television in Western countries on television are subject to a lot of criticism. In Britain, a Board of Standards for Broadcasting was established in 1988 AD, to set limits for decency and morality and to set guidelines for program developers.

In the late 1970s, broadcasters began showing an increasing number of made-for-TV films, tragic miniseries, and other specials. Among the series that have been successful is Roots, an eight-part drama that traces the history of a black American family from enslavement to freedom. In the eighties, Indian television showed a number of Indian tragedy series, including the popular Baniyad series, which presented the life of an Indian family during seven decades.

During the eighties, video equipment became available for home use. Many viewers were able to rent or buy pre-recorded films, and they enjoyed watching them at home. In the eighties also increased the use of satellites to transmit television programs to cable television subscribers. Some viewers receive TV signals from satellites using a large antenna called the dish. Therefore, some cable systems have begun mixing their signal to prevent dish owners from receiving their programs without paying subscription fees. Cable television companies provide equipment to subscribers who have satellite dishes, so that they can receive programs.

In the late nineties some international American companies diversified Telovesonah systems appeared divided programs by age groups, and the ones theaters and movies, and the adult system and family protection by the so- called (+18), while it was called the protected system which is fit for all segments of society age b (Tv Pq.cc).

Metals

Minerals are substances that are formed in nature as a result of some geological processes, and have a special crystalline structure and chemical composition, and are considered homogeneous inorganic solids. Minerals are classified according to chemical composition into elemental minerals, sulfides, oxides, halides, phosphates, carbonates, sulfates, and silicates. How minerals are formed by igneous activity: the crystallization process takes place in it through the molten liquid, where minerals begin to form after cooling this liquid, or through crystallization from hot solutions. Sedimentation processes: crystallization takes place through the deposition of salt compounds in sea and ocean waters. Transformation processes: Minerals may form as a result of exposure to various factors, namely heat, pressure, water vapor and chemical reactions of solutions. Examples of minerals that are formed as a result of transformation factors are graphite, which is formed from coal. The general properties of the mineral are formed in nature automatically, without any human intervention. Hardness or hardness, which expresses the ability of a mineral to scratch another mineral or not. Pure substances have specific chemical components and have a crystalline shape where its atoms are arranged in three dimensions in a regular and repeating geometric shape. Some minerals are distinguished by their distinctive colors. Physical properties of minerals Crystal appearance: It is the outer shape of the crystal, which in turn reverses the internal arrangement of its constituent atom. Color: It is possible to distinguish a specific number of minerals that have distinctive colors such as green or yellow, and we can see it with the naked eye on the outer surface of the metal. Al-Hakkakah: After rubbing the metal with the rubbing plate,

it produces a specific powder of a certain color. The rubbing expresses the color of the mineral powder after the rubbing process, and it is used to distinguish minerals of similar color. Hardness: It is a characteristic that expresses the resistance of a mineral to scratching, and it can be determined by using a mineral of known hardness and scratching it with it. Luster: It expresses the extent of the luster of the metal surface through the intensity of the light reflected from its surface, and it is either a metallic luster, a semimetallic luster, or a non-metallic luster. Transparency: It expresses the ability of the mineral to pass light through it, and minerals are divided accordingly into opaque metal, semi-transparent metal and transparent metal. Specific weight: This term expresses the density of the mineral in relation to the density of water. Schizophrenia: is the susceptibility to cracking the metal, and this happens on the cracks with weak chemical bonding surfaces, and are often practical dichotomy of metals in a number of levels of schizophrenia.

Trains

The railway line may consist of two tracks, going in two different directions, to and from. But sometimes the line may consist of only one path; Then the outgoing and return trains alternate with a sharp temporal regularity, otherwise the outgoing and returning trains collide, trains collide, and there will be casualties from passengers, death and handicaps, and losses in transported goods. The train runs on wheels of steel, and consists of a locomotive. In the front is a powerful engine that you pull passenger or cargo wagons behind; The wagons also rest on steel wheels. The wheels are shaped so that they have a side rim on the inside so that they rest on the two iron bars that make up the rail. The wheels prevent the train from derailing.

England was the first to use railways for the first time in history in 1789 AD until the use of trains in all countries. The first trains run on coal as a source of energy. Coal heats a water tank in the locomotive, generating high pressure steam, and this steam propels a steam engine. You move the wheels of the locomotive, so the train moves. With scientific and technological progress, electric trains began to be used, and they do not run-on coal or steam, but rather operate with electric motors. It is in the locomotive. The development of trains has multiplied, some of them run on diesel, which is a type of fast train and is widespread in almost all countries for its ease of use. Diesel trains do not need an electric line above or below them to derive electricity from, like an electric train. The use of electricity to drive trains has allowed them to reach very high speeds, reaching more than 500 kilometers per hour.

Energy

Energy is one of the forms of existence, as the universe is made up of bodies (bodies) and energy. Since Einstein's theory of relativity. We know the equivalence of matter and energy, energy can be converted into matter and vice versa, matter can be converted into energy. We saw the transformation of matter into energy in the invention of the atomic bomb.

Energy can take a variety of forms, including thermal, chemical, electrical, radiant, nuclear, electromagnetic, and kinetic energy. These types of energy can be classified as kinetic energy or potential energy, while some of them can be a mixture of both potential and kinetic energy, and this is studied in thermodynamics.

All kinds of energy can be converted from one form to another with the help of simple tools or sometimes complex techniques such as chemical energy to electric Via common tool batteries or accumulators, or thermal energy conversion into mechanical energy. This is found in an internal combustion engine, or solar energy conversion into electrical energy, and so on.

The theory of relativity has been shown. Einstein that article Energy is two forms of one thing, and we know the equivalence of matter and energy. This discovery was discovered by Einstein in 1905 and wrote in Special Relativity, and expresses the equivalence of energy and matter with his famous equation: E=mc 2. This discovery led to the invention of the atomic bomb thrown on Hiroshima in 1945 it ended World War II between Japan and the United States. We know the transformation of matter into energy from nuclear fission and nuclear fusion.

Energy terms and their transformations are very useful in explaining natural processes. Even weather phenomena Like the wind, the rain and lightning and hurricanes It is the result of energy transformations that come from the sun on the ground. life It is considered one of the results of energy transformations: through photosynthesis. The sun's energy is converted into chemical energy In plants, this stored chemical energy is subsequently

utilized in the metabolism process for living organisms and humans. It is from the plant that produces wood. It is another source of energy that has its origin in the sun.

Within the social use: the word "energy " is used to refer to everything that falls under energy sources, energy production and consumption, as well as the conservation of energy resources. Since all economic activities require a source of energy, its availability and prices are among the primary and key concerns. In recent years, energy consumption has emerged as one of the most important factors causing global warming. Which made it turn into a major issue in all countries of the world.

World Wide Web

In 1980, British Tim Berners-Lee, independent adviser to the European Organization for Nuclear Research (CERN), in Switzerland, founded ENQUIRE. It is a personal database of individuals and software models, in addition to its use of hypertext (hypertext or hypertext); so that each new page of information in ENQUIRE It must be linked to an existing page.

In 1984 Berners-Lee returned to the European Organization for Nuclear Research (CERN), and studied its problems with displaying information as physicists from around the world needed to exchange data and there were no common and unified display machines and software. He wrote in March 1989 a proposal to create a "large and interconnected database with writing links", but it did not receive much attention. His boss, Mike Sendall, encouraged him to start implementing his system on the workstation (NeXT workstation) newly acquired. Berners-Lee thought of many names, including the information network (IM) and information mine (TIM) (rejected because it is abbreviated to Tim, the name of the founder of the World Wide Web) and a mine of information (Refused because it is abbreviated to MOI it's "ME" in French), but eventually settled on the World Wide Web.

He found a helpful and enthusiastic person in Robert Kelly, who rewrote the proposal (published November 12, 1990), and the required resources within CERN. Berners - Lee and Cailliau put forward their ideas at the European Conference on coherent text technology in September / September 1990, but did not find suppliers appreciated seeing them in the text intermingle interconnected with the Internet.

By Christmas 1990, Berners-Lee had built all the tools needed to work on the Internet: Hypertext Transfer Protocol 0.9. (http) The language of hypertext tags (html), the first web browser (Named World Wide Web, who is also a web editor,) The first HTTP server software (Later known as CERN httpd), the first web server (http://info.cern.ch), The first web pages described the project itself. A web browser that can access Usenet newsgroups (usenet) As well as FTP files (FTP). However, it can only run on the workstation NeXt; That's why Nicolas Bello created a simple text browser that can run on most computers to encourage use within CERN, they put CERN's phone book on the World Wide Web — users had already logged into the computer to look up phone numbers.

Kons Ball from Stanford Linear Accelerator Center (SLAC.) He visited CERN in May 1991. He was fascinated by the Web. And when he returns to (SLAC)He took a program with him NeXt, configured by librarian Louise Addis for the operating system VM/CMS on mainframes of the company IBM As a way to display documents (SLAC) From online documents, this was the first web server outside Europe and the first in North America

In August 1991, Berners-Lee published a short summary of the World Wide Web (Web) project on the news alt.hypertext. On this date also was the first appearance of the World Wide Web as a service available to users from all over the world of the Internet. The turning point for the World Wide Web is the introduction of the Mosaic web browser (Mosaic). In 1993, a graphical browser developed by a team from the National Center for Supercomputing Applications (NCSA)At the University of Illinois at Urbana-Champaign (UIUC)Led by Mark Anderson Mosaic's funding came from high performance computing and primary communications, the funded program initiated by the 1991 high performance computing and communications senator Al Gore also known as Gore Bill.

Mosaic originated in 1992. In November 1992, he established the National Center for Supercomputing Applications (NCSA) at the University of Illinois (UIUC) website. In December 1992, Andersen and Eric Pena, students from the University of Illinois at Urbana-Champaign (UIUC) They work at the National Center for Supercomputing Applications (NCSA)They started working on Mosaic and released the Window Browser X in February 1993. It gained popularity due to its strong integrated support for multimedia, writer's quick response to user's device bug reports and recommendations for new features.

The first Microsoft Windows browser was Cello, which was written by Thomas Bruce for the Legal Information Institute at Cornell College to provide legal information, and since then more lawyers have access to Windows than to Unix. Chloe released in June 1993. After graduating from UIUC, Anderson and James H. Clark, the former CEO of Silicon Graphics, came together and formed the communications company Mosaic to develop a

commercial Mosaic browser. The company changed its name to Netscape In April 1994, the browser was developed over Netscape Explorer.

Computing History

The history of computing and the chronology of computing 2400 BC. M 1949 was the first counter - known tools for use in the calculation is believed to have been invented in Babylon. Around the year 2400 BC. m, and it was in the form of lines drawn on the sand with gravel laying. It was the first computer and the most advanced computational system known to date, predating the Greek methods by about 2,000 years. Counters with a modern design are still used as calculating tools today.

The Antikythera Mechanism is believed to be the first known analogue computer. It was designed to calculate astronomical positions. It was discovered in 1901 in the wreck of the ship Antikythera on the shores of the island of Greece. Between Kythira and Crete, its age dates back to about 100 BC. m. Technological artefacts of this kind did not appear until the fourteenth century, when the astronomical clock appeared in Europe.

In the third century AD, a two-wheeled chariot that served as a compass appeared in the history of China. It was the first gear mechanism. It uses the differential gear that was then used in analog computers. China also invented (area) A more complex abacus around the 2nd century AD which is known as the Chinese many.

Automated analog arithmetic devices appeared again a thousand years later in the golden age of devices from this period include the astronomical arithmetic instrument (Equatorium), which was invented by Ibrahim bin Yahya al-Zarqali., The astrolabe With the mechanical gear invented by Abu al-Rayhan al-Biruni and the device for observing celestial bodies invented by Jaber bin Aflah. Engineers built a number of autonomous machines. Including some musical instruments that can be programmed to play different musical styles. These devices were developed by the brothers of Bani Musa and carrot. Mathematicians have also made important advances in cryptography. Like cryptanalysis development. And the analysis of recurrence by Ya`qub ibn Ishaq al-Kindi.

When Muhammad ibn Musa al-Khwarizmi discovered Algorithms For computing purposes at the beginning of the seventeenth century, a period of great advances made by inventors and scientists in computing instruments followed. In Z 632 The Wilhelm Schickard Design calculation machine but abandon this project when it destroyed the prototype, which began construction in a fire in 1624. In 1640 almost, the Blaise Pascal. He was a French mathematician who pioneered the construction of the first mechanical addition device based on a design described by Hero of Alexandria mathematician in greek civilization. Then in 1672 Gottfried Leibniz invented The graduated chart of accounts he completed in 1694.

None of the old computers were a computer In the modern sense, it took real progress in mathematics and theory before modern computers could be designed.

Computers

Zuse was born in Berlin, Germany in 1910, and his family moved to Bransberg, West Prussia, in 1912, where his father worked as a postal clerk. Zuse attended Hosanem School in Brunsburg. In 1923 his family moved to Hoyerswerda, where he obtained a German high school diploma in 1928. He joined the Technical College in Berlin-Charltenburg and studied engineering and architecture, but he found them boring. He wanted to study civil engineering and graduated in 1935. He worked for a while for the Ford Motor Company and used his professional skills in advertising design, and began working as a design engineer at the Henskell Aircraft Factory in Berlin-Schonfeld. He had to do many routine arithmetic operations manually, which he found boring and led him to dream of performing arithmetic operations using a machine.

He worked in his parents' apartment in 1936 and named his first attempt Z1 The machine is a dual mechanical calculator based on floating point with limited programming and read the instructions from my film tape pierced 35 mm. Neumann architecture. Zeus accomplished the device Z1 In 1938, it included about 30,000 metal parts and did not work well at all due to the lack of mechanical accuracy. destroy device Z1 And his original plans during World War II. Between 1939 and 1945, Zeus remanufactured the Z1 He had

a heart attack while working on the project, and it cost 800,000 German Marks and required four people to assemble it. This project was financed by Siemens and a group of five companies. The mathematical foundations of modern computer science were laid by Kurt Gödel by Gödel's incompleteness theorem in 1931. He demonstrated in his theorem that there are limits to what can be proven and denied using the formal system. This led to the work of Gödel and others defining and describing these formal systems, including concepts such as self-recalling functions mu-recursive functions and lambda accounts.

The year 1936 was pivotal for computer science as Alan Turing and Alonzo Church alone and together presented the formation of an algorithm with limits imposed on what can be calculated with a purely mechanical model of computing. These topics were dealt with through what is now called the Turing-Sharh hypothesis, which is a hypothesis about the nature of computational devices such as electronic computers. The hypothesis claims that any computation can be performed using a computer-based algorithm provided there is sufficient time and storage space. Turing also included in his hypothesis a description of a Turing machine It is a machine with a long tape and a read-write head that can move along the tape with changing values all the time. Of course, it is not possible to build such a machine, but despite that, the model was able to simulate the computing of any algorithm that can be performed with a modern computer.

It was Turng work is very important for computer science so that there is a prize in his name (Turing Award) and (Turing Test). He contributed greatly to the success of British codebreaking in World War II He continued to design computers and software throughout the 1940s But he committed suicide 1954. At a seminar on large-scale digital machines in Cambridge, Turing said, "We've tried to build a machine that does all kinds of things by simply programming it rather than adding more devices to it." In 1948 it built the first practical computer that can run stored building programs on the machine model Turng named "child Manchester Manchester Baby In 1950, the National Physics Laboratory in Britain was able to complete a device Pilot ACE It is a programmable microcomputer based on the Turing philosophy.

Typography is the imprinting of words, images, and designs onto paper or fabric or metal or any other materials suitable for printing on it. This is called graphic art graphic arts (graphic or graphic arts such as photography, drawing and writing). Copies of copies of the original are done mechanically. The history of printing is the most ancient and oldest document. It is done by printing from a prominent surface. Stone-stamping was used in the past, and this is the oldest printing method known to the Babylonians and others, and it was used to dispense with signing documents, documents and treaties, or as a religious symbol. The means were stamps or prints to be imprinted on clay or stone by scratching or engraving its surface. It was a circular chamber that was dipped in liquid dye or clay, and it was printed on a smooth and flat surface to print what was written on it as an opposite and opposite image.

Vine seals dating back to the Egyptian families 12-15. Among them are locally made seals made of ivory, bone or clay, flat or scarab in shape, or engraved with geometric patterns latticework based on engraved triangles. The seals of the administrative offices were found in the palace and near the city gates. Egyptian-made seals, similar to those discovered in Nubian sites, which date back to the second half of the Middle Kingdom, have floral designs, spiral designs, titles, or names for some junior officials or those in high positions in the government, such as the deputy governor or the royal envoy. Seals covered with animal inscriptions, shapes, or royal names were also found dating back to the Egyptian family in 15 AD. In Karma, seals were discovered that shed light on the developed relations between Karma and Egypt. Most of these seals were discovered in warehouses and structures in the area around the western flank, or in the cemeteries adjacent to the temple. It dates back to the Egyptian families 12-15. Among them are locally made seals made of ivory, bone or clay, flat or scarab in shape, or engraved with geometric patterns latticework based on engraved triangles. The seals of the administrative offices were found in the palace and near the city gates. Egyptian-made seals, similar to those that were discovered in the Nubian sites, which date back to the second half of the Middle Kingdom, floral designs or spiral designs, titles or names of some junior officials or those in high positions in the government such as the deputy governor or the royal envoy. Also found seals covered with inscriptions of animals or shapes or royal names dating back to the fifteenth Egyptian dynasty, and there are seals from Dilmun in the east of the Arabian Peninsula dating back to the 18th century BC.

In Europe made prominent and moving letters and in the middle of the 15th century the printing machine appeared by the German Johannes Gutenberg. To develop modern

printing in which newspapers and books are printed on paper. This was the reason for the development of civilization and the spread of knowledge in the various languages of the people of the earth. In Europe, prominent and moving letters were made in the middle of the 15th century AD, and the printing machine appeared by the German Johannes Gutenberg in the year 1436 AD, to revolutionize the world of communication by saving money and effort, and modern printing developed in which newspapers and books were printed, allowing the spread of knowledge in various languages. Printing has undergone a number of transformations, which we summarize as follows:

The Earl of Stanhope made around the year 1800 AD the first printing press, all parts of iron. Friedrich Koenig invented a steam-driven drum press in 1811 in Germany. The Times of London used a steam-powered two-cylinder press for the first time in 1814 AD, producing 1,100 copies per hour.

In the year 1846 AD, the American Richard invented the rotary printing press, and the printing letters were installed in a rotating cylinder while another cylinder completed the printing, and the first models of the presses were able to produce 8000 pages per hour, then later models produced 20,000 copies per hour.

In 1865, the American "William Bullock" was able to print on continuous paper lengths, inventing the high-speed rotary printing press, which works with the paper supply system. Ottmar Margenteller patented the linotype press by casting an entire line of array letters into a single piece of metal.

In 1887, the American Tolbert Lanston was able to invent the monotype printing press that casts and describes letters in separate pieces.

Mechanical Engineering

Mechanical engineering arose as a result of practice and the principle of trial and error by specialized engineers and by scientific methods in research, design and production. It has been a constant demand for efficiency A reason for the increasing quality of work required of the mechanical engineer, which requires a high degree of learning and skill.

The applications of mechanical engineering are evident in the records of various ancient and medieval societies. The six simple classical instruments were known in the ancient Near East. The wedge and the inclined plane (slope) have been known since prehistoric times . The invention of the wheel and the mechanism of the wheel and the axle began in Mesopotamia (modern Iraq) during the fifth millennium BC . The crane first appeared about 5,000 years ago in the Near East, where it was used in a simple balance, and to move large objects in ancient Egyptian technology. The crane was also used in Shaduf to raise water, the first crane machine, which appeared in Mesopotamia around 3000 BC. The oldest evidence of rollers dates back to Mesopotamia in the early second millennium BC.

The most important achievements in mechanical engineering occurred in England during the seventeenth century when Isaac Newton set his three laws of motion, developed mathematics and calculus, and laid the mathematical foundation for physics. During the early century in England and Scotland, the invention of mechanical engineering tools led to the development of mechanical engineering as a separate branch of engineering, a. The first professional association of mechanical engineers was formed in 1847 in Britain. The first American organization of mechanical engineers formed in 1880. The American Military Institute was the first university to teach mechanical engineering in 1825. The waterwheel was developed in The Kingdom of Kush during the fourth century BC. It relied on animal power to reduce dependence on human energy. Reservoirs are designed in the form of pits in Kosh to store water and support irrigation. Melting furnaces and blast furnaces were developed during the seventh century BC at Meroe. In Kush, the rules of advanced trigonometry were applied to the design of sundials.

The first practical water-powered machines, the waterwheel and watermill, first appeared in the Persian Empire, in what is now Iraq and Iran, by the early fourth century BC. The works of Archimedes (287-212 BC) in ancient Greece influenced the sciences of mechanics in Western civilizations. In Roman Egypt, Heron of Alexandria (circa 10-70 AD) built the first steam-powered apparatus. In China, Zhang Heng (78–139 AD) improved the water clock and invented the seismometer, and Magun (200–265 AD) invented a differential geared chariot.; The medieval Chinese clock scientist and engineer Su Song (1020-1101 AD) also incorporated a balance mechanism into his astronomical clock tower two centuries before balance devices were found in medieval European clocks. He also invented the first chain-driven transmission.

During the golden age of Islamic civilization (5th to 17th century), Muslim inventors made outstanding contributions in the field of mechanical technology. He has written Jazari, one of the most important Muslim engineers, his book Alshahyragama between science and the useful work tricks in the industry in 1206 and introduced in which many mechanical designs. Al-Jazari is also the first known person to design devices such as

the crankshaft and camshaft, which now form the basics of many mechanisms and mechanical assemblies to this day.

During the seventeenth century, important breakthroughs occurred in the foundations of mechanical engineering in England. Sir Isaac Newton formulated Newton's laws of motion and developed calculus, the mathematical foundation of physics. Newton had been reluctant to publish his work for years, but he was finally persuaded to do so by his colleagues, such as Sir Edmund Halley, for the benefit of all mankind. Gottfried Wilhelm Leibniz is also credited with creating calculus during this time period.

During the Industrial Revolution in the early 19th century, working machines were developed in England, Germany, and Scotland. This allowed mechanical engineering to develop as a separate field in engineering. Motorized manufacturing machines have appeared. The first British professional society of mechanical engineers (Institute of Mechanical Engineers) was formed in 1847, thirty years after civil engineers formed the first such professional society (Institute of Civil Engineers). On the European continent, in Chemnitz, Germany, Johann von Zimmermann (1820–1901) founded the first mill for grinding machines in 1848.

In the United States, the American Society of Mechanical Engineers was formed (ASME) In 1880, it became the third professional engineering society, after the American Society of Civil Engineers (1852) and the American Institute of Mining Engineers (1871). The first schools in the United States to offer engineering education were the United States Military Academy in 1817, the institution now Norwich University in 1819, and Rensselaer Polytechnic in 1825. Education in mechanical engineering has historically been well-founded. In mathematics and science.

Science and Technology Studies

Science, Technology, and Society Studies emerged from a confluence of diverse disciplines and rigorous subfields, and like most multidisciplinary programs, all developed a single interest in seeing science and technology as socially integrated institutions during the 1960s and 1970s. All aspects and components of these studies began to form

independently, starting in the 1960s and began to develop in isolation from each other until the 1980s the twentieth century, although Ludwik Flick's (1935) book The Origin and Development of Practical Truth, had anticipated several major themes. And in the seventies Elting E. Morrison founded the STS program at the Massachusetts Institute of Technology (MIT), which was introduced as a model, to become in 2011 Calculation of 111 Action Research Centers and Programs (STS) worldwide

History of technology: who studies technology in its social and historical content, some historians have questioned technological determinism, a doctrine that can stimulate the general latency/inactivity of natural evolution at the technological and scientific level. At the same time, some historians began to in developing an approach with similar content to the history of medicine.

History and Philosophy of Science (1960): After Thomas Kuhn published his famous book "The Structure of Scientific Revolutions" in 1962, which attributes changes in scientific theories to changing basic intellectual paradigms, programs were established at the University of California and Berkeley, in addition to other places where all were collected Historians of science and philosophers come together in unified programmes.

Science, Technology and Society: Student and faculty social movements in the US, UK and European universities in the mid- to late 1960s helped launch a range of new, interdisciplinary fields (such as women's studies). One aspect of these developments was the emergence of programs Science and technology across a variety of disciplines. Scholarships in these programs have created undergraduate courses including anthropology, history, political science and sociology dedicated to exploring the issues raised by science and technology. Feminist scholars orient themselves in this and other emerging fields of science and technology to exclude women from science and engineering. Science studies emerged engineering, and public policy in the 1970s on the same concerns that motivated the founders of the science, technology and society movement, that science and technology were developing in ways that were inconsistent with the best interests of the public.

The Science, Technology, and Society movement attempted to represent those who make science and technology in a human form, but he took a different approach. It will train students in professional skills to play a role in science and technology policy. Some programs came to emphasize quantitative methodologies, which were eventually included within systems engineering. Others emphasized the social and qualitative approach, and found that they could find close relatives of scientists in science and technology departments and society.

Pioneering universities started in the United States, the United Kingdom and Europe During the 1970s and 1980s, various components were brought together into new, interdisciplinary programmes. For example, in the 1970s Cornell University developed a new program that would unite scientific studies and politically oriented researchers with historians and philosophers of science and technology. Each of these programs developed unique identities due to the different components that were grouped together and where they are located within the different universities.

Resorting Technology

One of the crucial moments in the development of science and technology studies was the addition of technology studies in the mid-1980s to a group of interests influencing science, and during that decade, two works appeared in series that referred to what Steve Walgar called (recourse to technology).: The social stereotyping of technology (McKinsey and Wagman, 1985) and the social structure of technological systems (Baker, Hughes, and Bench, 1987). McKinsey and Wagman prepared the pump by publishing a collection of articles that demonstrate the impact of society on technological design. In a seed article, Trevor Bench and Webby Becker linked the whole legitimacy of sociology to scientific knowledge with this development by showing how technological sociology could proceed along the theoretical and methodological lines established by sociology with scientific knowledge. This was the intellectual basis for the field they called the social structure of technology.

Recourse to Technology has helped to foster a growing awareness of the inherent unity between the various study programs of emerging science and technology. More recently, there has been a transformation related to the environment, nature, and material things in general, as both participate in technical and natural/physical social production. This is particularly evident in work in analyzes of science and technology studies of biomedicine (eg Karl May, Annemarie Möll, Neely Oddshorn, Andrew Webster) and environmental interventions (eg Bruno Lato, Sheila Jasanoff, Matthias Gross, S. Lochlan Jain and Jens Lachmond).

References:

- Wekipedia.com, Jan 2019.
- Britannica.com, Jan 2018.
- The American Society of Mechanical Engineers, December 2017.
- Elzein, New York Institute of Technology (NYIT), 4 March 2016.
- Brush, The History of Modern Science: A Guide to the Second Scientific Revolution 1800-1950. Ames: Iowa State University Press, 1998.
- Bunch, Bryan and Hellemans, Alexander, The Timetables of Technology, New York, Simon and Schuster, 1993.
- Derry, Thomas Kingston and Williams, I., Trevor, A Short History of Technology: From the Earliest Times to AD 1900. New York: Dover Publications, 1993.
- Elzein, Greenwood, Jeremy, The Third Industrial Revolution: Technology, Productivity and Income Inequality AEI Press, 1997.
- Kranzberg, Melvin and Pursell, Carroll W. Jr., eds., Technology in Western Civilization: Technology in the Twentieth Century New York: Oxford University Press, 1967.
- Landa, Manuel de, War in the Age of Intelligent Machines, 2001.
- McNeil, Ian, An Encyclopedia of the History of Technology. London: Routledge, 1990. ISBN 0-415-14792-1.
- Olby, R. C. et al., eds, Companion to the History of Modern Science, New York, Routledge, 1996.
- Holmyard, Hall and Williams, Singer (eds.), A History of Technology, 7 vols., Oxford, Clarendon Press, (Vols 6 and 7, 1978, ed. T.I. Williams), 1978.
- Feynman, Richard, The Feynman Lectures on Physics; Volume 1. USA: Addison Wesley, 1964. ISBN 0-201-02115-3.
- Elzein, Harper, Douglas. "Energy". Online Etymology Dictionary. Archived. From the original on October 11, 2007. See it on May 1, 2007.
- Smith, Crosbie. The Science of Energy a Cultural History of Energy Physics in Victorian Britain. The University of Chicago Press, 1998. ISBN 978-0-226-76420-7.
- "Industry, Technology and the Global Marketplace: International Patenting Trends in Two New Technology Areas". Science and Engineering Indicators 2002. US National Science Foundation. Archived from the original on 09 April 2016. Accessed on May 07, 2007.