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Abstract: The design level of channel physical characteristics has a crucial influence on the trans-
mission quality of high-speed serial links. However, channel design requires a complex simulation
and verification process. In this paper, a cascade neural network model constructed of a Deep
Neural Network (DNN) and a Transformer is proposed. This model takes physical features as inputs
and imports a Single-Bit Response (SBR) as a connection, which is enhanced through predicting
frequency characteristics and equalizer parameters. At the same time, signal integrity (SI) analysis
and link optimization are achieved by predicting eye diagrams and channel operating margins
(COMs). Additionally, Bayesian optimization based on the Gaussian process (GP) is employed for
hyperparameter optimization (HPO). The results show that the DNN–Transformer cascaded model
achieves high-precision predictions of multiple metrics in performance prediction and optimization,
and the maximum relative error of the test-set results is less than 2% under the equalizer architecture
of a 3-taps TX FFE, an RX CTLE with dual DC gain, and a 12-taps RX DFE, which is more powerful
than other deep learning models in terms of prediction ability.

Keywords: high-speed link; signal integrity; eye diagram; channel operating margin; cascaded model

1. Introduction

As the transmission bandwidth of wireline serial link technology reaches the GHz
level, it is no longer possible to ensure efficient signal transmission by simply optimizing
the dielectric and layout structure. High-speed serial link systems suffer from serious signal
integrity (SI) problems due to the skin effect, dielectric loss, crosstalk, reflections, and jitter;
therefore, the SI analysis becomes more and more strict in the design stage of high-speed
serial links. The simulation analysis of SI usually consists of two steps: electromagnetic
field solvers (EMFSs) and circuit system simulation [1]. Firstly, an EMFS is used to obtain
S-parameters to characterize the frequency response of the circuit. Then, these S-parameters
are imported into the model circuit system for time-domain simulation to obtain the main
SI metrics, including an eye diagram, the impulse response, and transient waveforms.

Although the traditional SI analysis based on physical models of high-speed links can
offer high accuracy, it consumes a lot of time and computer resources. Input/Output Buffer
Information Specification Algorithmic Model Interface (IBIS-AMI) is a behavioral model
that simulates the input/output behavior and algorithms of end-to-end high-speed serial
links, simplifying the internal physical details [2]. Compared to physical models, it has the
advantages of speed, simplicity, and low resource consumption, but it has poor accuracy
and lacks flexibility. Compliance standard template comparison is another commonly used
method [3]. This can swiftly and intuitively estimate channel performance, but it inevitably
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discards the channel margins due to the need to strictly satisfy discrete metrics [4]. On
the contrary, the channel operating margin (COM) technique can effectively overcome this
disadvantage by searching the optimal design space of the whole link in the form of a
signal-to-noise ratio (SNR). Compared to the traditional SI metrics such as eye diagrams and
the bit error rate (BER), the COM approach shows advantages such as simpler operation,
faster speed, and more efficient testing. Obviously, compared with Annex69B channel
evaluation for 10 Gb/s Ethernet (10 GbE), using COMs is more accurate [5]. Although the
COM approach can provide an effective way to evaluate and optimize high-speed links,
it requires numerous iterations for spatial search and is not flexible enough to analyze
high-capacity channels.

Machine learning (ML) has been widely used in the simulation and design of high-
speed links in recent years, and shows the ability to improve the efficiency of SI analysis.
The authors of [4,6–10] searched for features from simulation data and trained Artificial
Neural Network (ANN), Deep Neural Network (DNN), and Least-Squares Support Vector
Machine (LS-SVM) models to replace circuit system simulations for the accurate predic-
tion of time-domain (TD) and frequency-domain metrics such as eye height (EH)/eye
width (EW) and return loss (RL)/insertion loss (IL); however, the acquisition of simulation
data consumes a lot of computational resources and time. Feedforward Neural Networks
(FNNs), Random Forest Regression (RFR), and Support Vector Machines (SVMs) are used to
achieve simple predictions of simulation data [11–13], such as for predicting S-parameters
and impulse responses. When dealing with more complex simulation data, traditional ML
methods may lose many features. The Recurrent Neural Network (RNN) is an ML model
that can effectively capture the features of complex data, especially for sequence data such
as S-parameters and impulse responses. The authors of [14–20] employ RNN and Long
Short-Term Memory (LSTM) architecture to create surrogate models for predicting the
transient response waveforms of complex high-speed links. These independent surrogate
models can perform SI analysis based on simulation data, but cannot deal with the physical
parameters of links. SI analysis based on physical parameters requires more complicated
ML methods, and the authors of [21–24] achieved effective predictions of physical parame-
ters used for assessing high-speed link performance by combining multiple deep learning
algorithms. Moreover, balanced architecture optimization for high-speed serial links can be
achieved based on ML [4,25–27]. In conclusion, performance prediction and architecture
optimization [28] are two important parts of ML applications for high-speed serial links.

In this paper, a DNN–Transformer cascaded model is proposed for the SI analysis and
optimization of high-speed serial links. This model can skip the use of EMFSs and circuit
system simulation, and directly predicts SI metrics including EH/EW, IL/RL, impulse
response, and COM values according to physical parameters. Meanwhile, the optimization
of links can be achieved by using this model to predict the corresponding COM values
and equalizer parameters for the links with different equalizer configurations. Further-
more, Bayesian optimization based on the Gaussian process (GP) is used to optimize the
hyperparameters under the same conditions for different combinations of models. Com-
pared with the prediction of high-speed link performance using traditional ML [6–10],
DNN–Transformer can directly use the physical parameters of the link for analysis, and
its prediction accuracy is significantly better. For the prediction of simulation data such
as impulse responses, DNN–Transformer can capture more features and its prediction
ability is more accurate than that achieved when using an RNN [14] or LSTM [20] model
alone to create a surrogate model. The results show that the DNN–Transformer model can
achieve more effective prediction. The performance and feasibility of the proposed method
is illustrated by the prediction data and graphical results given in this paper.

The main contributions of this paper can be summarized as follows:

(1) Based on the key physical parameters of channels, neural network models are used to
directly analyze link performance, and this obviates the time-consuming processes of
EMF solving and circuit system simulation.
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(2) Through neural network models, the accurate prediction of multiple SI indicators and
equalizer parameters is achieved. Additionally, we show that SI analysis and link
optimization can also be rapidly achieved.

(3) A DNN–Transformer cascaded model is proposed, Bayesian optimization is used to
tune the hyperparameters of this model, and its superior performance is demonstrated
by comparing it with other models.

The rest of this paper is organized as follows: Section 2 discusses the basic principles
of this work, including the principles of the SI and COM methods. Section 3 describes how
the simulation dataset was created. In Section 4, the design idea of the DNN–Transformer
model and test metrics are presented. Section 5 gives the numerical results to demonstrate
the prediction performance of our model. Finally, Section 6 concludes the paper.

2. Fundamental Methods
2.1. Signal Integrity and S-Parameters

As transmission rates increase, the inefficiencies of traditional parallel signal transmis-
sion methods are becoming apparent and high-speed serial digital transmission is becoming
widely used. Figure 1 shows the widely used SerDes structure in a high-speed serial link
system. It comprises a transmitter chip with a serializer and a feedforward equalizer (FFE),
a channel, and a receiver chip with a decision feedback equalizer (DFE) and a de-serializer.
The FFE at the sending end mainly performs pre-emphasis on the signal to improve its
high-frequency component. The composition of a wireline channel is complex, usually
including traces, vias and connectors, etc. These physical structures exhibit low-pass filter
characteristics and can enlarge the high-frequency loss of a signal, severely worsening the
signal transmission quality and leading to SI problems. The continuous-time linear equal-
izer (CTLE) at the receiving end is mainly used to compensate for the high-frequency loss of
the channel, eliminate the pre-cursors, and suppress the trailing of the pulse response. The
DFE is mainly used to eliminate the post-cursors of the pulse response. The combination
and parameter settings of the FFE, CTLE, and DFE have a significant impact on the SI of
ultra-high-speed wireline serial communication links.
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Figure 1. Common structure of a SerDes circuit.

The main goal of SI analysis is to detect and reduce the factors that cause losses, such
as dithering, reflection, and crosstalk. On the one hand, the SI can be analyzed from the
frequency domain, as shown in Figure 2a. This mainly includes IL, RL, insertion loss
deviation (ILD), and the insertion loss-to-crosstalk ratio (ICR), which are subsequently
placed into a template for evaluation. On the other hand, the SI can be evaluated in the
time domain, such as through eye diagrams, transient simulations, bathtub curves, and bit
error rates, as shown in Figure 2b.
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The critical method of traditional SI analysis involves the acquisition of S-parameters.
These parameters contain comprehensive Frequency Domain (FD) characteristics of the
transmission channel and offer a large amount of information on aspects such as reflection,
crosstalk, and loss. Moreover, S-parameters can be employed in time-domain simulations
to generate data such as eye diagrams and bathtub curves.

2.2. Channel Operating Margin

The COM method is a high-speed serial link characterization method recommended by
the IEEE 802.3 working group for channel compliance testing. The official definition states
that a “COM is a figure of merit (FOM) for channels determined from a minimum reference
PHY architecture and channel s-parameters” [29]. This approach provides a relatively
accurate and fair environment for the physical design of channels by considering various
factors such as loss, reflection, inter-symbol interference (ISI), dispersion ISI, crosstalk, and
device specifications, enabling a relatively accurate assessment of channel performance and
the impact of aggressor channels on victim channels. The impact of equalizers has been
considered in subsequent versions of the COM method, and the value of a COM based
on the FOM can be improved by selecting equalizer parameter settings. Consequently,
calculating the COM can also determine whether the channel quality meets the transceiver’s
SI requirements [30]. As shown in Equation (1), the COM can be expressed by the ratio of
available signal amplitude As to statistical noise amplitude An.

COM = 20 × log10

(
As

An

)
(1)

The process of deriving the COM involves several essential steps, including deter-
mining the transfer function, converting the transfer function into the impulse response,
applying transmitter and receiver equalizer algorithms, and performing statistical noise
calculations. Figure 3 presents a flowchart of COM model derivation and depicts two
paths for the victim and aggressor channels. Additionally, the model also considers trans-
mitter and receiver package interference S (tp/rp), termination resistance Rd, equalizers,
and filters. To better simulate actual channels, the COM model incorporates Gaussian
white noise and jitter at the receiver end. Figure 4 shows the detailed process of COM
value calculation.
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The equalizer parameters are mainly set based on the channel loss. The FOM serves
as a quantitative metric for assessing channel quality and equalizer performance. It takes
into account several factors affecting SI, including ISI, jitter, crosstalk, and noise. The FOM
calculation formula can be expressed as follows:

FOM = 10 × log10

(
A2

s

σ2
TX + σ2

ISI + σ2
J + σ2

XTK + σ2
N

)
(2)

The numerator As is derived from the amplitude of the impulse response at ts, which
corresponds to the main cursor of the impulse response h(t). The denominator includes
the sum of variances from all noise, jitter, and interference components. σ2

TX represents the
noise variance at the transmitter, σ2

ISI denotes the variance in the residual ISI amplitude,
and σ2

J indicates the variance in jitter amplitude. In COM analysis, jitter is accounted for
by converting horizontal jitter into vertical noise at the sampling instant ts. Additionally,
σ2

XTK represents the total crosstalk variance from all interference paths, while σ2
N denotes

the Gaussian white noise at the receiver sampling point.
The COM approach entails exploring all possible parameter combinations of the TX

and RX equalizers within a set range to find the configuration that maximizes the FOM.
This process determines the values of As and An that result in the optimal FOM.

Traditional methods rely on various indicators such as jitter, eye height, and eye
width, but the COM serves as a comprehensive metric for evaluating a serial link. It
can significantly reduce the computation time and number of iterations, and provides an
accurate evaluation of channel performance both before and after equalization.
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3. Dataset Construction
3.1. Channel Design and Dataset Splitting

In this work, the channel datasets were generated using professional PCB design
software. As shown in Figure 5, Altium Designer 20.0.13 and Allegro 17.4 (EDA software)
were primarily utilized to create the layouts for high-speed differential lines. Subsequently,
the PCB layout files were imported into Advanced Design System 2021 (ADS) or HFSS 2023
R1 for electromagnetic (EM) simulation. Our design conforms to the specifications for USB
end-to-end differential transmission lines, including parameters such as line width and
length, the characteristic impedance of transmission channels, and differential line spacing.
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The differentiated characteristics of channel data, as presented in Table 1, primarily
include parameters such as material, trace dimensions, and PCB type. The board character-
istics encompass both numerical features—such as permittivity (Er), the dissipation factor
(Df ), and board thickness—and categorical features such as the PCB type. Er consists of
the sheet permittivity’s real part and the dielectric loss tangent angle (TanD). Df is derived
from the Djordjevic model, which is defined by parameters including the low and high
frequencies of TanD and relative high-frequency permittivity. In this study, Df is quantified
according to the numerical values of TanD and its corresponding high and low frequencies.
The PCB type is categorized into either the stripline type, represented by a numerical value
of 1, or the microstrip type, represented by 0.

Table 1. Channel feature parameters and quantitative methods.

Feature Variable Input Output

Er PCB sheet permittivity real part and TanD

Eye diagrams
COM values

Equalizer parameters

Df PCB sheet dissipation factor

Trace

PCB trace length

PCB trace width

Differential line space

PCB trace thickness

PCB trace conductivity

PCB trace structure (profile)

Zd Differential impedance

PCB Type Stripline is 1 and microstrip is 0

These trace features are quantified based on specific parameters such as the trace
length, width, thickness, conductivity, profile, and differential line spacing. The profile is
characterized by the geometric shape of the trace, such as the number of corners. The other
characteristics are directly represented by their corresponding numerical values.
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3.2. COM Configuration and Equalizer Setting

This work utilizes the COM 4.0 version program provided by IEEE 802.3. The con-
figuration references the enhanced COM (eCOM) simulation setup with the USB4 Gen4
standard and incorporates the elements of the 50 GBASE-KR standard. The PAM4 con-
figuration settings, as shown in Table 2, employ a combination of a transmitter FFE and
receiver-side CTLE and DFE. This configuration includes the tap coefficients of the TX FFE
and RX DFE, the adaptive range of DC gain, and the zero-pole positions of the RX CTLE.
Additional parameters include the number of signal levels, denoted by L. For PAM4 signals,
L is set to 4. According to the recommended PAM4 setup based on USB4, the symbol
rate is set to 20 GBd, and the differential peak voltage output of the transmitter is set to
0.4 V, denoted as Av. The USB4 Gen4 standard suggests that PAM3 should be used as the
modulation method. The COM settings for PAM3 are roughly same as those of PAM4,
except that the symbol rate is set to 25.6 GBd, and L is set to 3.

Table 2. Configuration of COM parameters.

Parameter Symbol Setting Unit

Symbol rate fb 20 GBd

Number of signal levels L 4

Samples per UI M 32

Target detector error ratio DER0 10−8

Transmitter output voltage, victim Av 0.4 V

CTLE DC gain gDC [−12:1:0] dB

CTLE DC gain2 gDC_HP [−6:1:0] dB

CTLE HP pole fHP_PZ 0.25 GHz

CTLE zero fZ fb/2.5 GHz

CTLE pole1 fP1 fb/2.5 GHz

CTLE pole2 fP2 fb

FFE main cursor c (0) 0.62

FFE pre-cursor c (−1) [−0.18:0.02:0]

FFE post-cursor c (1) [−0.38:0.02:0]

DFE length Nb 12 UI

DFE magnitude limit
bmax(1) 0.75

bmax(2 ∼ Nb) 0.2

COM pass threshold th 3 dB

Based on the adopted configuration of TX FFE + RX CTLE + RX DFE, the prediction
parameters include tap coefficients of the FFE, DC gain of the CTLE, and tap coefficients
of the DFE. The TX FFE and RX CTLE data are obtained by searching for FOM values
throughout the design space, while the DFE coefficients are determined according to the
pulse response h(t) corresponding to the optimal FOM. The SI is significantly impacted by
post-cursors closer to the main cursor, while the more distant post-cursors exert minimal
influence, so only the first four post-cursors of the DFE are predicted.

3.3. Dataset Splitting

For this work, a total of 325 channels were collected. In this dataset, 280 channels were
used to create an eye diagram dataset, referred to as Dataset A, and 215 channels were used
to create a dataset for the COMs and predicate the parameters of the equalizers, referred to
as Dataset B. Due to the impact of the FOM, the COM approach uses different equalizer
parameter optimization methods for stripline and microstrip systems, which results in
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a weakened fitting ability of the ML model. Consequently, we standardized Dataset B
using strip-line channels. Among the 215 channels in Dataset B, 170 channels are stripline
channels in Dataset A, while 45 channels are newly created stripline channels. According
to standard methodology, both datasets are partitioned into training, validation, and test
sets. Part of the test set in Dataset B is extracted from the validation set. The split settings
are detailed in Table 3.

Table 3. Dataset split settings.

Number of Channels

Datasets A: 280 B: 215 (170 from A)

Training Set 184 140

Validation Set 40 40

Testing Set 56 40 (5 from the validation set)

Total 325

4. Construction of the Cascaded Model and Training
4.1. DNN

The M-P model, proposed by psychologist McCulloch and logician Pitts, is a mathe-
matical model that was developed through an analysis and synthesis of the basic properties
of neurons [31]. This model is crucial for the implementation of neural networks and
constitutes the foundational unit of a DNN. The structure of this model is depicted in
Figure 6. The x = (x1, x2, · · · , xn)

T represents the n input features of the neuron, and
ωi = (ωi1, ωi2, · · · , ωin) denotes the weight vector responsible for linear weighted connec-
tions. The weight vector ω is optimized within neural networks to enhance the accuracy of
predictions. The linear weighted output Z can be expressed as follows:

Zi =
n

∑
j=1

ωijxj (3)
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Figure 6. The structure of the M-P neuron model.

Figure 6 depicts the structure of the M-P neuron model. The difference between Z and
an offset θ is used as the input to the function f (·). The function f (·) is referred to as the
activation function and used to derive the output of the neuron. θ can be considered as the
weight of input x0 with a fixed value of −1 and is also an optimization target of the neural
network. In this paper, the ReLU function is adopted as the activation function because it
can more effectively mitigate the occurrence of overfitting. The formula for this is shown in
Equation (4).

fReLU(x) = max(0, x) (4)

The output of the activation function is typically used as the input for adjacent layers.
DNNs can complete tasks such as regression, classification, and recognition. DNNs are
widely used for regression tasks in production and performance evaluation [4,6–9,32]. The
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DNN used in this paper, as shown in Figure 7, adopts a standard structure with multiple
hidden layers, along with an input layer and a linear regression output layer [33], and
employs a fully connected network architecture between its neurons.
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In order to make the model converge better, the training model usually requires a cost
function to evaluate the gap between model-predicted values and actual values. In this
paper, Smooth L1 [34] is adopted as the cost function:

smoothL1 =

{
0.5 × (yn − ŷn)

2 if|yn − ŷn| < 1
|yn − ŷn| − 0.5 otherwise

, (5)

where yn and ŷn represent the real value and predicted value, respectively.
The performance of the model is evaluated using the cost function; then, an optimizer

is employed to backpropagate and continuously minimize the cost function. The model
parameters and weights are continuously updated until the expected performance is
achieved. After comparing several different optimizers, the Adam optimizer was ultimately
selected for use in this paper [35].

4.2. Transformer for Regression

The accuracy of equalizer parameters and COM values directly predicted by channel
feature parameters is relatively low. In this work, the Single-Bit Response (SBR) before and
after equalization is first predicted based on the feature parameters of the channel, and
then the equalizer parameters and COM values are determined according to the predicted
pulse response. The pulse response needs to be used as a time series for prediction.
Traditionally, RNN or LSTM models are used for time-series prediction, but these networks
have certain limitations. The Transformer model can effectively improve the gradient
explosion problem that occurs in LSTM by using attention mechanisms, thereby enhancing
prediction precision [36].

The formula of an attention mechanism is shown in Equation (6). It mainly consists of
three inputs: Q (Query), K (Key), and V (Value), along with a softmax module. When Q, K,
and V are identical, it is referred to as a self-attention mechanism.

Attention(Q, K, V) = softmax(
QKT
√

dk
)V (6)

The complete Transformer architecture primarily includes an embedding layer, a
positional encoding layer, an encoder layer, a decoder layer, and an output layer. In this
work, since our task is a time-series prediction task rather than an NLP task, the positional
encoding layer has been removed. The essence of time-series prediction can be viewed as
a regression task; the model only needs to generate a single output value corresponding
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to each time point and does not need a decoder to generate sequence outputs. Using
only the encoder layer is sufficient, which simplifies the model structure and reduces
the computational load. As shown in Figure 8, our final design keeps the embedding
layer, the encoder layer, and the final output layer. Additionally, in order to achieve faster
convergence, the Gaussian Error Linear Unit (GELU) was chosen as the activation function.

fGELU(x) = xP(X ≤ x) = x × 1
2
[1 + erf(x/

√
2)] (7)
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4.3. Cascaded Model and Training

As illustrated in Figure 9, a cascaded Transformer and DNN model is utilized in this
work to accurately predict the COM value and its corresponding equalizer coefficients.
A total of 325 channel features have been collected as a dataset, and a DNN model is
used to predict the spectral feature for each channel, specifically the IL and RL at the
Nyquist frequency points. These predicted spectral data, along with the channel features,
are then fed into a Transformer model to derive the pre-equalization SBR. Utilizing the pre-
equalization SBR, the corresponding equalizer parameters under the COM configuration
are calculated by the DNN model. In order to compute the post-equalization SBR, equalizer
parameters combined with the channel features and frequency-domain features are then
sent into another Transformer model. Finally, the sampled post-equalization SBR, channel
features, and spectral features are used to compute the final corresponding COM value in
the DNN model.
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The input vector of physical characteristics for each channel can be defined as follows:

X =
{

xij
}

i=1:NC ,j=1:NP
, (8)
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where NC represents the number of channels in the dataset, NP is the total number of
channel features, and X is an NC × NP matrix. The element xij denotes the quantified value
of a specific physical feature of a channel: for instance, x11 corresponds to the length feature
value of first channel.

The DNN used in the cascaded model can be represented by Equation (9):

Y = FDNN(Z, θ)

= W(l) fReLU(· · · (W(2) fReLU(W(1)X + θ(1))

+θ(2)) · · · ) + θ(l)
, (9)

where Z represents the linearly weighted output of input matrix X and model weights
W, as described in Equation (3), and θ represents the offset. The index l denotes the layer
of the DNN model, which includes the input layer, hidden layers, and output layer. Our
network employs a total of four different DNN models with varying hyperparameters: Y f

for predicting spectral features, Ye for predicting equalizer parameters, YE for predicting
the eye diagram, and YC for predicting the COM.

The augmented matrix X f is obtained by horizontally concatenating the input matrix
X of the first DNN model with its output Y f :

X f = [X
∣∣∣Y f ]

=


x11 x12 · · · x1NP y1I y1R
x21 x22 · · · x2NP y2I y2R
...

...
. . .

...
...

...
xNC1 xNC2 · · · xNC NP yNC I yNC R

 , (10)

where the column vector yI = (y1I , y2I , · · · , yNc I)
T represents the predicted channel IL and

yR = (y1R, y2R, · · · , yNcR)
T represents the predicted channel RL.

To enhance the accuracy of the predicted COM value, the pulse response is extracted
from the pre- and post-equalization SBR in the COM tool. The peak corresponding time
point is taken as the main cursor, and the amplitudes of four pre-cursors and eight post-
cursors determined by the COM sampling interval are selected as the required SBR. Then,
the pulse of each channel is flattened and the corresponding time labels are inserted,
forming a sequential feature vector. Equation (11) represents the sequence of amplitude
values. After this processing, the Transformer model can be employed to accurately predict
the SBR. 

SBR1(t) = FTrans[x11(t), x12(t), · · · ,
x1NP(t), y1I(t), y1R(t)]

SBR1 = [SBR1(t − t0), · · · ,
SBR1(t), · · · , SBR1(t + t1)]

, (11)

where FTrans denotes the Transformer model being utilized, SBR1(t) represents the SBR
corresponding to the input feature vector of the channel at a specific time point, and SBR1
represents the SBR sequence of the channel. t0 and t1 are the left and right boundaries of
the time range, respectively.

By feeding the SBR into the subsequent DNN model with distinct parameters, the
prediction of equalizer parameters can be achieved via Equation (12):

Ye = FDNN(SBR1, SBR2, · · · , SBRNC ) (12)

By integrating the equalizer parameters with the input featuring spectral characteris-
tics, an augmented matrix SBReq

NC
(t) is constructed for the prediction of post-equalization
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SBR. This matrix, via Equation (13), is then processed into a time-dependent sequence
following the methodology presented in Equation (11).

SBReq
NC

(t) = FTrans[xNC1(t), · · · , xNCNP(t),
yNCI(t), yNCR(t), Ye

NC
(t)]

SBReq
NC

= [SBReq
NC

(t − t0), · · · ,
SBReq

NC
(t), · · · , SBReq

NC
(t + t1)]

Ye
NC

(t) = [yTaps
FFE−NC

(t), yDCgain
CTLE−NC

(t), yTaps
DFE−NC

(t)]

(13)

Finally, the obtained post-equalization SBR is concatenated with X f to form the final
input features for predicting the COM value.

Before formally training the cascaded model, we standardized the input data and
employed a pre-training strategy. Initially, the DNN models F f req

DNN(X) and Feq
DNN(X) de-

signed for predicting spectral features and equalizer parameters, respectively, were trained
independently, and their corresponding parameters were saved. These pre-trained DNN
models were then integrated with the necessary Transformer model to construct the com-
plete cascaded model for predicting the equalizer parameters and COM, as depicted in
Figure 9. For training the cascaded model, Smooth L1 was used as the cost function and
the Adam algorithm was applied to update the model parameters. With the help of the op-
tuna toolkit, model structuring and hyperparameter optimization (HPO) were performed
via Bayesian optimization using the GP [37,38]. The chosen acquisition function was the
Expected Improvement (EI) function, with an initial set of 10 observation points, allowing
for effective HPO within a computationally feasible scope.

Compared to the global grid search, random grid search, and halving search methods,
Bayesian optimization is more efficient for HPO and requires less optimization time. Ad-
ditionally, the K-Fold cross-validation method is employed in this paper to enhance the
reliability of the model evaluation.

After completing the model’s training, its predictive capabilities can be assessed with
several different metrics. One of these metrics, shown in Equation (14), is the RMSE.
The squaring operation in RMSE increases its sensitivity to errors, making it particularly
responsive to outliers. This increased sensitivity can also make it overly responsive to
outliers, but the square-root operation cannot intuitively reflect the actual magnitude
of error.

RMSE =

√
1
n

n

∑
i=1

(yn − ŷn)
2 (14)

MAE is calculated according to the average value of absolute differences between the
predicted and actual values. Compared to RMSE, MAE is less sensitive to outliers and
provides a more intuitive reflection of the actual magnitude of errors. However, this can
lead to an underestimation of the impact of the errors.

MAE =
1
n

n

∑
i=1

|yn − ŷn| (15)

MAPE is the average value of absolute percentage differences between the predicted
and actual values. Compared to RMSE and MAE, MAPE is easier to understand and
allows for the comparison of prediction results across different scales. It is more suitable
for situations with significant changes in actual values. However, when the actual values
are close to zero, the error can become large, so MAPE is unsuitable for datasets containing
zero or near-zero values.

MAPE =
1
n

n

∑
i=1

∣∣∣∣yn − ŷn

yn

∣∣∣∣ (16)
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5. Numerical Results

In this work, the neural network model has been constructed using a Python library
based on Pytorch 2.0.1. The computer used for model computation included a GeForce
RTX 4070 and an Intel Core i5-12600 KF 3.7 GHz.

5.1. IL and RL

As shown in Figure 10, the IL and RL are losses at Nyquist frequency, and the model’s
predictions of IL are more accurate than its predictions of RL. This is because IL is primarily
influenced by the dielectric loss and input features, including dielectric loss-related param-
eters. Conversely, RL is affected by additional factors such as impedance mismatches and
complex trace shapes, complicating its prediction. Therefore, the accuracy of IL prediction
is better than that of RL prediction. The relative error of RL prediction is 17.4%, but this is
sufficient to support the accurate prediction of eye diagrams and COM values.
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5.2. EH/EW of the Eye Diagrams

Figure 11 shows the relative errors in eye height and width for 40 test channels with
the PAM3 and PAM4 modulation methods. Channels No. 1 to No. 32 are stripline channels,
while channels No. 33 to No. 56 are microstrip channels. Channels No. 1 to No. 10
exhibit more complex trace paths, resulting in larger errors in eye height and eye width. In
contrast, channels No. 11 to No. 23, which have simpler routing with straighter or fewer
bend paths, show better fitting precision. Most channels in the dataset utilize FR-4 as the
dielectric layer, whereas channels No. 24 to No. 32 employ alternative materials, resulting
in relatively larger errors. Compared to the stripline channels, channels No. 33 to No. 56,
which utilize microstrip lines, show significantly higher relative errors, demonstrating that
microstrip lines have weaker anti-interference capabilities than striplines. Table 4 shows the
RMSE, MAE, MAPE, and MRE for the eye diagram prediction with the PAM3 and PAM4
modulation methods. It is evident that the prediction results exhibit good convergence
and precision. Because the EH unit is chosen as mV, the RMSE and MAE metrics increase
by an order of magnitude compared to EW. The results in this table, combined with those
in Figure 11, demonstrate that the PAM3 and PAM4 models are effective and exhibit
high accuracy.
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Table 4. Prediction of eye diagrams with the DNN model.

Eye Modulation RMSE MAE MAPE MRE (%)

EH (mV)
PAM3 4.8 × 10−1 3.3 × 10−1 5.7 × 10−3 2.5

PAM4 4.0 × 10−1 2.9 × 10−1 8.1 × 10−3 2.8

EW (UI)
PAM3 4.4 × 10−3 3.4 × 10−3 9.3 × 10−3 2.7

PAM4 4.4 × 10−3 3.6 × 10−3 1.2 × 10−2 3.5

5.3. COM

Because many pre-cursor and post-cursor SBR values are close or equal to zero, MAPE
and MRE are not suitable for evaluating the accuracy of SBR predictions, and only RMSE
and MAE are used to evaluate the prediction accuracy for the SBR. For the SBR before
equalization of the 40 test channels, the RMSE is 7.3 × 10−4 and the MAE is 6.3 × 10−4. For
the SBR after equalization, the RMSE is 1.1 × 10−3 and the MAE is 1.6 × 10−4. Below, we
use a randomly selected channel (ID: 3) from the test set to illustrate the SBR prediction
performance. As depicted in Figure 12, both the pre-equalization and post-equalization
SBR can be predicted by the Transformer model with high precision.

For the PAM4 signal format, Figure 13 provides a concise demonstration. We selected
an equalizer configuration that includes a 3-taps TX FFE, an RX CTLE with dual DC gain,
and a 12-taps RX DFE (hereafter referred to as the standard equalizer configuration). As
shown in Figure 13, channels No. 7 and No. 30 have large relative errors due to their
complex shapes. Some channels with high RL, such as channels No. 7–No. 9, also exhibit
significant relative error. The relative error of the predicted COM values for each test
channel is within 2%, demonstrating the ability of the DNN–Transformer model to achieve
the required prediction accuracy.

Here, the influences of different combinations of equalizers on the prediction precision
of COM values are analyzed deeply. As shown in Table 5, we configured five different
equalizer combinations. The results indicate that our proposed cascaded model achieves
the expected prediction performance across various equalizer combinations. However, it is
apparent that a reduction in the variety of equalizers weakens the model’s generalization
capability and decreases its prediction accuracy. When only the DFE was enabled, the RMSE
increased to 1.6 × 10−1, and the MRE reached 17.5%. We attribute this to the optimization
method of this equalizer within the COM framework and the fact that the cascaded model
also takes into account predictions for both the CTLE and FFE. Therefore, we adjusted
the network structure by removing unused equalizers in the cascaded model for different
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equalizer combinations. This modification has resulted in an improvement in the model’s
prediction accuracy for COM values, with the MRE decreasing from 17.5% to 11.5%.
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Table 5. Predicted COM error values for the cascaded model.

COM RMSE MAE MAPE MRE (%)

3-taps FFE + CTLE + 12-taps DFE 4.5 × 10−2 3.5 × 10−2 5.1 × 10−3 1.6%

3-taps FFE + CTLE + 8-taps DFE 5.0 × 10−2 3.7 × 10−2 5.6 × 10−3 2.0%

3-taps FFE + CTLE + 4-taps DFE 4.2 × 10−2 3.2 × 10−2 4.1 × 10−3 1.7%

CTLE + 12-taps DFE 9.6 × 10−2 7.1 × 10−2 1.4 × 10−2 5.7%

12-taps DFE 1.6 × 10−1 1.1 × 10−1 3.0 × 10−2 17.5%
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Below, a test channel (ID: 3) is used to illustrate the prediction capability of the model
with the first four taps of the DFE and three taps of the FFE. As shown in Figure 14a, the
cascaded model realizes highly accurate predictions. Furthermore, the prediction results
for the main DC gain of the CTLE for the 40 test channels, as presented in Figure 14b, also
indicate a high level of accuracy.
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The predictive capabilities of different cascaded model combinations were investigated
as follows. The equalizer configuration was set as the standard configuration, and the
HPO parameters were uniformly configured, with the learning rate search range set from
0.0001 to 0.01, conducting 20 trials for optimization. Given the characteristics of the SBR,
we tested the predictive performance of standalone models, including a DNN, an LSTM
network, and a Transformer. The DNN combined with two sequence prediction models,
LSTM and a Transformer, was selected as a cascaded scheme. The DNN-LSTM model
replaces the Transformer module in Figure 9 with a typical LSTM network. The DNN,
LSTM, and Transformer use independent models without time label processing modules,
so these models can only achieve eye diagram and COM value predictions. The best
structural parameters of these models—such as the number of hidden layers and the
hidden layer size of the LSTM, and the head number, vector dimension, and feedforward
network dimension of the Transformer’s attention mechanism—were all obtained through
Bayesian optimization. As presented in Table 6, the cascaded models demonstrate superior
predictive capabilities compared to the standalone models. Among the cascaded models,
those incorporating a Transformer display the best predictive performance, indicating that
the DNN–Transformer cascaded model is the optimal COM prediction model.

Table 6. Predicted error values of different models.

Model RMSE MAE MAPE MRE (%)

DNN 6.9 × 10−2 4.3 × 10−2 7.8 × 10−3 6.5

LSTM 5.3 × 10−2 4.4 × 10−2 6.4 × 10−3 2.0

DNN-LSTM 5.0 × 10−2 4.1 × 10−2 6.0 × 10−3 1.8

Transformer 4.7 × 10−2 3.7 × 10−2 5.5 × 10−3 1.7

DNN–Transformer 4.6 × 10−2 3.5 × 10−2 5.1 × 10−3 1.6

As shown in Table 7, we have compared the DNN–Transformer model with the models
presented in the Introduction section in terms of functionality. The traditional LSTM [20]
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structure could not achieve prediction under physical parameter variables. Traditional
machine learning models such as the SVM [13], RFR [12], and DNN [9] models have limited
processing capabilities for sequences and thus cannot predict transient waveforms. The
GNN-RNN [21] model simplifies the interconnected components and circuits, meaning
that some of the actual parameters of links are lost and the performance is decreased. The
above models could not achieve link optimization, and RFR [12] could only complete FD
prediction. In contrast, the proposed DNN–Transformer is more practical. This model can
effectively achieve these above behavioral tasks and performs better than other models
in RMSE and MAE for COM value prediction. Due to the increased complexity of this
model, its inference time is increased, but it still has a significant time advantage compared
to traditional EM simulation whose single-solution time is several hours.

Table 7. Functional comparison of different models for high-speed links.

Model
Physical

Parameters
Variable

Transient
Waveform
Prediction

FD
Prediction

Link
Optimization

GPU/CPU
Time (ms) RMSE MAE

SVM [13] Yes No No No <5 * 3.8 × 10−1 3.1 × 10−1

RFR [12] Yes No Yes No <5 * 4.8 × 10−1 3.8 × 10−1

DNN [9] Yes No No No <5 6.9 × 10−2 4.3 × 10−2

LSTM [20] No Yes No No <5 5.3 × 10−2 4.4 × 10−2

GNN-RNN [21] Yes Yes No No 567.1 \ \

DNN–Transformer Yes Yes Yes Yes 792.8 * 4.6 × 10−2 3.5 × 10−2

* GPU inference time.

6. Conclusions

In this paper, a DNN–Transformer cascaded neural network is proposed for effectively
analyzing the SI in high-speed serial links. During the dataset creation process, we refer-
enced the USB4 Gen4 and 50GBASE-KR standards for PCB design and electromagnetic
simulation, and used the physical design parameters of each channel as inputs for the
model. This DNN–Transformer model is used in this paper to extract the features from
physical design parameters of channels and successfully predict the eye diagram data
and COM values of test links. In addition, this deep learning model can successfully
predict the SBR before and after equalization, and main equalizer parameters for different
combinations are also accurately predicted. For the model’s training, we employed a
Bayesian optimization method based on the GP for HPO. Finally, this paper compares
DNN–Transformer with various other models such as DNN, LSTM, Transformer, and DNN-
LSTM models. The results shows that our DNN–Transformer cascaded model accurately
achieves performance prediction and equalization architecture optimization for high-speed
serial links, and the MRE in its COM prediction results for the test set, with an equalizer
configuration comprising a 3-taps TX FFE, an RX CTLE with dual DC gain, and a 12-taps
RX DFE, is 1.6%.
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Abbreviations
The following abbreviations are used in this manuscript:

DNN Deep Neural Network;
LSTM Long Short-Term Memory Neural Network;
SBR Single-Bit Response;
SI signal integrity
COM channel operating margin;
eCOM enhanced channel operating margin;
GP Gaussian process;
HPO hyperparameter optimization;
EM electromagnetic;
EMFS electromagnetic field solver;
IBIS-AMI Input/Output Buffer Information Specification Algorithmic Model Interface;
EH eye height;
EW eye width;
RL return loss;
IL insertion loss;
TD time domain;
FD frequency domain;
ML machine learning;
SVM Support Vector Machine;
LS-SVM Least-Squares Support Vector Machine;
FNN Feedforward Neural Network;
RFR Random Forest Regression;
RNN Recurrent Neural Network;
FFE feedforward equalizer;
DFE decision feedback equalizer;
CTLE continuous-time linear equalizer;
ILD insertion loss deviation;
ICR insertion loss-to-crosstalk ratio;
ISI inter-symbol interference;
FOM figure of merit.
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Abstract: Robust object detection and weather classification are essential for the safe operation of
autonomous vehicles (AVs) in adverse weather conditions. While existing research often treats these
tasks separately, this paper proposes a novel multi objectives model that treats weather classification
and object detection as a single problem using only the AV camera sensing system. Our model offers
enhanced efficiency and potential performance gains by integrating image quality assessment, Super-
Resolution Generative Adversarial Network (SRGAN), and a modified version of You Only Look
Once (YOLO) version 5. Additionally, by leveraging the challenging Detection in Adverse Weather
Nature (DAWN) dataset, which includes four types of severe weather conditions, including the
often-overlooked sandy weather, we have conducted several augmentation techniques, resulting in a
significant expansion of the dataset from 1027 images to 2046 images. Furthermore, we optimize the
YOLO architecture for robust detection of six object classes (car, cyclist, pedestrian, motorcycle, bus,
truck) across adverse weather scenarios. Comprehensive experiments demonstrate the effectiveness
of our approach, achieving a mean average precision (mAP) of 74.6%, underscoring the potential
of this multi objectives model to significantly advance the perception capabilities of autonomous
vehicles’ cameras in challenging environments.

Keywords: autonomous vehicles; conventional neural network; object detection; deep learning;
camera sensors; adverse weather; weather classification

1. Introduction

The rapid advancement of autonomous vehicle (AV) technology has captured the
attention of researchers, engineers, policymakers, and the public. Central to AV devel-
opment are sensors that enable perception and decision-making within dynamic driving
environments. Among these, camera sensors play a vital role as the primary source of
visual perception in the AV systems. Cameras capture real-time high-resolution images
of the vehicle’s surroundings, providing crucial visual data for the accurate detection
and classification of various objects. By leveraging advanced object detection algorithms,
cameras contribute to various AV functionalities such as lane keeping and path planning
by continuously monitoring lane markings and changes in road layout. This enables the
vehicle to maintain its position within lanes and make informed decisions regarding trajec-
tory and maneuvering, thereby enhancing overall road safety and traffic flow. Furthermore,
camera sensors contribute to path planning by identifying obstacles, traffic signs, and
other entities, enabling the vehicle to adapt its trajectory accordingly and navigate complex
traffic scenarios.

Depth estimation is another key capability of camera sensors, enabling AVs to perceive
the distances of surrounding objects accurately. Through advanced image processing tech-
niques, cameras can provide depth perception, enhancing the vehicle’s spatial awareness
and obstacle avoidance capabilities. Image segmentation is an additional task performed
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by camera sensors, wherein the visual scene is segmented into semantically meaningful
regions. This segmentation enables the AV to distinguish between various elements within
its field of view, facilitating robust object detection and classification, essential for safe navi-
gation. Moreover, camera sensors play a crucial role in the fusion of perception, integrating
data from multiple cameras positioned around the vehicle to construct a comprehensive
situational awareness map. This fusion enhances the vehicle’s understanding of its sur-
roundings, enabling it to make informed decisions in real time. In addition to external
perception, camera sensors also contribute to cabin monitoring and provide essential data
for passenger behaviors and status. Figure 1 lists the main roles of cameras and their
systems in AVs.
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Figure 1. Main roles of cameras and their systems in AVs.

In addition to their primary functions, cameras offer a cost-effective and lightweight
solution compared to alternative sensor technologies such as LiDAR and radar. This
affordability facilitates widespread adoption and deployment of AV technology, paving the
way for a future where autonomous vehicles are ubiquitous on our roads.

Having said that about the functions of cameras, reaching the highest level of AV
development, “full automation” [1], requires vehicles to detect every object in their sur-
rounding environment under all conditions and scenarios with no less than human-like
behavior. Achieving this level is still very challenging during adverse weather, which
presents significant challenges for camera sensors, impacting their abilities to capture clear
and reliable images of the environment. Weather conditions such as rain, snow, fog, and
sandstorms pose significant challenges for camera sensors, and the key challenges include:

• Reduced visibility: adverse weather conditions often lead to reduced visibility, impair-
ing the effectiveness of camera sensors in capturing clear images of the environment.
Rain, snow, and fog can obscure the field of view, making it challenging for cameras to
discern objects and obstacles accurately.

• Water droplets and snow accumulation: rain and snow can result in water droplets
or snow accumulation on camera lenses, leading to distortion, blurring, or occlusion
of captured images. This accumulation can degrade image quality and hinder object
detection and recognition capabilities.

• Fog and haze: foggy conditions create a hazy atmosphere that reduces contrast and
clarity in camera images, hindering object detection and localization. The presence of
fog and haze makes it difficult for cameras to distinguish objects from their background,
compromising the reliability of AV perception systems.

• Glare and reflections: glare from wet road surfaces or reflective surfaces can cause
reflections in camera images, resulting in overexposed or washed-out images. Glare
and reflections can obscure important visual information, making it challenging for
AVs to navigate safely in adverse weather conditions.

• Sand and dust particles: sandstorms and dusty conditions can lead to the accumulation
of sand and dust particles on camera lenses, obstructing the field of view and degrad-
ing image quality. This accumulation of particles can compromise the performance of
camera sensors, affecting the reliability of AV perception systems.

• Dynamic lighting conditions: adverse weather conditions can cause rapid changes in
lighting conditions, including variations in brightness, contrast, and color temperature.
Camera systems must adapt to these dynamic lighting conditions to maintain accurate
perception of the environment and ensure reliable object detection and recognition.
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• Sensor calibration: adverse weather conditions may necessitate adjustments to camera
calibration parameters to compensate for changes in lighting, visibility, and sensor
performance. Ensuring accurate sensor calibration is essential for maintaining the
reliability and effectiveness of camera sensors in adverse weather conditions.

• Reliability and robustness: adverse weather conditions pose reliability and robustness
challenges for camera sensors, requiring them to continue functioning effectively in
harsh environmental conditions. Ensuring the durability and resilience of camera
sensors is crucial for the safe and reliable operation of AVs in adverse weather.

Figure 2 shows some object detection challenges in adverse weather. Each type of
weather has its own obstacles. For instance, in heavy snow and sandstorms, the road
boundaries can be obscured by snow and sand. During rain, water droplets on camera
lenses lead to distortion and blurring of captured images. All of the abovementioned
challenges make it difficult for the camera to accurately perceive objects.
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Figure 2. Some adverse weather challenges. (a,b) Heavy snow can obscure road lanes. (c) Rain leads
to distortion and blurring of captured images. (d,e) A sandstorm can obscure road boundaries and
changed the lighting of the scene. (f) Fog makes it difficult for cameras to distinguish objects from
their backgrounds.

When exploring object detection using convolutional neural networks (CNNs), we
encounter two primary approaches: one-stage and two-stage. The two-stage approach,
pioneered by the introduction of the Region-Based CNN (R-CNN) model in 2014, involves a
region proposal stage to identify regions containing objects, followed by feature extraction
and object classification [2]. However, this method was slow due to processing each
proposed region separately. Fast R-CNN, introduced the following year, improved the
speed by passing the entire image through the CNN, generating a feature map for object
detection [3]. Faster R-CNN [4] was then introduced to further enhance the performance. A
significant advancement occurred in 2017 with the introduction of Mask R-CNN [5]. Mask
R-CNN adopts the Feature Pyramid Network (FPN) as its backbone [6] and introduces a
novel phase to the detection process by generating a segmentation mask for each object.

On the other hand, the one-stage approach, first demonstrated by Redmon et al. [7]
with the YOLO model, encapsulates the entire detection process in a single pass through
the CNN. YOLOv2 and subsequent iterations like YOLOv3 [8] introduced a new back-
bone named Darknet-53 to the architecture. A new version of YOLO called YOLOv4 then
proposed aiming at improving both accuracy and speed and achieved notable improve-
ments over its predecessors. YOLOv5, YOLOv7 [9], and YOLOv8 were later iterations of
YOLO. Another model called the Single-Shot multibox Detector (SSD), proposed in [10],
has achieved competitive results on the VOC2007 dataset, with improvements of the mAP.

In this paper, our aim is to propose a solution for AVs based on camera sensors that
can not only detect objects, but also classify weather based on the condition of the scene.
The scope of our paper is shown in Figure 3.
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The main contributions of our work are as follows:

• We propose a multi objectives model for classifying weather and detecting objects. As
we will demonstrate in Section 2, and to the best of our knowledge, existing AV papers
treat classifying weather and detecting objects as separate problems. Our proposed
model treats road weather classification and road object detection as a unified problem
for camera sensing systems.

• We have expanded the Detection in Adverse Weather Nature (DAWN) dataset by
adding augmented images that cover all four types of weather conditions (sandy,
rainy, foggy, and snowy). The total dataset size has nearly doubled, increasing from
its original size.

• In addition to providing a single model for classifying weather and detecting objects,
we address a critical gap in autonomous vehicle research by considering sandy weather
conditions, which have been largely overlooked by existing studies.

• The base architecture of the object detection model You Only Look Once (YOLO)
version 5 has been adapted and modified to suit our domain. As a result, we have suc-
cessfully increased the mean average precision (mAP) to 74.6%, which is a promising
result compared to other papers that used the same dataset.

2. Related Work

Detecting objects in challenging weather conditions presents difficulties because the
quality of images degrades and visual features are compromised due to weather phenom-
ena like rain, fog, snow, and sandstorms. These conditions impact detection performance
by diminishing scene lighting, reducing object visibility, and complicating object differenti-
ation from surrounding elements. Several papers have been published aiming to propose
suitable solutions.

In [11], the authors studied adverse weather classification along with light level in the
AV environment. To tackle the issue of perception under adverse weather and low light
conditions, where accuracy degradation is a significant concern, the authors introduced
their own dataset. The dataset was designed to cover three types of weather (fog, rain, and
snow) and three levels of lighting (bright, moderate, and low), along with three street types
(asphalt, grass, and cobblestone). The processed images of the dataset contain three labels
related to the type of weather, lighting level, and street type. The authors used ResNet18 as
their backbone and concluded that the system performed with low accuracy on the dataset
and needed further enhancement.

In [12], the authors address the challenges of AVs during adverse weather conditions,
where typical perceptual models struggle. Existing research mainly focuses on classifying
weather conditions; however, the authors studied the transitions between these types of
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weather. They proposed a method to define and understand six intermediate weather
transition states (cloudy to rainy, rainy to cloudy, sunny to rainy, rainy to sunny, sunny
to foggy, and foggy to sunny). The approach involves interpolating intermediate weather
transition data using a variation autoencoder, extracting spatial features with VGG (Visual
Geometry Group) very deep convolutional networks, and modeling temporal distribution
with a gated recurrent unit for classification. The authors proposed a new large-scale
dataset called AIWD6 (Adverse Intermediate Weather Driving), and the results showed an
effective weather transition model.

In [13], the authors introduces a novel framework called WeatherNet, which employs
four deep CNN models based on the ResNet50 architecture. WeatherNet autonomously
extracts weather information from the input image and classifies the output into the right
category. However, the drawback of the presented framework is the inability to share
features, since the four models work separately.

Ref. [14] focuses on the significant impact of adverse weather conditions on urban
traffic and highlights the importance of weather condition recognition for applications such
as AV assistance and intelligent transportation systems. Leveraging advancements in deep
learning, the paper introduces a new simplified model called ResNet15, a proposed version
of the famous ResNet50 [15]. The proposed model has a fully connected layer that used
the Softmax classifier. The paper also introduces a new dataset called “WeatherDataset-4”
containing about 5000 images covering foggy, rainy, snowy, and sunny weather. Although
the proposed network outperformed the traditional ResNet50, the paper lacks coverage of
nighttime and sandy environments.

In [16], the authors proposed the MCS-YOLO algorithm to enhance object detection
by integrating a coordinate attention mechanism, a multiscale structure for small objects,
and applying the Swin Transformer structure [17]. Through experiments on the BDD100K
dataset, they demonstrated a mean average precision (mAP) of 53.6%.

Paper [18] is one of the earliest papers that applied CNN for AV weather classification.
The authors added two fully connected layers to extract features from Road Service Condi-
tions (RSC) images. The paper focused on winter road conditions, where the problem of
snowy roads was divided into three experiments: (a) two-class classification, (b) three-class
classification, and (c) five-class classification. The model surpassed traditional classifica-
tion techniques and recorded an accuracy of 78.5% when applying five-class classification.
In [19], YOLOv4 has been enhanced to detect objects through proposing an anchor-free
and decoupled head. The paper used BDD100k as original dataset and created a new
version that focuses on three types of weather (rainy, snow, foggy). The experimental
results showed a mAP of 60.3%.

In [20], the authors extracted high-precision motion data and proposed a new vehicle
tracking mechanism called SORT++. Image-Adaptive YOLO (IA-YOLO) was presented
in [21] and showed an improvement in detecting objects in low light and foggy environments.

Ref. [22] proposed Dual Subnet Network (DSNet) for detecting objects and achieved
a mAP of 50.8% of foggy weather. In [23] YOLOv5 was investigated to detect objects
of several classes, and the mAP of all classes scored 25.8%. In [24], drone images were
created and applied to a modified version of YOLOv5, which scored a mAP of about 50%.
Paper [25] compared YOLOv3, YOLOv4, and Faster R-CNN performances during different
types of weather (rainy, foggy, snowy). The paper concluded that YOLOv4 outperformed
YOLOv3 and Faster R-CNN.

Table 1 shows a summary of recent publications for weather classification and object
detection in the AV environment. While standard object detection models primarily focus
solely on the detection process, our work and proposed model introduces several key
differences compared to recent related studies. First, we have incorporated a new phase in
our model called the “Quality Block,” designed to assess and enhance the observed scene.
Second, we have added an adjustable threshold score to reduce the number of images
entering the enhancement phase. Third, our study uniquely addresses sandy weather
conditions, which have not been considered in recent publications.
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Table 1. Recent publications in the AV environment eliminate sandy weather from their studies.
Moreover, there is a gap of combining weather classification and object detection.

Paper Weather
Classification

Object
Detection

Drive in
Snow

Drive in
Rain

Drive in
Fog

Drive in
Sand

[11]
√

×
√ √ √

×
[13]

√
×

√ √
× ×

[14]
√

×
√ √ √

×
[16] ×

√ √ √ √
×

[18]
√

×
√

× × ×
[19] ×

√ √ √ √
×

[20] ×
√ √ √

× ×
[21] ×

√
× ×

√
×

[22] ×
√

× ×
√

×
[23] ×

√
×

√
× ×

[24] ×
√ √ √

× ×
[25] ×

√ √ √ √
×

Ours
√ √ √ √ √ √

3. Methodology

Our methodology for developing a model capable of both weather classification and
object detection in severe weather started by applying Detection in Adverse Weather Nature
(DAWN) dataset [26]. We focused on covering four key weather types (sandy, rainy, foggy,
and snowy) with six classes (pedestrian, bicycle, car, motorcycle, bus, and truck). To expand
the dataset and introduce a new variation of the existing images, we have included data
augmentation in our work. This augmented dataset was combined with the original DAWN
dataset to increase the number of training samples. A full description of the augmentation
will be provided in Section 6. We then partitioned the combined dataset into training and
validation sets. Our split percentage is 80% of the images for training, while (20%) were
used for validation and testing (10% for validation and 10% for testing). The training set
was used to train both the weather classification and object detection models, while the
validation set served the critical role of preventing overfitting. After that, optimization steps
are involved to find the best performance of the model by changing the hyperparameters.
Lastly, we evaluated the optimized models using the standard mean average precision
(mAP), precision, and recall metrics. Figure 4 shows the sequence of our methodology.
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To optimize computational efficiency given limited GPU resources, we employed
Google’s cloud-based Colab platform as our experimental environment. Colab provides a
PyTorch machine learning framework and high-performance GPUs (such as the Tesla T4).
Through Colab we were able to effectively execute our experiments, specifically with the
integration with CUDA (Compute Unified Device Architecture), which helps in accelerating
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the computational process of our pipeline and the CNN part while detecting objects
(specifically within tasks like convolution, pooling, normalization, and activation layers).

Various metrics are available for quantifying the efficacy of object detection models. In
our paper, we prioritized three main metrics: (a) mean average precision (mAP), (b) preci-
sion, and (c) recall. mAP stands as a prevalent evaluation metric within the domain of object
detection, offering a holistic assessment of the model’s proficiency in object identification
and localization. mAP combines precision and recall by computing the average precision
(AP) for each object class or category, subsequently deriving the mean across all classes. AP
serves as a measure of the detection’s quality, encapsulating both the precision of accurately
identified objects and the completeness of detection in the scene. Through computation of
mAP, our pipeline performance can be numerically compared and evaluated across diverse
domains and scenarios.

We also considered precision and recall as indispensable metrics in the context of
object detection. Precision is the proportion or the percentage of retrieved elements that are
relevant to correct class, while recall measures the percentage of relevant objects that are
successfully retrieved. Precision is expressed as the ratio of true positives (TPs) to the sum
of true positives and false positives (FPs), represented as:

Precision = TP/(TP + FP)

Recall is the ratio of TP to the sum of true positives and false negatives (FNs), repre-
sented as:

Recall = TP/(TP + FP)

4. Dataset

For the dataset, as we mentioned earlier, we used DAWN in our development and
experimentation. The DAWN dataset covers four types of adverse weather: sandstorm,
rain, snow, and fog. Figure 5 shows a sample of the various weather types covered in
DAWN. The dataset contains 1027 images covering the four types of weather and different
environmental contexts such as highways, freeways, and urban landscapes, ensuring a
broad representation of real world scenarios.
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Although many other datasets cover adverse weather conditions, the DAWN dataset
has the advantage of including sandstorm or sandy weather images, which are often absent
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from other datasets. This unique feature of DAWN has allowed our model to address
weather classification and object detection in multiple types of geographical environments.
The used DAWN dataset, originally consists of 1027 images with a size of 640 × 640.

Image annotation contains the class of the object and the corresponding boundaries of:
x, y, width, and height of the bounding box (x_center, y_center, width, height). Figure 6
represents a sample of our labeled images, considered as a ground truth reference.
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5. Proposed Model

Our proposed pipeline establishes a comprehensive weather classification and object
detection by integrating four main tasks: (1) image quality assessment, (2) image enhance-
ment, (3) weather classification, and (4) object detection. We have combined task 1 and 2
into one block called “Quality Block,” while tasks 3 and 4 are combined in another block
called “Classify and Detect Block.” Once the image enters the model, an assessment will
be made to evaluate the image quality. The purpose of this step is to make a decision of
whether the captured image is in need of an improvement or not. The Blind Reference-less
Image Spatial Quality Evaluator (BRISQUE) method [27] has been employed to quan-
tify image quality. If the entered image has a score that is higher than a threshold point
(low quality), the image will be disapproved and transferred to an enhancement stage;
otherwise, it will be approved and transferred directly to the classification and detection
block. The threshold point can be changed and modified based on the scene situation; for
instance, in our experiment we have used a threshold of 42.7, as we will explain in Section 7
“Experiments and Results.” It is worth noting that, in the BRISQUE method, generally a
lower score indicates better perceptual quality, while a higher BRISQUE score indicates
worse perceptual quality. The BRISQUE algorithm has several advantages that made it a
suitable solution for our model and for evaluating adverse weather scenes. Firstly, it is a
no-reference image quality metric, in that it does not require a perfect reference image for
comparison. This is highly advantageous in adverse weather conditions, where obtaining
ideal, undistorted images can be challenging, if not impossible. BRISQUE functions by
analyzing the natural scene statistics (NSS) of an image and comparing them to the ex-
pected statistics of natural (undistorted) images. Any deviations from this naturalness are
flagged as indicators of quality degradation—making it a good fit for detecting the kinds of
distortions introduced by weather phenomena. Moreover, BRISQUE offers computational
efficiency compared to several other options, which might be important when working
with large image datasets or in scenarios where real-time quality assessment is desired. For
the image enhancement phase, we have used the Super-Resolution Generative Adversarial
Network (SRGAN) technique [28], which consists of generator and discriminator networks.
The generator network aims to upscale low-resolution images, while the discriminator
network aims to refine the generator’s output, resulting in improved image clarity. Fol-
lowing the Quality Block, the image is processed by two YOLOv5 networks. One YOLO
network, trained extensively on a dataset of weather-labeled images, accurately classifies
weather conditions such as sandy, rainy, snowy, or foggy. Simultaneously, a separate
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YOLO network, trained to identify and localize objects with bounding boxes, will detect
the targeted objects, such as cars, cyclists, pedestrians, motorcycles, buses, and trucks.
Generally, our proposed model offers a two-pronged approach, prioritizing image quality
before seamlessly transitioning to robust YOLO-based weather classification and object
detection for reliable image analysis. Figure 7 shows an illustration of our proposal.
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6. Augmented DAWN

Given the limited number of adverse weather images in the DAWN dataset, we built
a new version of DAWN using augmentation to scale up our experimental dataset. Data
augmentation is a widely used method to artificially enlarge datasets by creating new
training images from a currently available dataset. Various papers, such as [29,30], and the
incremental improvement of YOLOv3 [8] have employed data augmentation either for their
weather classification or object detection datasets. Our augmented version has increased
the number of DAWN dataset from 1027 images to 2046 images, which is an increase by
almost double the current size. Figure 8 shows a general overview of the DAWN dataset
before and after our applied augmentation.
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Augmentation techniques encompass a range of image adjustments, such as image
scaling, rotation, cropping, flipping, color adjustment, noise, or blur, and many other
operations. Applying augmenting for weather classification and object detection can be
very advantageous for the following reasons:

• Enhancing the diversity and variability of training data, aiding the model’s generaliza-
tion to unrepresented scenarios.

• Boosting the model’s resilience against factors affecting object appearance, such as
varying lighting conditions, occlusions, or viewpoint changes.
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• Addressing class imbalance by oversampling minority classes or undersampling
majority ones.

• Mitigating overfitting by introducing regularization and noise into the training data.
The following sections describe the augmentations we performed in this paper.

6.1. Rotation

This is used to present the object from different angles of view. In real-word scenarios,
objects might appear at different angles or rotations, and adding this in our augmentation
can help the model to better handle these view variations.

6.2. Hue

Hue is a color-based image augmentation technique that alters the hue or color tone of
an image while preserving its brightness and saturation.

6.3. Noise

We have also incorporated synthetic noise into our augmentation process to expand
our dataset. This type of augmentation enhances our model’s resilience to noise and
enhances its capability to adapt to new data or scenarios.

6.4. Saturation

Saturation adjusts the intensity of colors within an image. By saturating an image, we
effectively scale the pixel values by a random factor within a specified range. Increasing the
saturation value of an image can make the colors more vibrant and vivid, while decreasing
it can make the colors more subdued and muted. We augmented the saturation of our
dataset by approximately 25%.

6.5. Grayscale

We incorporated grayscale augmentation, which converts an image into grayscale. This
technique is commonly used to increase the contrast of an image and enhance its details.

6.6. Brightness

By randomly increasing the brightness of images, we subjected our model to a broader
range of lighting conditions, thereby enhancing its resilience to changes in illumination.
We augmented the images, rendering them approximately 15% brighter.

6.7. Blur

Blur is used to introduce out-of-focus effects into images. For our augmented data, we
used Gaussian blur with up to 1.25 px.

6.8. Exposure

Additionally, we artificially modified the exposure level of the images, setting it in the
range of 10% to −10%.

6.9. Cutout

We have also cut small parts of objects in the scene. The purpose of this is to add occlu-
sion to our experiment, which is to block, cover, or obscure an object from the camera view.

Table 2 shows our augmentation setting values and their impacts on images.

Table 2. Summary of applied augmentations and their impact on image.

Augmentation Value Impact

Rotation 90 degree Helps the model to be insensitive to camera orientation
Hue 15% Random adjustment of colors

Noise Random noise More obstacles added to image
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Table 2. Cont.

Augmentation Value Impact

Saturation 25% Changes the intensity of the pixels
Grayscale 15% Converts image to single channel
Brightness 15% Image appears lighter

Blur 1.25px Averages pixel values with neighboring ones
Exposure 10% Resilient to lighting and camera setting changes

Cutout Cut random parts of the image More resilient to detect half objects

7. Experiments and Results

To test our model, we have conducted several experiments, starting by setting set our
BRISQUE threshold score to 42.75. This score is the average quality score for the DAWN
dataset, and any image above this average score will go through the enhancement stage.
Table 3 explains the reason behind choosing 42.75 as our threshold point and illustrates the
impact of image quality by measuring BRISQUE scores before and after augmentation. The
table compares images from the DAWN dataset (sandstorms, rain, snow, and fog) with our
extended augmented images of the same dataset aiming to simulate the adverse weather
conditions. Across all weather conditions, augmented images generally exhibit higher
BRISQUE scores, indicating a decline in image quality compared to the original DAWN
images. As the table shows, augmented images are worse by about 9% when it comes to
the average scene quality. This low quality of the augmented images can be attributed to
the performed augmentations (blur, hue, saturation, noise, cut, brightness, and exposure),
which are usual effects during adverse weather. The observed differences underscore the
importance of designing a quality assessment model to preserve image quality, particularly
in adverse weather conditions where visual clarity is crucial for accurate scene observation
and object detection.

Table 3. Comparison of image quality with and without augmentation. The results shows an
average image quality of 46.59 for the augmented DAWN dataset compared to 42.75 for the original
DAWN dataset.

Sandy Foggy Snowy Rainy Average

DAWN images
Quality Score 44.05 45.21 40.18 41.57 42.75

Augmented DAWN images
Quality Score 48.71 49.83 43.19 44.64 46.59

The experimental scenario for the augmented DAWN dataset was executed within the
Google Colab environment, harnessing the computational power of a Tesla T4 GPU. We
have made several modification to the YOLOv5 architecture, aiming to create a suitable
model for our domain. This modification includes changing the activation functions and
test the model with SiLU and LeakyRelu functions. We also have modified the backbone
and head to test the performance of BottleneckCSP and C3 architectures. In addition
to that, hyperparameters such as epochs and batch size have been changed throughout
our experiments.

After designing our model, we initiated our experimental phase by implementing
BottleneckCSP as both the backbone and head architecture. Our model demonstrated
promising results, achieving a mean average precision (mAP) of 55.6% and 45.6% when
trained for 128 epochs with a batch size of 32, utilizing SiLU and LeakyReLU activation
functions, respectively. From Table 4, it can be clearly seen that, when we implemented
BottleneckCSP in our model, the mAP was increasing for SiLU and LeakyRelu functions
whenever we increased the number of epochs. It can be also seen that LeakyRelu has lower
performance than SiLU with the BottleneckCSP backbone and head. Table 4 shows the
complete results of our model using BottleneckCSP.
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Table 4. Performance of our model using BottleneckCSP as a backbone and head.

Backbone and Head Activation Function Epoch Batch mAP

BottleneckCSP SiLU 32 16 33.7%
BottleneckCSP SiLU 32 32 34.5%
BottleneckCSP SiLU 64 16 40.2%
BottleneckCSP SiLU 64 32 43.9%
BottleneckCSP SiLU 128 16 55.2%
BottleneckCSP SiLU 128 32 55.6%
BottleneckCSP LeakyRelu 32 16 24.0%
BottleneckCSP LeakyRelu 32 32 25.1%
BottleneckCSP LeakyRelu 64 16 34.7%
BottleneckCSP LeakyRelu 64 32 34.9%
BottleneckCSP LeakyRelu 128 16 38.7%
BottleneckCSP LeakyRelu 128 32 45.6%

We continued our experiments by moving to include Concentrated-Comprehensive
Convolution (C3) [31] as a backbone and head in our proposed model. The model achieved
a better result, achieving 71.8% mAP using SiLU with only 32 epochs and 16 batches, as
Table 5 shows. This score is higher than LeakyRelu by 7.4 percentage points, with the same
metrics. This result is also higher than the highest score achieved using the BottleneckCSP
backbone (Table 4), which was 55.6%. We continued to increase the number of epochs
and batches until we achieved 74.6% after 64 epochs with 16 batches, which is the highest
score mAP in this paper. As we will discuss below, this score is the highest mAP score
compared with other and recent object detection publications that used DAWN as a base
dataset. The mAP, precision, and recall of our model can be seen in Figure 9. The top
left chart shows the precision result, with a score of 85%, while the top right chart shows
the recall result reaching 68%. The bottom chart shows the resulting mAP, which reached
74.6%. Figure 10a shows our F1 score, and we can clearly see that the peak for most
classes occurs at confidence thresholds between 0.4 and 0.6. This suggests that setting the
model’s confidence threshold within this range would likely yield the best balance between
precision and recall. It also shows that the model excels at detecting cars, while it struggles
more with trucks, with overall performance following a similar pattern to the average
across all classes. Figure 10b represents our mAP, with intersection over union thresholds
from 0.5 to 0.95.

Electronics 2024, 13, x FOR PEER REVIEW 13 of 21 
 

 

which is the highest score mAP in this paper. As we will discuss below, this score is the 
highest mAP score compared with other and recent object detection publications that 
used DAWN as a base dataset. The mAP, precision, and recall of our model can be seen 
in Figure 9. The top left chart shows the precision result, with a score of 85%, while the 
top right chart shows the recall result reaching 68%. The bottom chart shows the resulting 
mAP, which reached 74.6%. Figure 10a shows our F1 score, and we can clearly see that the 
peak for most classes occurs at confidence thresholds between 0.4 and 0.6. This suggests that 
setting the model’s confidence threshold within this range would likely yield the best bal-
ance between precision and recall. It also shows that the model excels at detecting cars, while 
it struggles more with trucks, with overall performance following a similar pattern to the 
average across all classes. Figure 10b represents our mAP, with intersection over union 
thresholds from 0.5 to 0.95. 

 
Figure 9. Precision, recall, and mAP at 0.5 of our model after 64 epochs. 

Table 5. Performance of our model using C3 as a backbone and head. 

Backbone and Head Activation Function Epoch Batch mAP 
C3 SiLU 32 16 71.8% 
C3 SiLU 32 32 68.6% 
C3 SiLU 64 16 74.6% 
C3 SiLU 64 32 74.1% 
C3 SiLU 128 16 74.0% 
C3 SiLU 128 32 73.1% 
C3 LeakyRelu 32 16 64.4% 
C3 LeakyRelu 32 32 67.1% 
C3 LeakyRelu 64 16 62.9% 
C3 LeakyRelu 64 32 63.2% 
C3 LeakyRelu 128 16 72.9% 
C3 LeakyRelu 128 32 72.4% 

Figure 9. Precision, recall, and mAP at 0.5 of our model after 64 epochs.



Electronics 2024, 13, 3063 13 of 20

Table 5. Performance of our model using C3 as a backbone and head.

Backbone and Head Activation Function Epoch Batch mAP

C3 SiLU 32 16 71.8%
C3 SiLU 32 32 68.6%
C3 SiLU 64 16 74.6%
C3 SiLU 64 32 74.1%
C3 SiLU 128 16 74.0%
C3 SiLU 128 32 73.1%
C3 LeakyRelu 32 16 64.4%
C3 LeakyRelu 32 32 67.1%
C3 LeakyRelu 64 16 62.9%
C3 LeakyRelu 64 32 63.2%
C3 LeakyRelu 128 16 72.9%
C3 LeakyRelu 128 32 72.4%
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The previously mentioned tables, Tables 4 and 5, highlight a notable observation:
increasing the number of epochs does not consistently correlate with higher mean average
precision (mAP). Surprisingly, our model achieved its highest mAP score when trained
for 64 epochs rather than 128 epochs, contrary to the initial expectation. This finding
highlights the importance of careful hyperparameter tuning and validation experimentation
in identifying the most effective training regimen for a given model architecture and dataset.
Among recent publications utilizing the DAWN dataset, our method’s mean average
precision (mAP) of 74.6% is the highest achieved, as detailed in Table 6.

Table 6. Comparison of our result with some recent publications that used the DAWN dataset.

Ref. mAP Dataset Aim

[32] 32.75% DAWN Ensemble approach to improve object detection in AVs under adverse weather
conditions.

[33]

Fog 29.66%

DAWN Modifying YOLO and using several datasets to detect objects in the AV environment.
Rain 41.21%

Snow 43.01%

Sand 24.13%

[34] 39.19% DAWN Architecture for constructing datasets using GAN and CycleGAN.

[35] 55.85% DAWN Low-light Detection Transformer (LDETR) to improve detection performance.

[36] 72.8% DAWN Improving YOLO using metaheuristic algorithms.

Ours 74.6% DAWN Modifying YOLO and using DAWN dataset to classify weather and detect objects in
the AV environment.
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For weather classification evaluation, the proposed model scored an accuracy of 74.3%
after 64 epochs, as Figure 11 shows. The model has successfully classified most of the scenes;
however, there are some cases where the model failed to classify the true weather. For
instance, if we look at Table 7, which shows the experimental result of weather classification,
in image number 5 the true weather was a strong sandstorm, whereas the model classified
it as foggy weather. This case is an example of where the brightness and lighting of the
scene could be challenging for weather classification models in adverse weather.
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Table 7. Cont.

Number Image Ground Classified

4
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Sandy weather Foggy weather

Figures 12–14 are examples from our experiments where the model successfully
classified the type of weather in the scene and detected the objects. The top left corner
shows the probability scores for the current weather, ranking them from highest probability
to lowest. For instance, in Figure 12, the model classified the scene as sandy weather by
87%, which is correct and matching the ground truth. It is also successfully detected the two
vehicles appearing in the scene, with detection percentages of 96% and 94%, respectively.
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8. Discussion

While the preceding section demonstrates the potential of our method to detect various
vehicles in adverse weather, in the following points we will discuss key insights and
observations that emerged during the development of this work:
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• If we look at our F1 score (Figure 10), the “car” class consistently achieves the highest
F1 scores across different confidence levels, indicating that the model is particularly
adept at detecting cars accurately. Conversely, the “truck” class generally exhibits
the lowest F1 scores, suggesting that the model might have more difficulty distin-
guishing trucks, or faces more false positives/negatives in this category. The “all
classes” curve represents the average performance across all object classes, demon-
strating a similar trend to the individual classes, with the peak F1 score around the
0.6 confidence threshold.

• As Table 6 shows, our proposed work achieved a mAP of 74.6%. This result surpasses
the performance of other publications on the DAWN dataset, including ensemble
methods [32], YOLO modifications [33], GAN-based architectures [34], the LDETR
transformer [35], and YOLO enhanced with metaheuristic algorithms [36].

• Notably, DAWN is a very challenging dataset, as corroborated by our own experience
and underscored by the observations of the authors in [33], who remarked: “[w]e find
the DAWN dataset a bit more challenging than the others.” This challenge is due to
the fact that some images and objects are characterized by exceedingly low visibility,
which is a factor that may impact the resulting score of any developed model.

• The domain of object detection in adverse weather still requires more reliable datasets
that provide sufficient variability to cover various object appearances, lighting condi-
tions, and occlusions. Creating such datasets is time-consuming and costly. A recently
published paper by Liu et al. [37] demonstrated a simulator-based approach that
allows easy manipulation of environmental conditions, object placement, and camera
perspectives. Using simulator-based data collection opens the door to diverse and
comprehensive datasets without extensive real-world data gathering. This approach
can expedite data collection by setting up and executing various adverse weather
scenarios without, for instance, waiting for the weather’s seasonal changes. Further-
more, it offers data scalability, overcoming the geographical constraints of real-world
data collection.

• While existing recent publications and public datasets offer valuable resources for
object detection in various weather conditions, there is a clear need for more work that
includes sandy weather scenarios.

• Combining images with LiDAR using fusion can be a promising approach for en-
hancing object detection in autonomous vehicle environments. Recent studies, such
as those by Dai et al. [38] and Liu et al. [39], have demonstrated that this technique
significantly improves object detection in challenging environments by leveraging
the complementary features of both LiDAR and cameras. Cameras provide a cost-
effective, lightweight solution that captures rich color and texture details, aiding
in the classification and identification of objects. On the other hand, LiDAR offers
precise distance measurements and 3D spatial information, which are particularly
useful in low-visibility conditions where cameras may struggle. By fusing the data
from both sensors, the accuracy and robustness of object detection systems can be
greatly enhanced.

• We extended our experiments to test our model using the UAVDT dataset [40]. The
original UAVDT dataset comprises over 77,000 images captured in daylight, night, and
foggy weather conditions. After running the experiment for 64 epochs, we achieved
the following results: mAP of 94.1%, recall of 90.8%, and precision of 97.0%. We
believe that the UAVDT dataset requires additional preprocessing before it can be
fully utilized. For instance, adjusting the time frame for capturing images could help
diversify the resulting images.

• Synthetic data can be used to address the challenges and limitations of real-word
datasets. In a recent publication [41], the authors proposed CrowdSim2, a synthetic
dataset, for object detection tasks, particularly detection of people and vehicles. Such
a technique can be very beneficial for the AV domain by offering a controlled envi-
ronment where factors like weather conditions, object density, and lighting can be
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precisely manipulated, enabling the testing of object detection models under various
scenarios. Additionally, it can be used to simulate rare but critical events, such as
accidents or unusual obstacles, which may be underrepresented in real-world datasets.

9. Conclusions

Classifying weather and detecting objects in severe weather environments is a critical
and challenging task. In this paper we introduced a multi objectives model that integrates
weather classification and object detection and treats them as a unified problem within
the domain of autonomous vehicle perception systems. Our model consists of two main
blocks. First, the Quality Block checks image quality based on BRISQUE score, and if
the image has a score that is higher than the threshold then it proceeds further to be
enhanced by an SRGAN method. Second, the Classify and Detect Block classifies four
types of adverse weather (snowy, rainy, foggy, and sandy) and detects six classes (car,
cyclist, pedestrian, motorcycle, bus, and truck). During our development, we utilized
the challenging DAWN dataset as our source of images and employed YOLO as the
base structure for classification and detection. The experimental results show that our
model achieved a mean average precision (mAP) of 74.6% for detecting objects using the
YOLO architecture with C3 architecture as a backbone and SiLU as an activation function.
Additionally, for classifying the weather of the scene, our model attained an accuracy of
74.3%, which closely aligns with the mAP. Having said that, there are still some challenges
in the domain that should be considered while developing detection and classification
models. Changes of the scene characteristics such as lighting and cloudiness lead to wrong
classification of the correct weather.

10. Future Work

Adverse weather is still a very challenging domain in AV environments. To achieve the
highest level of automation, camera sensors are in need of a robust system that is capable
of navigating safely in diverse weather scenarios and capable of accurately observing the
surroundings. In the future, we will extend our domain to include additional datasets
that could be merged with the current DAWN dataset. This could lead us to expand
our detection classes to include more detailed and new classes that we observe in real
driving environment, such as traffic lights, children, domestic animals (like dogs), and law
enforcement personnel (such as police officers). Each of these classes represents integral
components of the road scene, and accurately detecting and responding to their presence
is essential for ensuring the safety and efficiency of autonomous driving systems. By
incorporating these additional classes into our detection framework, we aim to enhance the
overall mAP. Additionally, we aim to enhance the perceptual capabilities of autonomous
systems through perceptual fusion, which involves combining information from multiple
sensors, such as cameras, LiDAR, radar, and ultrasonic sensors, to create a comprehensive
and accurate representation of the surrounding environment. By developing such a robust
system, we believe that we can mitigate the impact of adverse weather conditions on sensor
performance and enhance the reliability and robustness of general AV perception systems.
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Abstract: The volume of flow demand in cyber-physical power systems (CPPSs) fluctuates unevenly
across coupled networks and is susceptible to congestion or overload due to consumers’ energy
demand or extreme disasters. Therefore, considering the elasticity of real networks, communication
links with excessive information flow do not immediately disconnect but have a certain degree
of redundancy. This paper proposes a dynamic cascading failure iterating model based on the
distribution of information flow overload in a communication network and power flow betweenness
in the physical power grid. First, a nonlinear load capacity model of a communication network
with overload and weighted edges is introduced, fully considering the three link states: normal,
failure, and overload. Then, flow betweenness substitutes for branch flows in the physical power
network, and power flow on failed lines is redistributed using the load capacity model, simplifying
the calculations. Third, under the influence of coupling relations, a comprehensive model based on
improved percolation theory is constructed, with attack strategies formulated to more accurately
assess the coupled networks. Simulations on the IEEE-39 bus system demonstrate that considering
the overload capacity of communication links on a small scale enhances the robustness of coupled
networks. Furthermore, deliberate link attacks cause more rapid and extensive damage compared to
random attacks.

Keywords: overloaded edges; information flow; power flow; cascading failures; improved percolation
theory; cyber–physical power systems

1. Introduction
1.1. Background

With the development of the smart grid and the energy internet, the power system has
become deeply coupled with the information system. The power system on the physical
side and the communication system on the information side have gradually evolved into the
cyber–physical power system (CPPS) [1]. While the coupled system has brought numerous
benefits, it has also increased the risk of cascading failures across space. Vulnerabilities in
the two systems through an overlapping network will increase the risk of fault propagation,
such that even a single edge or node failure can impact the entire network, often leading to a
global collapse [2,3]. For instance, the massive blackout in the western United States in 2003,
the blackout in Ukraine in 2015, and the 815 blackout in Brazil in 2023 [4,5] were all caused
by the failure of specific edges in the information network. These failures propagated to the
power grid through functional coupling, ultimately resulting in the simultaneous paralysis
of both systems.
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1.2. Related Works

The analysis of past cases shows that when the communication system fails or is
attacked, data packets can be lost or manipulated, preventing closed-loop control. Due to
the cyber–physical coupling connection, the failure will propagate to affect power nodes in
the physical network with a certain probability. Then, the failure continues spreading in
the physical network, ultimately causing serious damage to the system [6–8]. Therefore,
modeling the physical power grid, communication network, and its coupling connection is
essential for understanding the propagation process of cascading failure across space.

In [9], a one-to-one coupling model between power and communication nodes was
proposed, analyzing the robustness of the cascading failure system after the removal of
a small fraction of nodes based on its topological model. In [10], the authors studied the
robustness of a dual-layer scale-free communication network based on percolation theory.
Based on [10], Ref. [11] considered the interactions among nodes in different layers as
heterogeneous, studying a type of cascading dynamics in dual-layer networks that exhibit
both interdependence and connectivity. Based on [9,10], Chen et al. [12] differentiated the
nodes in the physical power grid into generator and load nodes, proposing a new interactive
mechanism for cascading failures. In [13], the operational characteristics and topological
structure of the transmission network were integrated to establish a cascade failure model
for random faults in transmission lines under different coupling strategies, aiming to obtain
an optimal robust coupled network. However, the coupling models established in these
studies focus solely on topological structures, neglecting the operational characteristics of
both sides of the coupled networks. In [14,15], power flow optimization in the physical
power network was considered and the results of vulnerability under different strategies
and information network topologies were compared, but the operational characteristics of
the information network were not considered. In [16], the dynamic propagation of cascade
failures between the power grid and the communication network was studied, considering
the characteristics of power flow and data flow in two different systems, but the impact of
data overload in the communication network on the coupled network was not considered.
In [17], the recovery characteristics of different coupling strengths and network topologies
based on a load-related cascade model were studied. Although the overload state of nodes
was considered in this model, the extra load was not redistributed. Based on [16,17],
Ding et al. [18] proposed an improved cascading failures model. This model considers
the overload state and recovery process of cyber nodes, as well as the optimization of
power flow in the physical layer and the redistribution of information flow during fault
propagation. Building on this, Wang et al. [19] employed an AC power flow model to
characterize the operational characteristics of the power grid, enhancing the accuracy of
the power grid model. Simultaneously, it constructed a weighted communication network
with control centers and applied a flow redistribution model. In [20], the authors proposed
two types of strong and weak dependency models and analyzed the robustness changes
of the coupling network using a congestion-aware load balancing scheme under initial
random faults in the power layer. However, data flows in the communication layer were not
considered. The authors of [21,22] considered communication node failures and established
an improved cascade failure model based on the physical layer load distribution. In [23], the
authors’ proposed model considered the practical differences between a communication
network and a power network in terms of network structure, physical operation, and
dynamic behavior, focusing on analyzing faults occurring on the power grid side. From
these studies, it is evident that most scholars have paid less attention to transmission delays
caused by traffic overloads in communication networks and the establishment of coupled
models that incorporate the operational characteristics of both networks.

1.3. Motivation

In fact, many connected edges often possess redundant capacity. For example, Figure 1a
illustrates a communication network with five nodes. The matrix F represents the informa-
tion flow transmission demand matrix, where elements Fij indicate the information flow
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demand that needs to be transmitted from the source to the destination. Each link eij is
associated with its quality attribute qij [24,25], where the operational level of a link eij is
defined as the ratio of link capacity to link load. Assuming the failure threshold of the link
is ρ, if the initial faults in the communication network are links with ρ < 0.5, these links
will be removed from the original network (e.g., remove 1→2, 2→3). At this point, the
information flow transmission on the communication link is not affected (links 1→4→2 and
2→1→3 still exist), but links 1→4 and 2→1 are in an overloaded state. The information flow
demand on the original link 1→2 will be redistributed to the link 1→4→2. Although the
network is not immediately affected and the overloaded links do not fail, the transmission
quality will continue to decrease. When increasing the threshold to ρ = 0.7, the operating
efficiency of link 1→4 drops below the critical threshold, causing the edge’s state to change
from overloaded to failed, and it is removed from the original network. At this point,
25 information flow transmission demands are affected (highlighted in red in the figure).
When the threshold is further increased to ρ = 0.9, links with qij < 0.9 are removed. As
shown in Figure 1d, only eleven units of traffic demand can be effectively transmitted to
the control center. It can be seen that during the process of changing the threshold and
removing links, if the overloaded state and the transmission flow demand of the links are
not considered, the network will collapse prematurely, leading to significant losses in the
power grid.

Figure 1. Power communication network diagram of link failure based on information flow demand.
(a) Communication network G with size n = 5, where node four is the control center and the
others are regular transmission nodes. The quality qij of each line eij is marked beside the link. The
matrix F represents the information flow transmission demand. (b) Assuming the initial faults in
the communication network are links with ρ < 0.5. (c) Increasing the threshold to ρ = 0.7, while
removing links with qij < 0.7. (d) When the threshold is further increased to ρ = 0.9, links with
qij < 0.9 are removed and only eleven units of traffic demand can be effectively transmitted to the
control center.

Typically, when an N-1 failure occurs in the power grid, flow convergence must be
recomputed for each scenario. If the flow converges, it must be determined whether the flow
on each line exceeds its limits; if so, the affected line should be cut. If it does not converge,
load shedding or generator output adjustments are typically implemented to balance
the power flows. Enumerating all scenarios can be both complex and time-consuming.
Therefore, this paper proposes applying line flow betweenness [26] to the load–capacity
model of the power system, utilizing it as the power load on the line. This approach
effectively reflects and quantifies the role of lines in transmitting power from generators to
loads, also considering the impact of the maximum available transmission power between
generators and loads on the critical lines. This physical background aligns more closely with



Electronics 2024, 13, 3065 4 of 19

the actual operation of power systems and better reflects their operational characteristics.
When modeling the information flow transmission process, distinguishing it from the
power network is crucial. Information layer links will not disconnect due to information
flow overload but will cause congestion if the flow is excessive. It is necessary to account
for the overloaded state when redistributing information flow from non-operational links
to neighboring links to develop a more realistic power–communication network flow
model. Therefore, this paper, considering link interruptions in the communication system,
proposes a load–capacity cascading failure model based on improved percolation theory,
integrating information flow overload and power system operational characteristics. This
model analyzes the impact of overloaded links on the system’s robustness.

1.4. Contributions

The contributions of this paper are summarized as follows:

• Considering the congestion state of communication network links, a dynamic transmis-
sion allocation model for information flow under three link states—normal, overload,
and failure—is established. Metrics for communication system topology integrity and
operational characteristics are proposed to assess system vulnerability in the event
of faults.

• Considering the topology generation characteristics of actual power communication
networks, an improved percolation theory is proposed. Communication nodes that
are initially outside the largest connected component but have communication links
to the control center are considered effective nodes. Power nodes that lose coupling
with the communication network but remain self-consistent are also regarded as
effective nodes.

• Considering the physical characteristics of coupled networks, the line flow between-
ness indicator is utilized to measure the electrical characteristics of line power flows.
A load–capacity distribution model based on flow betweenness is proposed for trans-
ferring the load of failed lines.

The rest of the paper is organized as follows. In Section 2, we construct the uni-
directional dependency model of CPPS and provide a detailed description of the fault
propagation process across the space considering communication link overload conditions
within the coupled model. In Section 3, we propose two metrics of system robustness
assessment to measure the cascading failure results. In Section 4, the numerical simulation
is conducted to analyze the cascading failure and presents related discussions. Section 5
concludes the paper.

2. Methods
2.1. Modeling of Power–Communication Coupled Networks Based on Unidirectional Dependency

CPPS includes the modeling of the information network, power network, and coupling
layer. The information network comprises the access layer, backbone layer, and core layer.
The interdependent edges between power nodes and information nodes form the coupling
network [27]. In the coupling network, the power network provides power support for
the communication network, while the communication network offers 3C support for
the power network. However, since communication nodes are widely equipped with
backup power sources, the failure of coupled power nodes does not cause the failure of
communication nodes due to power outage. The normal operation of power nodes relies on
the monitoring and control of communication nodes. The failure of communication links
will result in the control center being unable to receive the fault information of the power
system in a timely manner, leading to the failure to promptly deal with power failures and
expanding the scope of fault impact. Therefore, this paper primarily studies the model of
the power network’s dependence on the information network. Referring to the flowchart
in Figure 2, the modeling process is detailed as follows:



Electronics 2024, 13, 3065 5 of 19

(1) The physical power grid is abstracted as a graph Gp(Vp, Ep) composed of power nodes
Vp and transmission lines Ep. The set Vp includes physical equipment in the power
grid such as power plants, substations, and loads.

(2) Divide the power grid into regions [28].

a. The partitioning of communities is applied to the division of power network
regions. In the power grid, the closer the distance between two buses, the smaller
the line reactance and the larger its reciprocal (i.e., higher weight), indicating
higher intimacy between the node pair. Thus, such nodes are more likely to be
partitioned into the same region. The reciprocal of the line reactance is used as
the weight for the non-zero elements of the power network adjacency matrix E.

b. Using the Fast Newman method, the modified matrix E from the above steps is
substituted for the original matrix E to calculate the modularity Q for the initial
partitioning of the power network. The partitioning process must satisfy the
following conditions: each region must contain at least one generator and one
load; the number of regions must be less than the minimum of the number of
generators and loads; and the subregions must achieve power balance.

c. To achieve power balance within regions, the system’s power flows on the lines
are used as weight values based on the Prim algorithm. These weight values
are used to determine the flow paths from generators to loads. Regions are then
merged according to these paths and combined with the initial partitioning results
to form the final zones.

(3) The number of nodes for each layer is determined: the access layer, backbone layer,
and core layer. The access layer nodes are information collection nodes, with the
number of communication nodes equal to the number of power nodes; the backbone
layer nodes are routing equipment nodes, also considered as control nodes, with the
number of nodes equal to the number of power grid partitions; and the core layer
nodes are two control nodes representing the main and backup dispatch.

(4) The modeling of the information network:

a. The connection between the power grid and the access layer: according to the
abstract diagram of the power grid Gp, access layer nodes are connected in a
one-to-one corresponding manner to make the topology diagram of the access
layer consistent with the topology diagram of the power grid.

b. The connection between the access layer and the backbone layer: the highest-
degree nodes in each region of the access layer and the generator nodes are
connected to the corresponding nodes in the backbone layer.

c. The backbone layer nodes are connected internally according to the connection
relationship of the power grid partitions.

d. The connection between the access layer and the core layer: calculate the propor-
tion qi of the generator Gi output to the total system output, and connect it to the
main and backup calls with a probability of qi.

e. All routing nodes are connected to the main and backup scheduling center nodes.
f. The main and backup scheduling centers are connected.

(5) Abstract the information network to form Gc.
(6) Connect the access layer nodes with the power nodes to form unidirectional dependent edges.
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Figure 2. Flowchart of cyber–physical power system modeling.

Thus, the coupled networks are shown in Figure 3.

Figure 3. Topology diagram of the power grid dependent on the information network.

2.2. Cascade Failure Model Based on Percolation Theory Considering Communication
Link Overloads

2.2.1. Nonlinear Flow Model for Links

The communication network’s link information flow model employs a nonlinear
capacity–load model that accounts for the overload state [29]. In complex networks, a
higher node degree indicates more connections with other nodes. Therefore, the degree
values of the endpoints are utilized to calculate the information flow of each access layer
link. The higher the degree value of a link, the greater the information flow through it. The
information flow ratio of a link is used as the link weight, and the overload coefficient δ
describes the edge’s capacity to handle additional information flow, as follows:

Cc,ij = Lc,ij + βLα
c,ij (1)
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Cmax
c,ij = δCc,ij (2)

Wc,ij =

{ Lc,ij
Cc,ij

eij ∈ EC

0 eij /∈ EC
(3)

where
Lc,ij = wij =

(
kik j

)θ (4)

where Lc,ij represents the amount of information transmitted by the link and ki and k j denote
the degrees of nodes i and j, respectively. θ is a parameter that adjusts the information flow.
Cc,ij is the capacity of the link, Cmax

c,ij represents the maximum flow that the line can bear,
and Wc,ij is the weight of the edge eij. α and β are capacity coefficients. When α = 1, the
model is linear.

2.2.2. Improved Percolation Theory

Traditional percolation theory [30] is widely used to describe the structure, function,
and resilience of network systems. Percolation models simulate link failure scenarios
by gradually removing links from the network. As links are progressively removed,
the reduction in the size of the largest connected subgraph can be used to measure the
consequences of link failures. Thus, percolation theory is applicable to modeling cascading
failures in cyber–physical power systems. However, traditional percolation theory only
considers the largest connected subset in a single-layer network when determining the
working node subset, without considering other scenarios. Directly applying it to model
cascading failures in cyber–physical power systems makes it difficult to accurately simulate
the failure process. Considering the information flow transmission characteristics of the
information network, where the core layer and backbone layer do not directly correspond
to the access layer, and the link status considers the overload situation, it is necessary to
improve the classical percolation theory model. The failure model of the cyber–physical
power system established in this paper is as follows:

• Communication system. For the links in the access layer, edges with weights greater
than the overload coefficient are considered failed. For the information nodes in the
access layer, nodes that cannot establish a path to control nodes are considered failed.

• Power system. A power load node must be connected to at least one generator node;
otherwise, it is considered failed. Similarly, a generator node must be connected to at
least one power load node; otherwise, it is considered failed. Nodes functioning as
both generators and loads are considered self-consistent nodes.

• Interaction. Power nodes coupled with failed communication nodes will also fail.
Additionally, power nodes coupled with communication nodes exiting transmission
delays will fail with a certain probability Pdi.

2.2.3. Load–Capacity Model of Power Network Based on Flow Betweenness

In previous studies, the shortest path propagation principle has commonly been used
to investigate power transmission between buses in a power network. However, in reality,
power flow in a power network does not follow only the path with the lowest impedance
but rather propagates along all possible paths, adhering to Kirchhoff’s Law.

To accurately reflect the role of each transmission line in power propagation and the
varying impact of different generator–load pairs on each line, consider that in a given power
network, each transmission line carries a varying proportion of transmission power P(m, n)
from generator m to load n. Consequently, each line plays a distinct role and has varying
levels of significance in transmitting power P(m, n). Since the power transmission paths for
generator–load pairs that traverse each line differ, the line’s significance within the entire
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network is quantified using the flow betweenness index [26]. This index is computed by
considering all generator–load pairs utilizing the line. The calculation formula is as follows:

FBij = ∑
m∈G

∑
n∈L

min(Sm, Sn)
Pij,mPij,nPn

PijPLn A−1
unmPGm

(5)

where G is the assembly of generation nodes and L is the assembly of consumer nodes.
min(Sm, Sn) is the weight of a single line’s flow betweenness, which depends on the
minimum value between the actual output of the generator m and the actual load n,
reflecting the maximum available transmission power between m and n. Pij,m is the portion
of the power flow on line eij originating from generator m. Pij,n is the portion of the power
flow on line eij directed towards load n. Pn is the node power flow of n. Pij is the active
power through line eij. PLn is the active load at load node n. A−1

unm contains the inverse-order
distribution matrix elements. PGm is the active output of the generator node m.

Therefore, the power load Lp(ij) on edge eij can be calculated as

Lp(ij) = FBij (6)

Considering the capacity of links to handle power loads, we employ the load–capacity
model proposed by Motter and Lai [31]. According to this model, the link capacity is
directly proportional to its initial power load, as follows:

Cp(ij) = (1 + γ)Lp(ij) (7)

where γ is the tolerance parameter.

2.2.4. Process of Cascading Failure

The information network has the capability to control power nodes. Consequently,
faults occurring within the information network can propagate to the interconnected power
network. This section details the dynamic process of cascading failures triggered by certain
faulty communication links.

Based on the magnitude of information flow transmission in the communication net-
work, the operational states of links are categorized into three types: normal, overloaded,
and failed. To analyze cascading failures between coupled networks, some links in the com-
munication network are randomly removed as initial faults. Referring to the flowchart in
Figure 4, the detailed dynamic process of cascading failures triggered by specific damaged
links is described as follows:

• Step 1: The set of failed links in the access layer communication network due to
accidental failures or attacks is denoted as eij. The information flow on these failed
links will be borne by the edges connected to the nodes of the failed links.

• Step 2: The process of distributing information flow on failed branches. This paper
utilizes the principle of local redistribution of information flow, with the calculation
formula provided as follows.

∆ Lc,ia = Lc,ij
Lc,ia

∑m∈Ω1
Lc,im + ∑n∈Ω2

Lc,jn
(8)

where Lc,ij is the initial information flow on a branch eij, Lc,ia is the initial information
flow on a branch eia, Ω1 is the set of neighboring nodes of node i, and Ω2 is the set of
neighboring nodes of node j.
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• Step 3: The process for determining the overloaded and failed states is as follows.
Wc,im > δ fail
1 < Wc,im < δ and rand > pim overload
1 < Wc,im < δ and rand ≤ pim fail
Wc,im ≤ 1 normal

(9)

where rand ∈ (0, 1).
Since each branch has different capacities to handle additional information flow, a
distribution coefficient ω is introduced to characterize this property.

pia =

(
Wc,ia − 1

δ − 1

)ω

(10)

• Step 4: Distribution process for information flow on overloaded branches:

∆ ak = (Lc,ia − Cc,ia)Tak (11)

Tak =
Cc,ak − Lc,ak

∑e∈Ωi
(Cc,ie − Lc,ie) + ∑ f∈Ωa(Cc,a f − Lc,a f )

(12)

where ∆ ak is the distribution strategy for the overloaded branch, Ωi is the set of
neighboring nodes of node i with branches in a normal state, and Ωa is the set of
neighboring nodes of the node a with branches in a normal state.

• Step 5: Determine whether there are new failed branches. If new failed branches are
detected, proceed to Step 2; otherwise, proceed to Step 6.

• Step 6: Count the sets of failed and overloaded links within the communication net-
work. Update the effective set of communication links, and calculate the transmission
delay increments for each communication node. Assess the failure conditions of com-
munication nodes, remove nodes that cannot form a path to the control center, and
update the set of effective communication nodes.

• Step 7: Control dependency analysis: Due to the one-to-one coupling between ac-
cess layer communication nodes and power nodes, the failed communication nodes
identified in Step 6 will cause corresponding power nodes to fail through dependent
edges. Nodes are selected based on the delay probability of each communication node.
If information from these nodes is not transmitted to the control center in a timely
manner, their corresponding power nodes are considered failed. Mark the power
nodes that have failed in this step.

• Step 8: Physical failure: First, remove the failed nodes in the power network. Next,
based on the failure conditions for power system nodes, check if there are additional
failed nodes among the remaining nodes and remove them if necessary. Recalculate
the power load on the lines; if the redistributed load exceeds the capacity of any line,
mark that line as faulty. Repeat this process until no more faulty nodes remain in the
power network.

• Step 9: Output: Single cascading failure simulation ends. Output the data for both the
power network and the communication network.
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Figure 4. Flowchart of cascading failure process in cyber–physical power systems.

3. Evaluation Metrics of System Robustness to Cascading Failures

In CPPS, any faulty link has the potential to propagate through coupling relationships
and evolve into cascading failures. To analyze the impact of initial failures on the system, we
define evaluation metrics for both coupled networks based on network topology integrity
and operational characteristics.

3.1. Metrics of Communication Network

In the communication network, we employ adjusted node/link survival rates to
evaluate the communication network’s topology integrity. Considering that communication
links in an overloaded state have information flow exceeding their capacity—contrary to
normal conditions—these links operate inefficiently and have a certain probability of
transitioning to a failed state. Therefore, to distinguish between normal and overloaded
links and more accurately represent the impact of the overloaded state on the system, the
relative size of the largest connected component Gc is used to evaluate the communication
links after adjustment [29]. The survival rate of nodes/links following failure is used to
assess the topological integrity, as detailed below:

Gc =
∑h∈Ψ sh

Nc
(13)

where Nc is the number of nodes in the communication network’s access layer. Ψ denotes
the set of non-failed nodes. When the information links are in a normal state, sh = 1.
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However, when the information links are under overload conditions, sh is calculated
as follows:

sh =
δCh − Lh
δCh − Ch

(14)

Then, the adjusted node/link survival rate is

Fc =
1
2
∗ (V′

c
Vc

+ Gc) (15)

Due to the disconnection of information links, the path from the access layer nodes
of the communication network to the control center may change, resulting in communica-
tion delays. In this paper, the data communication delay is simplified and calculated as
follows [32]: Data transmission in the communication network follows the shortest path
principle, and each time it passes through a data node, the delay increases by one time unit
τ. The delay time unit reflects the delay caused by data transmission and processing from
the source node to the destination node in the communication network, including passing
through each information node and the communication path to the next information node.
Therefore, the transmission delay increment T caused by the communication network is
calculated as follows:

T = ∑
k∈Lc

T′
πc + ∑

k∈Lc

Tπc (16)

where T′
πc and Tπc are the delay of the transmission path of the same source–destination

pairs after and before the cascading failure. Lc denotes the set of the shortest transmission
paths for all source–destination pairs in the communication network.

3.2. Metrics of Power Network

In the physical power network, we use failure impact Fp to evaluate the influence of
cascading failure [12], expressed as

Fp =
1
2
∗ (

V′
p

Vp
+

E′
p

Ep
) (17)

where V′
p and E′

p, respectively, are the number of failed nodes and links in the power
network. Vp and Ep, respectively, are the total number of nodes and links in the physical
power network.

4. Case Study and Discussion

In this section, taking the IEEE 39-bus system as an example, the power network
topology is shown in Figure 5 and the original topology is divided into four regions based
on zoning principles. Correspondingly, the power communication network, generated
according to the aforementioned rules, is depicted in Figure 6. In this network, the access
layer consists of 39 communication nodes, each corresponding to one of the 39 power
nodes, which are used for uploading fault information and issuing dispatch instructions.
The backbone layer includes four control nodes, each corresponding to its respective access
layer region. The dispatch center is equipped with two control nodes.
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Figure 5. Partition diagram of IEEE 39-bus system.

Figure 6. Topology diagram of information network generated by IEEE 39-bus system.
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4.1. Impact of Overload Coefficient

To explore the impact of the overload coefficient on the robustness of the network, the
number of initial link faults was varied, with each set of faulty links generated randomly.
The simulations were independently run 50 times, and the average value was taken as the
communication network metric. For clarity of presentation in charts, textual descriptions
were used when the communication system completely failed, and the data set with the
highest number of failed links that caused the complete failure of the communication
system is selected for textual explanation. According to Figure 7a, as the number of initial
faulty links increases, the survival rate of nodes/links in the communication network
gradually decreases. When the overload capacity of links is not considered, the survival
rate of nodes/links in the network is the lowest. When the overload coefficient is 1.2,
the survival rate of nodes/links in the communication network significantly improves.
However, it can be observed that when the overload coefficients are 1.3 and 1.5, the survival
rate of nodes/links does not improve significantly.

Figure 7b shows that the CPPS under different overload coefficients exhibits a first-
order percolation transition, with a similar overall trend. As the number of failed lines
increases, the topology of the information layer is disrupted, and some nodes lose their data
transmission paths. Changing the transmission path increases the system delay. When the
overload coefficient is 1.5, the number of failed links that the communication network can
withstand before complete collapse is the highest. As seen in Figure 7b and Table 1, there is
a threshold for the initial number of failed links, near which the cascading failure effect
expands to all communication links, leaving no transmission path between communication
nodes and the control center. At this point, the communication system completely fails,
making it impossible to control the power grid. Table 1 shows the specific thresholds for
different overload coefficients.

Therefore, considering network construction costs, the overload coefficient is set to 1.3
according to Figure 7 and Table 1.

(a) (b)

Figure 7. The robustness of the communication network and the increment in communication delay
under different overload coefficients. (a,b) respectively show the relationship between the robustness
of the communication network and the system delay with the increase in the number of communica-
tion link failures under different overload coefficients, while other parameters remain constant.
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Table 1. The thresholds of the system under different overload coefficients.

Overload Coefficient The Threshold of Initial Failed Lines Threshold Percentage %

1.0 9 19.56
1.1 9 19.56
1.2 10 21.74
1.3 11 23.91
1.5 12 26.09

4.2. Impact of Failed Links

In this section, we will analyze the impact on data transmission within the power and
communication networks by sequentially removing each communication network link.

As shown in Figure 8, most of the faulty communication links have varying impacts
on the topological integrity and operational characteristics of the CPPS. Links that cause
significant system disruption are identified as critical links. Under N-1 fault conditions, all
possible scenarios of system attacks are enumerated.

As shown in Figure 8, it can be observed that the failure of a single communication
link can reduce the node and link survival rate in the communication network to as low
as 69.69%, induce a system delay increment of 2.1635, and cause a 35.07% paralysis in
the nodes and links of the power network. It is also noted that some link failures do not
affect the rest of the communication and power networks beyond the faulty link. This is
because, in cascading failures, the communication network considers the congested state of
the links, redistributing the traffic on failed and overloaded links. Moreover, overloaded
links can sustain operation for a short period before failing, thereby enhancing the system’s
robustness to some extent. Furthermore, the communication link that causes the maximum
delay increment may not necessarily result in the lowest node/link survival rate in the com-
munication network or the highest failure rate in the power network nodes/links. However,
the failure rates of nodes/links in the communication and power networks are notably
similar. For example, when link 42 fails, the highest delay increment of 2.1635 occurs. At
this point, the survival rate of communication nodes/links is 98.91%, and the failure rate of
power nodes/links is 3.46%. This is because the failure of link 42 changes the path from
communication node 27 to the control center, from the original path 27→26→40→44 to
27→17→16→43→44, resulting in communication delay. The failure rate of communication
node 27 is 36.06%. However, removing link 42 does not cause failure or overload in other
links, so there are 45 operational links, and the number of effective communication nodes
remains unchanged compared to before the fault. Due to the coupling relationship, the
failure rate of power node 27 is also 36.06%, ultimately leading to the failure of power
node 27.

(a) (b)

Figure 8. Cont.
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(c)
Figure 8. The impact of initial faults on the cyber–physical system. (a,b) show the impact of each
communication link failure on the robustness and delay increment of the communication system,
while (c) shows the impact of each communication link failure on the physical power grid.

4.3. Impact of Attack Strategies

The previous section analyzed the N-1 impact caused by the failure of a single commu-
nication link. As the number of faulty lines increases, different initial sets of faulty lines will
have varying effects on the system. Therefore, based on structural and electrical character-
istics, we employ both random line attack and critical line attack to remove communication
network links one by one, analyzing the impact of different attack strategies on power and
communication network data transmission.

The critical line attack strategy is derived from the initial power betweenness centrality
importance ranking of the power network. Due to the uncertainty of the random line attack
strategy, each faulty line in the random attack strategy is randomly generated, and the
results are averaged after 50 independent runs.

As shown in Figure 9, compared to random attacks, the CPPS exhibits high vul-
nerability under attacks on critical lines. Under critical line attacks, even with the prior
consideration of information flow redistribution due to link overload, the network still
suffers significant damage. This is because the failure of critical lines disrupts the paths that
transmit information to the control center, preventing the upload of power fault informa-
tion. Consequently, the control center cannot respond, and the source nodes transmitting
information in the communication network will cause the failure of coupled power nodes,
thus expanding the fault scale and accelerating the propagation of cascading failures and
system collapse.
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(a) (b)

(c) (d)

Figure 9. Impact of attack strategies on cyber–physical system. (a–d) illustrate the relationship
between the evaluation metrics of the coupled network and the number of failed communication links
under two different attack strategies (random attack and deliberate attack). Specifically, (a) shows
the relationship between the survival rate of nodes/links in the power communication network
and the number of failed communication links, (b) shows the relationship between the failure rate
of nodes/links in the power communication network and the number of failed communication
links. (c,d) respectively depict the trend of delay increment in the system under random attack and
deliberate attack.

5. Conclusions

This paper investigates the dynamic propagation of cascading failures in CPPS. First,
the coupling relationship between the communication network and the physical power
network is analyzed, and the corresponding communication system’s topology structure
is generated based on the power network. Next, an overload distribution model for
information flow is established within the communication network to address overloads
resulting from failures. In the power network, a load–capacity distribution model based on
power flow betweenness is established to handle the complexity of power flow calculations
due to failures. To more accurately describe the node/line failures caused by power flow
transfers due to faults, traditional percolation theory is improved to establish a failure
propagation model for coupled networks.
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Overall, this paper comprehensively considers both the electrical characteristics of
the physical power grid and the information transmission characteristics of the power
communication network when establishing the coupling model. It improves the coupled
network model from both the topological structure and functional characteristics and
constructs a cascading failure model that more accurately reflects real-world scenarios.
Most existing studies are based on percolation theory and only analyze the cascading failure
process of CPPS from the perspective of network topological integrity. This approach fails
to realistically capture islanding phenomena in power system operations, thus necessitating
an enhancement of percolation theory.

The simulations analyze the impact of faulty lines on the overload capacity of com-
munication network links, data transmission, network survivability, and physical power
network fault rates. The results indicate that even a small increase in link capacity can
significantly enhance network robustness. Additionally, the system performance degrades
when links at critical topological positions in the communication network are attacked,
leading to increased system delay increments compared to random attacks and causing the
information layer network to collapse earlier.

In summary, these findings offer valuable insights for future power network planning.
However, these studies are based on post-fault conditions, considering only the interactions
between nodes as either normal or complete failure to achieve power flow dispatch by the
control center. In reality, the interaction process between power nodes and information
nodes is extremely complex and often only qualitatively analyzed. Moreover, compared
to power flow dispatch, scheduling information flow is relatively simple. Reducing the
occurrence of faults from the source of the cyber side is a more efficient and reliable solution
instead of establishing a cascading failure resistance mechanism on the power grid side.
Therefore, our future research will focus on allocating critical information flows to reliable
paths under conditions of communication link overload to ensure accessibility and reduce
the probability of cascading failures caused by communication interruptions.
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Abbreviations and Nomenclature

CPPS Cyber–physical power system;
Fij Information flow demand on link eij;
qij The ratio of link capacity to link load;
ρ The failure threshold of the link;
Vp The sets of power nodes;
Ep The sets of power transmission lines;
Q The modularity value of the combined union of two communities;
qi The proportion of the generator i output to the total system output;
δ The link’s capacity to handle additional information flow;
ki The degrees of node i;
θ The parameter that adjusts the information flow;
Lc,ij The amount of information transmitted by the link eij;
Cc,ij The capacity of the link eij;
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Cmax
c,ij The maximum flow that the link eij can bear;

Wc,ij The weight of the link eij;
α The capacity coefficient;
β The capacity coefficient;
min(Sm, Sn) The weight of a single line’s flow betweenness;
Pij,m The portion of the power flow on line eij originating from generator m;
Pij,n The portion of the power flow on line eij directed towards load n;
Pij The active power through line eij;
PLn The active load at load node n;
A−1

unm The inverse-order distribution matrix elements;
PGm The active output of the generator node m;
FBij The flow betweenness of edge eij in the power network;
Lp(ij) The power load on edge eij in the power network;
Cp(ij) The capacity of edge eij in the power network;
γ The tolerance parameter;
∆ ak The distribution strategy for the overloaded branch;
Fc The adjusted node/link survival rate following failure in the communication network;
T The transmission delay increment;
Fp The failed node/link rate following failure in the power network.
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Abstract: Today, renewable energy sources (RESs) are increasingly being integrated into power
systems. This means adding more sources of uncertainty to the power system. To deal with the
uncertainty of input random variables (RVs) in power system calculation and analysis problems,
probabilistic power flow (PPF) techniques have been introduced and proven to be effective. Cur-
rently, although there are many techniques proposed for solving the PPF problem, the Monte Carlo
simulation (MCS) method is still considered as the method with the highest accuracy and its results
are used as a reference for the evaluation of other methods. However, MCS often requires very high
computational intensity, and this makes practical application difficult, especially with large-scale
power systems. In the current paper, an advanced data clustering technique is proposed to process
input RV data in order to the decrease computational burden of solving the PPF problem while
upholding an acceptable level of accuracy. The proposed method can be effectively applied to solve
practical problems in the operating time horizon of power systems. The developed approach is tested
on the modified IEEE-300 bus system, indicating good performance in reducing computation time.

Keywords: probabilistic power flow; power system; renewable energy

1. Introduction

During the operation of a power system, operating mode parameters such as the
voltage at the buses, power transmitted through the branches, etc., need to be regularly
calculated to assess the security of the system by comparing the parameters with their
allowable limits. In the event of a safety risk, reasonable solutions should be proposed to
resolve it. Deterministic power flow (DPF) is one of the essential tools for power system
operation and planning. Nevertheless, during the computation process, the traditional
approach uses fixed values of nodal power injections (from power generation, load, etc.)
and the known grid structure so that sources of uncertainty from these factors are not
considered. This is the main limitation of the traditional power flow (PF) method [1].

To overcome the above-mentioned disadvantage, PPF was proposed and has become
a very effective calculation tool. The load, the power generation from a plant, and the
operation of an element such as a line, transformer, etc., can follow certain rules of proba-
bility. In particular, for today’s power systems, when additional RESs such as solar and
wind power, etc., are connected to the system, modeling renewables’ intermittency is very
challenging. The intermittency often changes very quickly and stochastically, increasing
the uncertainty level in the system. Therefore, a calculation method is required to be able to
integrate uncertainties into the calculation process. By using PPF methods, the outputs, i.e.,
the voltage at buses, PF transmitted on branches, etc., also change randomly according to a
law of probability distribution [1]. The PPF analysis allows us to appraise the probability of
line overloading, the probability of over-/under-voltage, etc. From there, depending on the
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characteristics of the system and the severity of the violation, the operator could consider
and suggest appropriate solutions to improve the system security.

The PPF approach was first introduced by Borkowska in 1974 [2] and, since then,
several research works for PPF have been proposed around the world. Generally, methods
for calculating the PF using the PPF technique can be classified into three main categories,
i.e., numerical, analytical, and approximation approaches.

The analytical approach [3–6] makes use of algorithms and analytical techniques
such as the convolution and cumulant techniques. Applying these analytical techniques
combined with the relationship of the input and output of a PPF problem allows for
determination of the distribution function of the output RVs such as the power transmission
on the line, nodal voltage, phase angle, etc., according to the system parameters, e.g., the
total line impedance, total transformer impedance, etc., and probability distributions of the
input RVs of the load and power generation from traditional generators and RESs, as well
as the operating status of the devices. The relationship between the input and output of the
PF calculation problem is non-linear. Nevertheless, the analytical method works well with a
linear relationship between the input and output of the problem. Therefore, the relationship,
firstly, needs to be linearized using an expansion technique, e.g., Taylor expansion. One of
the outstanding advantages of the analytical approach is that it can give very fast results.
Among the cumulant and convolution approaches, the convolution approach is more
computationally intensive than the cumulant one. Hence, currently, the cumulant approach
is more popular than the convolution approach. To achieve the distribution functions for the
output RVs, the cumulant approach is often used simultaneously with expansion techniques
such as Gram–Charlier or Cornish–Fisher expansion [4]. Owing to the advantage of fast
computation, the analytical approach could be applied for a large-scale power system in
practice. Nevertheless, the analytical approach has some drawbacks. Firstly, the accuracy
of the analytical approach is significantly affected by the use of techniques that linearize
the input and output relationship, especially when the input RV changes over a wide
range, for example, in the case of RESs. Secondly, the analytical approach uses expansion
techniques that can perform well in the case of the distribution functions of the input RVs
being either Gausian distribution or close to Gausian distribution. In fact, the distribution
functions of the input RVs of the PPF problem for a power system, in practice, often follow
non-Gausian distribution, so the achieved results will be limited. To be able to integrate
discrete distribution functions of input RVs into the calculation process, the Von Mises
method is proposed [1].

The typical approach for the group of approximation ones in calculating PPF is the
point estimate approach [7,8]. In this approach, the input RV is decomposed into a sequence
of value and weight pairs. Next, the moment of the output RV is computed as a function
of the input RV and then the output RV distribution function is obtained. The point
estimate approach can provide relatively fast results. Moreover, different from the analytical
approach, this approach uses the non-linear relationship between the input and output of
the PF computation problem. However, the main limitation of the point estimate approach
is that its accuracy decreases as the order of the moment increases. Another drawback is that
the computation time required increases significantly as the number of input RVs increases.

A typical numerical approach is MCS [9–14]. In MCS, the input RVs are sampled and
then the DPF calculation is carried out for all samples. It repeats the simulation with a
very large number of samples to obtain a highly accurate result. MCS uses the non-linear
relationship between the input and output of the PF problem, like the traditional approach.
The main advantage of the MCS approach is that it gives very accurate and reliable results.
Moreover, the probability distributions of the input RVs in MCS are easy to represent.
However, the biggest drawback is that the calculation volume is heavy and the calculation
time is relatively long, thus making it difficult to apply for a practical large-scale power
network. To reduce the computational burden of the MCS method, several clustering
algorithms are proposed to reduce the number of samples, and then DPF is run for each
cluster instead of running it for all samples. In [15], a PSO algorithm is proposed to use for
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the clustering task, while K-means is used in [16,17]. Each clustering algorithm has its own
weaknesses. For PSO, its iterative convergence rate is modest, and it often becomes stuck
at local optimums in dealing with high-dimensional datasets. For the K-means algorithm,
it is sensitive to the choice of k and it is difficult to find the optimal k for a given dataset.
Moreover, K-means does not scale well to large problems, which is why, in the present
study, this problem is focused on.

From the above analysis, it can be seen that each PPF approach has its own character-
istics, advantages, and disadvantages.

In addition to the above overview of PPF, to solve various problems related to uncer-
tainty, recent advancements have also been found. In [18], a two-stage robust coordinated
dispatch method for multi-energy microgrids is developed to alleviate all of the negative ef-
fects of diverse uncertainties from wind power and loads. The interval method is employed
in [18] to characterize the uncertainties. A committed carbon emission operation region
(CCEOR) of integrated energy systems (IESs) is proposed in [19]. The developed method
converts the proposed uncertain non-linear CCEOR model into a deterministic mixed-
integer convex CCEOR model. In [20], to take into account different types of uncertainties
from the outcomes of disasters, extreme events, loads, and renewable generation, both the
pre-restoration and real-time stage measures are coordinated via a two-stage stochastic
programming method.

The main contributions of this paper are summarized as follows: (1) The core objective
of this study is to develop an approach to calculating PPF that ensures a certain level
of accuracy compared to MCS but which must give very fast results close to “real time”
operation of the power system. In order to exploit the advantages of the accuracy of the
MCS method while reducing the time-consuming, and volume of, calculation, a real time
clustering technique combined with MCS in PPF calculation is proposed. The clustering
technique applied is simple but effective and suitable for practical application. The large
number of samples of input RVs of the PPF calculation problem using MCS is significantly
and effectively reduced, so the PPF calculation gives fast results. Thanks to this outstanding
feature, the PPF approach can be applied to large power systems in practice and to the
operational time frame. (2) In addition, the discussion on the application of PPF methods
in power system calculation and analysis is also presented in detail in this article. This
provides a clearer and more intuitive picture of the application of PPF analysis in both
the planning and operation of power systems. The current limitations of PPF methods in
general are also pointed out to provide topics for future research.

The rest of this paper is structured as follows. Section 2 presents the developed
methodology, while the results obtained by the developed approach are discussed in
Section 3. In Section 4, further discussion on the applicability of various PPF methods in
power system analysis problems is given. Concluding remarks are provided in Section 5.

2. Methodology
2.1. Real Time Clustering Technique

Clustering is the division of data into a number of groups so that data points in the
same group have similar characteristics to each other and are dissimilar to data points in
other groups. It is basically the task of dividing data in a dataset on the basis of similarities
and differences between them. Among clustering techniques, K-means is known as the
most popular one and is applied in all fields due to its simplicity, efficiency, scalability,
and ease of implementation. It can handle large datasets effectively, making it a practical
choice for numerous applications. A comprehensive review of the application of K-means
clustering in modern power systems is presented in [21]. The K-means clustering algorithm
is a type unsupervised machine learning that divides the unlabeled dataset into k different
clusters by an iterative algorithm.

The K-means algorithm is implemented as follows:
Step 1: Randomly choose k points or centroids from considered data to initialize the

groups or clusters;
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Step 2: For each point in the dataset, compute the distance between the point and each
of the k centroids; assign each point to its closest centroid to form k clusters;

Step 3: Replace the centroid for each cluster with the mean of all data points assigned
to the cluster;

Step 4: Repeat Steps 2 and 3 until the centroids no longer change significantly or after
a pre-selected maximum number of iterations. The outputs obtained are the last cluster
centroids and the data points assigned to clusters.

Although the K-means method has many advantages, it has some disadvantages that
can affect its applicability and performance. The K-means algorithm is not considered to
have good scalability for large problems. It is sensitive to the choice of k and it is difficult to
find the optimal k for a given dataset. K-means converges to a local minimum, so different
initializations will result in different results.

K-means can be very time-consuming with large datasets. For a dataset including
n data points, it needs to be run O(nkT) times to calculate the distances between the n
data points and each of the k centroids (T is the number of iterations) [22]. In the K-means
algorithm, each iteration takes a time proportional to k and n. This explains why the K-
means algorithm has poor scalability. The running time will increase with an increasing n or
k, or both. Therefore, its efficiency can be significantly enhanced by decreasing the runtime
related to n. To deal with the problem of poor scalability, in [22], the authors develop a
K-means-lite approach that can obtain the aimed-for centroids in O(1) time with respect to n
and exhibits and improved speed-up factor as k and n increase. The accuracy has also been
shown to increase. The statistical inference technique is used, in which the k centroids are
calculated using a few small samples, instead of repeated exhaustive comparison between
centroids and data points. This idea comes from an intuitive extension of the classical
central limit theorem. In particular, its use does not need special data structures, does not
need to keep distances computed in memory, and does not require repeated exhaustive
assignments. It is demonstrated that the use of K-means-lite obtains a drastic efficiency
gain and can solve large datasets in real time; it is called advanced data clustering (ADC)
in this paper [22].

2.2. Representation of Input Uncertainties

In this paper, to account for the uncertainties regarding the power outputs of genera-
tors, loads, etc., and the parameters of components, they are represented by probabilistic
distributions. Based on their historical data, the distributions can be estimated. They can
also be provided by a forecast technique, especially in solving operational problems.

• Wind generation

For wind speed modeling, the Weibull distribution [23] is commonly used. Its proba-
bility density function (PDF) is represented as:

f (v) =
h
c
·
(v

c

)h−1
· exp

[
−
(v

c

)h
]

(1)

where h: the shape parameter; c: the scale parameter; v: wind speed.
The wind turbine characteristic curve can be estimated by wind power–wind speed

pairs measurement data [24]. It can also be modeled by a piecewise function as follows:

Pwo(v) =


0 v ≤ vci or v > vco

Pw
v − vci
vr − vci

vci < v ≤ vr

Pwr vr < v ≤ vco

(2)

where, vci, vco, and vr are the cut-in, cut-out, and rated wind speed, respectively; Pwr and
Pwo are the rated power and output of the wind generation, respectively.



Electronics 2024, 13, 3068 5 of 13

• Solar generation

The solar radiation distribution can be estimated by its observed data. It is also usually
represented by a Beta distribution [25], as:

f (r) =
Γ(α + β)

Γ(α)Γ(β)
·
(

r
rmax

)α−1
·
(

1 − r
rmax

)β−1
(3)

where r and rmax are the real and maximum solar radiations, respectively; α and β are two
main parameters of the distribution; Γ(·) is the well-known Gamma function.

Pvo(r) =


Pvr

r2

rcrstd
r < rc

Pv
r

rstd
rc ≤ r ≤ rstd

Pvr r > rstd

(4)

where rc is the radiation at a certain point; rstd is the standard radiation (corresponding to
the standard environment); Pvr and Pvo are the rated and output powers of the photovoltaic
unit, respectively. Solar generation is commonly required to operate in the unity power
factor mode, i.e., its reactive power is equal to zero.

• Load

The uncertainty of each load is usually represented by a Gaussian or normal distri-
bution [1]. The normal distribution function is a continuous function and one of the most
commonly used functions in most fields.

The PDF of a normal distribution is as follows:

f (x) =
1√
2πσ

e−
(x−µ)2

2σ2 (5)

in which µ and σ are the expectation (average value) and the standard deviation, respectively.
The cumulative distribution function (CDF) of the normal distribution function is

calculated as follows:

F(x) =
1√
2πσ

x∫
−∞

e
−
(t − µ)2

2σ2 dt (6)

For modeling a load, the expected value (mean) is its base power while the standard
deviation is assumed to be equal to a certain percentage, e.g., 10%, of the mean.

In addition to the popular probability distributions, shown above, which are very
suitable for representing uncertainties from RESs and loads in power systems, currently, in
the fields of probability and statistics, there are several other probability distributions and
density functions used to incorporate uncertainties into the PPF problem. In other words,
the fact that we assume the above distribution functions for RESs and loads does not lose
the generality of the use of the PPF method developed in this study.

2.3. Advanced Data Clustering-Based Probabilistic Power Flow

The flowchart of the proposed approach, i.e., the advanced data clustering-based
probabilistic power flow (ADCPPF), used for probabilistic security assessment is shown in
Figure 1. In the flowchart in Figure 1, the main part that helps significantly improve the
calculation time is in the ADC block.
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Figure 1. Flowchart of the proposed probabilistic security assessment.

3. Tests and Results

The application of the developed approach is illustrated on a modified IEEE 300-bus
system. The information needed for DPF analysis of the system, i.e., the electrical network
diagram, bus, branch, generator data, is given in [26]. The system includes 300 buses,
409 branches, 195 loads, and 69 generators. In this test, uncertainties from both loads and
RESs are considered. The system is modified by adding 10 solar photovoltaic and 8 wind
power plants to buses, as shown in Tables 1 and 2, respectively.
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Table 1. Information on Beta distributions of solar photovoltaic power.

Bus Rated Power (MW) α Parameter β Parameter

196 50 2.5 8

198 80 1.6 9

203 40 1.2 6

204 60 2.2 8

215 70 3.2 7

217 50 3.5 10

221 35 4.2 11

229 90 2.8 8

245 65 1.9 7

246 95 3.1 8

Table 2. Information on Weibull distributions of wind power.

Bus Rated Power (MW) Scale Parameter Shape Parameter

118 90 10 2.4

121 80 15 1.6

126 100 11 2.4

142 50 14 1.5

154 40 20 2.2

156 60 28 1.8

159 70 16 1.7

161 95 12 2.3

For the sake of simplicity, but without the loss of generality, the uncertainties of loads
and RESs are assumed to be known by forecast techniques. The uncertainty of each load
is modeled by a normal distribution with an expected value equal to the base value and
standard deviation equal to 10% of the expected value. The solar photovoltaic power
uncertainty at each plant is assumed to follow Beta distribution, with its parameters given
in Table 1. The distributions are also assumed to be correlated with a correlation coefficient
of 0.7. In this study, it is assumed that the simulation scenario occurs during daylight hours,
with potential conditions for some solar photovoltaic power generation. Additionally, we
assume that the loads and solar and wind power plants are not under abnormal weather
conditions (e.g., extreme heat wave, large-scale winter storm, and hurricanes), extremely
rare phenomena (e.g., solar eclipse), and catastrophes (e.g., war, earthquakes, and tsunamis).
Some of these abnormal events are extremely challenging to forecast with low standard
deviation. These abnormal and rare events can also be described by appropriate distribution
functions and included in the PPF problem. However, this issue is out of the scope of the
current study and is intended to be considered in future studies. Similarly, the uncertainty
of the power output at each wind farm is assumed to have Weibull distributions, with the
parameters shown in Table 2. The distributions are correlated with a correlation coefficient
of 0.8.

In the current test, the base power of 100 MVA is used. The MCS results are used as
the reference to evaluate the results obtained by other methods. All tests are executed in
Matlab (R2015b) on an Intel Core i5 CPU 2.53 GHz and 4.00 GB RAM PC.

PPF computation is performed to achieve all results of interest of the output RVs in
terms of PDFs and/or CDFs. For the purpose of illustration, the distributions of a number
of selected output RVs are shown. Figure 2 plots the CDFs of real PF through branch 2–8
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(i.e., denoted as P2–8), while that of the voltage at bus 89 (i.e., denoted as V89) is given in
Figure 3. It can be seen from the figures that the developed ADCPPF approach can match
well with the curves from MCS, indicating the good performance of the ADCPPF approach.
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Because it is difficult to observe clearly when plotting all the results on the same
figure, only the results corresponding to the ADCPPF method are depicted. However,
to demonstrate its effectiveness, we also compare the results of PPF using ADC with
K-means clustering.

As discussed in Section 2.1, K-means clustering can be very time-consuming with large
datasets due to the poor scalability problem. Different from K-means, the K-means-lite
approach was developed in [16] and can give the results very quickly. Its accuracy has also
been shown to increase in comparison with the K-means technique. Therefore, in this test,
we do not focus on proving the accuracy of the ADC method compared to the K-means
method. Instead, the processing time performance is focused on, thereby indicating that
the proposed approach has good applicability for solving problems in the time frame of
power system operation. It is clearly shown in Table 3 that the ADCPPF approach can
give the result in a few seconds, in comparison to the hundreds of seconds needed by
MCS. In particular, as previously mentioned, for a dataset including n data point, K-means
clustering needs an amount of time equal to O(nkT) to run (in which T is the number of
iterations). The running time of K-means will sharply increase with an increasing n and/or
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k. The modified IEEE 300-bus system is a large-scale system, so K-means-based PPF runs
very hard and takes a long time.

Table 3. Execution time comparison.

Method Time (s)

MCS 725

ADCPPF with 5 clusters 2.64

ADCPPF with 10 clusters 2.79

ADCPPF with 20 clusters 2.98

ADCPPF with 30 clusters 3.26

ADCPPF with 40 clusters 3.47

ADCPPF with 50 clusters 3.72

ADCPPF with 70 clusters 4.21

K-means based PPF with 5 clusters 140

K-means based PPF with 10 clusters 420

From Figures 2 and 3 and Table 3, the accuracy of ADCPPF increases (i.e., intuitively,
the corresponding curve in Figures 2 and 3 follows the MCS curve more closely) and
the time required to execute the method also increases with an increasing number of
clusters. Comparing MCS using K-means and ADCPPF, K-means is challenging in this
case and causes the calculation time to increase by much more than when using ADCPPF.
Through the above analysis, it is shown that the ADCPPF method has the advantage of
both relatively high accuracy and a significantly reduced execution time.

PPF can provide distributions for output RVs that are good for power system security
assessment. The probability of under-/over-voltage, line overloading, and so on can be
judged. For instance, the upper limit of the real PF of branch 2–8 is supposed to be equal to
445 MW, i.e., corresponding to the vertical line in Figure 2, and the probability that power
transmitted through the branch is over its limit can be computed as:

P{P2−8 > 445} = 1.4% (7)

Similarly, the probability that voltage at a considered bus is out of the operating range
can be assessed. However, in this test, the voltages at all buses in the system (for example,
V89 in Figure 3) are within the range, i.e., [0.9, 1.1] p.u.

The results obtained by the ADCPPF method can help the operator of the system to
evaluate the operating states in order to make suitable decisions and provide solutions for
the system.

4. Further Discussion on Applicability of Various PPF Methods

PPF methods can be selected for application in both planning and operation problems
of power systems.

• Applying PPF in planning problems: The MCS method is suitable for solving planning
problems with long time frames (such as years, seasons, months, weeks) or operational
planning problems in the time frame of a few days. In such cases, the time to achieve
results does not need to be very fast. In addition to network configuration data, data
on sources (especially RES) and loads collected over long periods, i.e., months, a
year, or several years, are used to estimate PDFs. These data can also be used by a
forecasting technique to provide results for operating the system. If the forecasting
technique follows the point forecast approach, the forecast results are provided as
a set value at each forecast time point and a corresponding error. These values are
considered the expectation and standard deviation of the normal distribution function.
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These functions are the input information of the MCS problem. If the forecasting
technique follows an uncertainty forecast approach such as the probabilistic forecast
or scenario forecast approaches [24], then the probability distribution function will be
more useful. In fact, when applying MCS in practice, if the system is too large, with
many input variables, the processing of MCS is very difficult, taking up an extremely
large amount of memory, making it very difficult to process, and, in many cases, it may
not be possible. In such cases, clustering (as in the current paper) and dimensionality
reduction techniques should be used.

• Application in operational problems: For operational problems with extremely short
time frames ranging from a few minutes (i.e., very short-term frame) to a few hours (i.e.,
short-term frame) and within 24 h (day-ahead), analytical methods and approximation
methods with a fast processing time can be applied. The MCS method can also be used
in the time frame of several hours or more when the power system is small in scale
and the number of input RVs is also small. The MCS method combined with clustering
techniques, such as the one proposed in this paper, can be implemented with short
or even extremely short operating time frames. Based on data collected from RESs
or loads (in addition to other network configuration data), probability distribution
functions at the time points of the operational problem are built. These functions can
also be provided by a forecast technique.

The next part is an illustrative example. Suppose a technique for forecasting the load
or power generation of RESs provides forecast information at different time points in the
operational time frame. At that time, the results obtained from PPF methods will be very
useful for the system operator.

Figure 4 illustrates the PDF of the current flowing on a line of interest at consecutive
times (resolution of 1 h) in the 24 h time horizon of day-ahead operation of the system. The
system operator will have a very clear “picture” of the risk of system insecurity so that
they can propose appropriate solutions. On the basis of comparing the PDF curve with the
maximum limit Imax (corresponding to the limit of the power) of the line of interest, it is
possible to determine the point at which there is a risk of the current passing through that
line exceeding the allowable value.
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For example, in Figure 4, from 16:00 to 18:00, the current gradually increases and, near
19:00, the upper boundary of the PDF line begins to touch and surpass the limit Imax and
the calculated probability that corresponds to 19:00 is p1. It should be noted that, as the



Electronics 2024, 13, 3068 11 of 13

evening approaches, the solar power source gradually decreases, and in this example, by
19:00, this source no longer generates power. However, this is the peak period in the system
where the load increases rapidly until reaching the peak. At this time, the uncertainty in
the system comes from the loads and other sources, if any, and not from the solar power
source. Then, at 20:00, the current tends to decrease and the level of intrusion has a value
of p2. Thus, in the above case, it can be roughly considered that the risk of overloading
lasts about 1 h. The overload time can be estimated more accurately if the calculation
time-step is smaller (30 min, 15 min, etc.), and this depends on the capabilities of the
forecasting technique as well as the requirements of the system operator. If the period of
risk of overloading lasts long but is still within the allowable limit, then the overload is
considered a temporary overload and does not require any intervention. On the contrary,
when there is a risk of overloading for a long period of time and the level of overload is
severe, the operator must come up with suitable solutions to ensure security for the system.

It should be noted that, in Figure 4, if we only care about the expected value (similar to
the results obtained from the traditional DPF), then all calculated current values are smaller
than the limit Imax and safety risks due to the overloading are “not seen”. This is a very
new point in the view of system security assessment.

Figure 5 is an illustrative example of assessing the risk of over-/under-voltage at a bus
of interest. In this example, the risk of under-voltage at times 19:00 and 20:00 is calculated
as p1 and p2, respectively.
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The method of calculating and analyzing the security of the system is based on
information and data obtained from random input quantities of the problem such as the
loads and output powers of RESs. The result is in terms of probability distributions of
output quantities such as the node voltage, or the power or current transmitted on branches.
This process is performed before the real operation to find the probability distributions of
the quantities of interest.

For actual power systems with a SCADA EMS system, this system will provide
information about mode parameters and be updated regularly in close to real-time, so
monitoring of the operation of mode parameters degrees is performed continuously. In
addition, when there is a SCADA EMS system, the data collected for random factors will be
more convenient and continuously updated. When the dataset of random factors is more
complete, the information obtained is clearer. That is also another benefit when using a
SCADA EMS system combined with the PPF method.

The main goal of this paper is to develop an approach to calculating PPF that ensures
a certain acceptable accuracy but that also provides very fast results to meet the desired
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application in the time-frame of almost “real time” in operation of the power system. As
mentioned above, the MCS method faces many challenges and is even impossible when
applied to real power systems, especially large-scale systems with very short operating time-
frames. The clustering algorithm proposed to be applied for solving the PPF problem in
this paper is simple, easy to implement, and helps effectively deal with the poor scalability
of the K-means algorithm. Therefore, ADCPPF can give quick results with large data that
can be applied to solve PPF problems for large-scale power systems.

However, in addition to the advantages and contributions of the proposed method in
practical applications, it also has a limitation that needs to be addressed: predetermining
the value of k like in the K-means algorithm. In addition, the inherent limitations of the
PPF, which does not cover electromagnetic transients, and extreme abnormal operating
conditions are unresolved issues. Power system planning and operation should also focus
on worst case future and abnormal scenarios (e.g., heat waves, winter storms, etc.). The
extreme weather events exacerbated by climate change and global warming pose a high
level of uncertainty. Therefore, more diversity in types of uncertainty should be considered
for integration into the PPF problem. Energy storage systems (e.g., batteries, pumped
storage hydropower, and electric vehicle-to-grid schemes) can mitigate the uncertainty
related to RESs that is also not considered in this study. Hardware is one of the important
factors affecting PPF analysis, especially in relation to the calculation time. Future research
can also focus on processing the algorithm in high-performance computers, overcoming
the time processing concerns, and allowing more focus on the model accuracy. These
limitations open up topics for consideration in future research.

5. Conclusions

PPF is an effective tool in calculating and analyzing power systems and considering
uncertainties existing in the system. It can help the operator of the system in assessing
the security. Among the various techniques for PPF, MCS gives highly accurate results
but is often very computationally intensive. This article focuses on solving the problem
of reducing the computation time for Monte Carlo simulation to achieve a practical tool
with high accuracy that gives fast calculation results to be used to solve problems in
the time horizon of power system operations. To achieve that goal, we make use of an
advanced data clustering technique called K-means-lite. The developed approach, ADCPPF,
is extensively tested on a modified IEEE-300 bus system, showing good performance in
reducing computation time.
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Abstract: Inverse synthetic aperture radar (ISAR) imaging techniques are frequently used in target
classification and recognition applications, due to its capability to produce high-resolution images
for moving targets. In order to meet the demand of ISAR imaging for electromagnetic calculation
with high efficiency and accuracy, a novel accelerated shooting and bouncing ray (SBR) method is
presented by combining a Graphics Processing Unit (GPU) and Bounding Volume Hierarchies (BVH)
tree structure. To overcome the problem of unfocused images by a Fourier-based ISAR procedure
under wide-angle and wide-bandwidth conditions, an efficient parallel back projection (BP) imaging
algorithm is developed by utilizing the GPU acceleration technique. The presented GPU-accelerated
SBR is validated by comparison with the RL-GO method in commercial software FEKO v2020. For
ISAR images, it is clearly indicated that strong scattering centers as well as target profiles can be
observed under large observation azimuth angles, ∆φ = 90◦, and wide bandwidths, 3 GHz. It is
also indicated that ISAR imaging is heavily sensitive to observation angles. In addition, obvious
sidelobes can be observed, due to the phase history of the electromagnetic wave being distorted
resulting from multipole scattering. Simulation results confirm the feasibility and efficiency of our
scheme by combining GPU-accelerated SBR with the BP algorithm for fast ISAR imaging simulation
under wide-angle and wide-bandwidth conditions.

Keywords: ISAR imaging; shooting and bouncing ray method; GPU acceleration; BVH tree; back
projection algorithm

1. Introduction

Inverse synthetic aperture radar (ISAR) is a powerful active microwave imaging
radar system widely utilized in military and civil applications due to its capability to
produce high-resolution images for moving targets in almost all-weather and all-day
conditions [1–3]. ISAR images can be obtained by focusing scattering field data at multiple
angles and frequencies, which are a two-dimensional representation of the target scattering
center [4–6]. The simulation of ISAR imaging for electrical large targets is extremely time-
consuming, due to the calculation of multiple angles and frequencies’ scattering field.
Several methods and their improved versions as well as acceleration techniques have been
developed to efficiently calculate the scattering from electrical large targets, including both
the low-frequency numerical method and high-frequency approximation methods [7,8].
Due to the tremendous computational time and memory requirements, pure numerical
methods such as method of moments (MoM) and finite element method (FEM) are facing
enormous challenges [9]. Due to the good compromise between accuracy and efficiency,
high-frequency approximation methods are widely utilized in ISAR imaging simulation for
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electrical large targets. Among them, the shooting and bouncing ray (SBR) method is the
most popular one, which is a combination of physical optics (PO) and geometrical optics
(GO) and is suitable for taking multiple scattering into account.

Following the proposal of the SBR method by Ling in 1989, researchers have imple-
mented numerous improvements [10], such as the time domain shooting and bouncing
ray method (TDSBR), bidirectional analytic ray tracing [11], etc. These advancements have
contributed to the growing popularity of the bouncing ray method. In recent years, a
GPU-accelerated bouncing ray method is proposed based on a stackless k-dimension (Kd)
tree traversal algorithm, enabling the ray tracing process to be efficiently carried out in the
GPU [12]. In [13], an enhanced bouncing ray method using a ray propulsion technique is
proposed to accelerate the ray tracing process and enhance the ray intersection efficiency,
making it able to efficiently calculate the scattering characteristics of electrically large tar-
gets. In [14], the inclusion of reverse ray paths in the SBR method is proposed to improve
the accuracy of cavity radar cross section (RCS) predictions, which can be implemented into
existing SBR code almost trivially, while producing potentially substantial improvements
in prediction accuracy. A reverse ray tracing technique is proposed based on the ropes
Kd-tree data structure, which has been demonstrated to yield satisfactory results in the
calculation of high-frequency scattering characteristics [15]. In addition to the enhancement
of SBR through the utilization of GPUs and data structures, the SBR method has also
been integrated with other electromagnetic computational methods, thereby rendering
this method more comprehensive in its consideration of the electromagnetic scattering
characteristics of complex target structures [16–19]. For instance, the octree-based SBR
method in combination with the physical theory of diffraction (PTD) is presented for the
analysis of electromagnetic (EM) scattering from the moving target [20]. In [21], a hybrid
method of equivalent dipole moment (EDM), MOM, and SBR is proposed to enhance the
computational efficiency of the RCS of complex objects within the EDM framework. In this
hybrid method, an iterative approach is introduced to enhance the algorithm performance,
offering high accuracy and reducing the computational time.

On the basis of electromagnetic scattering modeling, focused ISAR images can be
obtained by applying a signal processing algorithm, including the range Doppler (RD)
algorithm, polar format algorithm (PFA), back projection (BP) algorithm, etc. [22–24]. The
most commonly used ISAR imaging algorithm interpolates the polar data to a Cartesian
grid and then applies a 2-D FFT to achieve ISAR reconstruction. As a special case, under
small-angle and small-bandwidth conditions, ISAR images can be approximately obtained
by performing inverse Fourier transform of 2D backscattered field data, and the resultant
ISAR images are composed of the scattering centers of target with their electromagnetic
reflection coefficient. Due to its suitability for GPU parallel processing and ability for ISAR
imaging in any mode, the BP algorithm and its modified versions are extensively used
in SAR/ISAR imaging applications [25]. As early as in 1989, a simplified BP algorithm
and its parallel processing architecture were proposed by using the radar waveform as
the impulse response of the filter to obtain the filtered projection [26]. Up to now, the
GPU-based BP algorithm is still being developed to optimize the peak performance of the
BP algorithm on servers and miniaturized GPU devices, which can deal with the differences
in hardware platforms as well as the differences in data scales [27]. In [28], an ISAR imaging
algorithm for composite target–ocean scenes based on time-domain shooting and bouncing
rays (TDSBRs) is developed. In [29], time-domain iterative physical optics (TD-LIPO) is
proposed to analyze scattering from electrically large and complex targets. In [30], an
accelerated time-domain iterative physical optics method is developed for analyzing the
scattering from electrically large and complex targets, and an IFFT is performed to obtain
the ISAR image under small-bandwidth and small-angle conditions.

Aiming at ISAR imaging for electrical large targets under large-bandwidth and wide-
angle conditions, this paper is devoted to a scheme of ISAR imaging by combining GPU-
accelerated SBR based on GPU and BVH tree acceleration with the GPU-accelerated BP
algorithm. To enhance ray intersection efficiency, a BVH tree structure is constructed
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according to the target structure, which is implemented in C++AMP to achieve GPU parallel
acceleration computation. The SAH method is incorporated into the scene bounding box
division, effectively mitigating the impact of bounding box overlapping on the ray traversal
efficiency of the BVH tree structure. To efficiently perform ISAR imaging simulation, a
GPU-based accelerated BP imaging algorithm is developed by virtue of a compute unified
device architecture (CUDA).

This paper is organized as follows: Section 2 introduces a GPU-accelerated SBR using
BVH tree structure. In Section 3, the GPU-accelerated BP imaging algorithm is presented. In
Section 4, the results and discussion are presented, and several simulations are performed
to confirm the feasibility and efficiency of our scheme by combining GPU-accelerated
SBR with the BP algorithm for fast ISAR imaging simulation under wide-angle and wide-
bandwidth conditions. Section 5 concludes this paper.

2. A GPU-Accelerated SBR Using BVH Tree Structure
2.1. Calculation of Multiple Scattering Using PO and GO

As a high-frequency approximation method, the shooting and bouncing ray method
is a combination of PO and GO, which uses GO to trace the electromagnetic wave re-
flection path and PO to calculate the scattering field, resulting in a great advantage in
solving electromagnetic scattering problems for complex targets [31]. According to PO
approximate theory, target surfaces are divided into bright and dark areas, depending
on whether the surfaces are illuminated by electromagnetic waves or not. The total field
scattered from the dark area is assumed to be zero. However, this assumption is only
valid when the wavelength of the electromagnetic wave is much smaller than the target
geometry. It becomes difficult to determine the total field of the area on the target that
is not directly illuminated by the incident wave when the target’s dimensions are very
large along the perpendicular direction of the incident wave. Assuming a total field of zero
on the shaded surface would imply a discontinuity in the field on the shaded boundary.
Therefore, to resolve the discontinuity in the boundary field, a line integral must be added
on the boundary [32,33]. In Figure 1, a schematic diagram of multiple scattering of SBR is
illustrated, in which only the 1st reflection (in yellow arrows) and 2nd reflection (in green
arrows)are depicted.
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The PO field of the perfect electric conductor (PEC) target at position rs can be ex-
pressed as [34]

Epo
s (rs) = −jkη

∫
S

[
k̂s ×

(
k̂s × J

)]
G(rs, r′)dS′

= −jkη
Hie−jk(rs−r′)

2πrs

∫
S

{
k̂s ×

[
k̂s ×

(
n̂ × ĥi

)]}
e−jk(k̂i−k̂s)·r′dS′

(1)
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where ĥi is direction vector of the incident magnetic field and k̂i is electromagnetic
wave propagation direction vector. k̂s is the unit vector of the scattering wave direc-
tion. S represents the area illuminated by the incident wave, and r′ is the source point
location. In far field zone, Green’s function in free space can be approximated as [35]

G(r, r′) ≈ e−jk·(r−r′)

4π|r| (2)

When the radius of curvature at a point on the target is much larger than the wave-
length of the incident wave, tangential plane approximation can be applied, and the
induced current can be expressed as [36]

J = n̂ × H =

{
2n̂ × Hi Illuminated region
0 Shadow region

(3)

In Figure 2, Dm is the area of the ray tube at the m ray, and Dm+1 is the area of the ray
tube at the reflected ray of the m ray. Rays cause changes in the amplitude and phase of the
electric field as they propagate and reflect, and information about the strength and phase of
the electric field of each ray tube is tracked at each reflection point. In GO, the electric field
at rm is related to the electric field at its reflected rm+1 according to the following equation.

Es(rm+1) = Γm · Es(rm) · (DF)m · e−jβ (4)
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reflection, which is determined by the divergence factor (DF)m.

In Equation (4), Γm denotes the reflection coefficient at rm. For a perfect conductor,
Γm = −1 for horizontal polarization and Γm = 1 for vertical polarization. The divergence
factor (DF)m at rm is usually denoted by (DF)m ≈

√
Dm/Dm+1.β = k0|rm+1 − rm|, which

represents the phase difference between two neighboring reflection points. Substituting
Equation (1) into Equation (4), the scattered field after reflection of the m-th ray can be
expressed as [37–40].

∑
x

Epo
∆x(rm) = −jkηΓm(DF)me−jk|rm+1−rm |∑

x

∫
∆x

[
k̂s ×

(
k̂s × J

)]
G(rm, r′)dS′

= −jkηΓm(DF)me−jk|rm+1−rm | Hie−jk(rm−r′)

2π|r| ∑
x

∫
∆x

{
k̂s ×

[
k̂s ×

(
n̂ × ĥi

)]}
e−jk(k̂i−k̂s)·r′ dS′

(5)
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In Equation (5), ∑
x

Epo
∆x(rm) is the PO field generated by the facet element struck by the

m-th ray, and x is the number of facet elements struck. The resulting scattered field for each
ray is subsequently superimposed to obtain the total scattered field.

ESBRtotal
s (rm) =

l

∑
1

∑
x

Epo
∆x(rm) (6)

In Equation (6), l is the total number of rays and ∆x is the area of some triangular face
element that was hit.

2.2. GPU-Accelerated Ray Tracing Using BVH Tree Structure
2.2.1. GPU Acceleration Process

In this paper, GPU-accelerated SBR is parallelized using C++ accelerated massive
parallelism (C++AMP). In comparison with CPUs, GPUs possess a greater number of
cores, making them more suitable for massive parallel processing. C++AMP is a C++-
based heterogeneous parallel computing platform released by Microsoft, which is a native
programming model with the advantage of running across devices on the Windows plat-
form [41]. Most of the programming methods for GPUs, such as Direct Compute and
OpenCL, require different programming languages and compilers. C++AMP unifies the
programming language and the compiler, which sets it apart from other approaches. The
C++ AMP library enables parallel computation through a set of abstractions and a high-
level API, with the underlying GPU hardware being accessed directly through Direct
Compute [42,43]. It is important to allocate an array for applying C++AMP to implement
parallel computing. The array template is in the concurrency namespace. It takes two
parameters: one for the collection element type and the other for the dimension. The di-
mension of the array is set according to the type of collection elements in this paper method.
For example, when collecting swept frequency data, defining an <array a (frequency counts)>,
this example defines a one-dimensional array with the size of the array being the number of
frequencies. Arrays play an extremely important role in C++AMP by representing a view
that can access data on the GPU and encapsulating C++ arrays or vectors, which are arrays
on <accelerator_view>. In C++AMP, the GPU is not the only accelerator, and each accelerator
has its own default view. Once the array has been constructed, the data will be transferred
to GPU memory, where it can be accessed directly by the GPU. The <parallel_for_each>
function is used to execute parallel computation tasks. The <parallel_for_each> function is
a parallel execution function in C++AMP that accepts a range of indexes and a lambda
function, and it executes this lambda function in parallel on the GPU for each index. The
<parallel_for_each> function delegates parallel computing tasks to the GPU’s kernel func-
tions, which can be directly assigned to the GPU hardware through the Direct Compute API.
The <restrict(amp)> keyword is used to specify that the function is to be executed only on
the GPU. It is used to identify specific blocks of code and lambda functions to be executed
on the GPU, and it lets the compiler optimize the function for Single Instruction, Multiple
Threads (SIMT) [44]. The operations within the function will utilize SIMT instructions
to achieve the effect of single instruction multi-thread parallel computation. C++AMP
synchronizes the data and copies them from GPU memory back into host memory after the
<parallel_for_each> function executes the parallel computation task.

Figure 3 gives a parallel computation process for C++AMP using the Direct Computing
API to send parallel instructions to the GPU device. The BVH tree structure as well as the
ray data, etc., are constructed in the CPU and stored in the Global Memory of the GPU.
The data will be automatically copied from the CPU host to GPU memory by creating
the <array_view> array, allowing the GPU to access these data directly. The Constant
Memory in the GPU will store data that remain unchanged during parallel computation.
Texture Memory is used to store data during model rendering. There are many Streaming
Multiprocessors (SMs) in the GPU hardware architecture, and SMs in GPUs use the SIMT
architecture. Each SM contains a number of streaming processors (SPs), and each SP
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corresponds to a thread. A single warp is comprised of 32 threads, with the number of
threads per warp being determined by the GPU architecture. Warp is the scheduling and
execution unit in SM, where threads in each warp execute computations in parallel. As
previously stated, the <parallel_for_each> function assigns tasks directly to the underlying
GPU hardware through the Direct Compute API. The GPU assigns instructions to warps
in the SM with the SIMT architecture. The SIMT architecture permits the threads within
each warp to execute a sequence of instructions, including collision detection, ray tracing,
PO field calculation, and other operations, in parallel modes. In the SIMD architecture, the
GPU assigns a thread to each ray. The BVH tree structure is obtained by thread accessing
the GPU’s Global Memory and is responsible for calculating the ray tracing path and the PO
field. In the <parallel_for_each> function, intersection detection and the parallel acceleration
of rays and bounding boxes are achieved by traversing the BVH tree structure. After the
execution of the <parallel_for_each> function is completed, C++AMP copies the scattered
field data from GPU memory to host memory. The CPU will sum the scattered fields of all
the rays to obtain the total target scattering field.
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instructions to the device (GPU).

The ray information is initialized, and the nodes as well as the structure of the BVH
tree are generated in the CPU as illustrated in Figure 4. The CPU will share the data of
the BVH tree to the GPU Global Memory and it will share these data with each thread.
In the SIMT architecture, instructions are emitted to the warp by the Direct Compute API.
Threads in a warp will execute the received instructions sequentially and in parallel, and
each thread in a warp will be responsible for the computation of one ray. At this stage, all
the rays traverse the BVH tree intersecting the target are recorded, and their reflected rays
are traced until the ray leaves the target surface. The GPU calculates the scattered field of
this ray and transfers the data to the CPU. Finally, the CPU combines the scattered field
data from all the rays to determine the total scattering field from the target.
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2.2.2. Ray Tracing Algorithm Using BVH Tree

Figure 5 illustrates the ray tracing process using BVH tree structure with the multiple
scattering process of an electromagnetic wave between the tree structures. GO is used to
track the scattering path of the electromagnetic wave between the triangular surface tuples,
and PO is used to calculate the scattered field of the electromagnetic wave when it hits the
triangular surface tuples.
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In order to solve the time-consuming ray intersection process in ray tracing, we resort
to BVH tree structure on the basis of GPU acceleration. A BVH tree is a computer graphics
structure, which is a tuple-based ray intersection detection technique. A BVH tree divides
the tuples into a hierarchical structure of disjoint sets, which is widely used in ray tracing
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and collision detection. We will build the bounding box that encloses the target according to
the target geometric features, and its enclosure box structure is an axisymmetric bounding
box, an AABB bounding box. In the BVH tree structure, all the tuples are stored in the leaf
nodes of the BVH tree, and the middle nodes store the box information. Finally, the whole
scene’s information is stored in the BVH tree structure [45]. When traversing the BVH tree,
the ray will first judge whether it intersects with the box or not. If it is not intersected, then
it will skip all the tuples in the box, achieving an improvement for the ray tracing efficiency.

In Figure 6, the scene contains eight tuples. In Step 1⃝, the tuples are divided into two
parts in the scene. If the light rays do not intersect with the bounding box, then they will
not intersect with the tuples, which can exclude half of the tuples at one time and thus
reduce the number of intersections. In Step 2⃝, we continue to divide the tuples in half, and
by doing so, the ray intersection complexity can be reduced from O(n) to O(log(n)) [46].
After pairwise semi-recursive division, the bounding box that surrounds only one tuple
can be found. If a ray intersects this bounding box, the ray continues to intersect with the
tuple. The ray parameter equation can be expressed as

r(t) = o + t · d (7)
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In Equation (7), o and d are ray starting point and the normalized ray direction vector,
respectively. Substituting the ray parameter equation into the implicit plane equation of
the plane where the tuple is located, the implicit plane equation can be written as

NT(o + t · d) = c (8)

From Equation (8), the parameter t corresponding to the intersection point of the ray
with the plane can be resolved as

t =
c − NT · o

NT · d
(9)

In this paper, the surface element is a triangular surface element, and the plane
parametric equation of the triangular surface element is

f (u, v)= (1−u − v) · p0 + u · p1 + v · p2 (10)
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where u and v are the triangle center of mass coordinates, satisfying u ≥ 0 , v ≥ 0 , and
u + v ≤ 1. The triangular face element can be regarded as the mapping of the unit triangle
face element on its three edges

f (u, v) = p0 + u(p1 − p0) + v(p2 − p0) (11)

Combining Equation (11) with Equation (7), one can obtain

[p1 − p0p2 − p0 − d]︸ ︷︷ ︸
M−1

 u
v
t

 = o − p0 (12)

In Equation (12), M−1 is the matrix transforming a triangular face element into a unit
triangular face element in the u, v plane, in which the mapped ray is orthogonal to the unit
triangular face element. The mapping of triangular surface elements into the u, v plane
is illustrated in Figure 7. Figure 7a is the case before mapping, and Figure 7b is the case
corresponding to Equation (11). Figure 7c accounts for the intersection of the ray with the
unit triangular surface element after mapping.
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According to the half-division method, the bounding boxes in the scene may overlap
or intersect, and the overlapping of bounding boxes is illustrated in Figure 8. In Figure 8,
when the light traverses the BVH tree, the overlapping of bounding boxes causes the light
to intersect both bounding boxes, which leads to a decrease in the intersection efficiency.
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In order to eliminate the phenomenon of envelope box overlapping, the SAH division
method instead of the half-division method is adopted in the process of BVH tree construc-
tion. The SAH is based on the surface area heuristic division method, and after adding
SAH, we can estimate the probability of the light ray hitting the enveloping boxes in terms
of the size of the surface area of the parent enveloping box in which there are two or more
overlapping child enveloping boxes.

In the BVH tree structure, under the assumption that the current node has three
bounding boxes A, B, and C, the cost of intersecting the ray with the current node is

c(A, B, C)= p(A)∑
i∈A

t(i)+p(B)∑
i∈B

t(j)+p(C)∑
i∈C

t(k) + ttrav (13)

In Equation (13), ∑ t(i) is the intersection cost of each sub-enclosure box, and t(i) is
the i-th tuple in the child enclosure box. p(A), p(B), and p(C) are the probabilities of the
light hitting the objects in the bounding boxes A, B, and C, respectively. ttrav is the cost of
the light traversing the BVH tree.

In SAH, we use the surface area of the child bounding box in the parent node instead
of the probability of the ray hitting the bounding box. Assuming that the surface areas
of the child bounding boxes A, B, and C are S(A), S(B), and S(C), respectively, and the
surface of the parent node bounding box D is S(D), Equation (13) can be rewritten as

c(A, B, C) =
S(A)

S(D) ∑
i∈A

t(i) +
S(B)
S(D) ∑

i∈B
t(j) +

S(C)
S(D) ∑

i∈C
t(k) + ttrav (14)

After resolving the optimal division method by calculating the minimum value of
Equation (14), the ray traversal of the BVH tree is most efficient [47].

3. GPU-Accelerated BP Imaging Algorithm
3.1. BP Algorithm for ISAR Imaging

Under small-angle and small-bandwidth conditions, ISAR images can be approxi-
mately obtained by performing the inverse Fourier transform of 2D backscattered field data,
and the resultant ISAR images are composed of the scattering centers of the target with
their electromagnetic reflection coefficient. Due to its suitability for GPU parallel processing
and ability for ISAR imaging in any mode, the BP algorithm and its modified versions
are extensively used in SAR/ISAR imaging applications. The BP imaging algorithm is a
method with high imaging accuracy. However, due to its high complexity, the BP algorithm
is not as good as other imaging algorithms in terms of imaging speed. Aiming at ISAR
imaging for electrical large targets under large-bandwidth and wide-angle conditions,
a GPU-based accelerated BP imaging algorithm is developed in this paper by virtue of
CUDA, while maintaining the imaging accuracy of the BP algorithm.

The fundamental idea of the BP algorithm involves coherently superimposing the
calculated echoes of each pulse by transmitting electromagnetic pulses and calculating
the two-way time delay between the pixel points in the imaging area and the radar at the
moment of each pulse. The superimposition depends on the phase relationship between
pixel points. If the echoes are in phase, the superimposed pixel points’ echoes become
increasingly stronger. When pixel points with different phases are superimposed, the effect
is weaker. As an accurate time-domain algorithm, the range profile in the BP algorithm is
obtained using the pulse compression technique, similar to the Range-Doppler algorithm.
The processing of the azimuthal direction is achieved by computing the echoes of the pixel
points for coherent superposition, which is related to the angle of rotation of the target with
respect to the radar. Azimuthal resolution is observed to increase as the angle between
the target and the radar increases, with no apparent limit. For any motion trajectory of
the target, if the motion trajectory can be predicted in advance, then the BP algorithm can
achieve accurate imaging.
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Figure 9 illustrates the schematic diagram of backward projection for ISAR imaging.
xyz is a global coordinate system of space target. XY is the local coordinate system. S is the
grid for the imaging area. Ra and Rb denote the radar distance from the target at moments
a and b, respectively. The imaging area is divided into N × N grids. (Xa, Ya) and (Xb, Yb)
are the positions of the target in the imaging grid at time a and b, respectively. v is the
speed and direction of the moving target. The transmitting signal is [48]

s(t, m) = rect
(

t
Tp

)
· exp

(
j2π f0t + jKπt2

)
(15)
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In Equation (15), t is fast time. Tp is the signal pulse width. m is slow time. rect is a
rectangular window function. f0 is the signal carrier frequency. K = B

Tp
, K is the signal

modulation frequency. B is the signal bandwidth. The received echo is as follows

sr(t, m) = ∑
i,j

rect
( t − τi,j(m)

Tp

)
exp

(
j2π f0

(
t − τi,j(m)

)
+ jπK

(
t − τi,j(m)

)2
)

(16)

In Equation (16), τi,j(m) =
2
√
(x(m)+Xi)

2+(y(m)+Yi)
2+z(m)2

c is the two-way delay from
pixel (Xi, Yi) in the imaging plane to the radar at the slow time m. x(m), y(m), and z(m)
are the positions of pixel (Xi, Yi) in the imaging grid in the spatial target coordinate system.
The matched filter is as follows

h(t, m) = exp
(

j2π f0t − jKπt2
)

(17)

In Equation (17), t0 is the two-way delay at the closest distance between the target and
the radar. Converting the time domain convolution to frequency domain multiplication
processing, the matched filter output can be expressed as follows

sout(t, m) = IFFT(FFT(sr(t, m)) · FFT(h(t, m))) (18)

The high resolution in azimuthal is obtained by the coherent accumulation of pulses.
The integral formula for coherent accumulation is as follows [49]

I(x, y) =
∫
m

sout(t, m) · exp
(

j2π f0τi,j(m)
)
dm (19)
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The energy of each pixel point in the grid is coherently superimposed over the target
motion time. The pixel value is accumulated by each pixel point during the movement
time to synthesize the final image.

3.2. GPU Acceleration of BP Algorithm for ISAR Imaging

Released by NVIDIA in 2006, CUDA is a general-purpose parallel computing platform
and programming model built on GPUs. Computations for complex tasks can be performed
more efficiently with CUDA programming. In recent years, CUDA programming tech-
niques have been developed in hardware as well as software [50]. At the time of its initial
release, CUDA was capable of utilizing GPUs with a limited number of cores, typically
in the range of a few dozen or a few hundred. Consequently, it was not possible to make
meaningful comparisons in terms of computational power between these early GPUs and
the GPUs that are available today [51]. For example, NVIDIA’s NVIDIA RTX 2080, which
was released on 20 September 2018, is a GPU with 2944 CUDA cores and an FP32 compute
power of 10.07 trillion times per second. However, the NVIDIA RTX 4090 now has 16,384
CUDA cores, with FP32 computing power reaching 82.58 trillion times per second. In
recent years, CUDA has widely utilized its powerful parallel computing capabilities in the
field of scientific computation [52].

In this paper, we realized the highly parallel BP imaging algorithm by CUDA. The
scattered field data obtained by the SBR calculation are first loaded into the GPU Global
Memory from the host memory under the <cudaMemcpy> function. These data contain
information such as azimuth, angle of incidence, frequency, frequency sampling points,
angle sampling points, polarization mode, etc. The specified memory space is allocated for
these parameters from the GPU with memory size N f × Nphi × N f f t by the <cudaMalloc>
function. Global variables on the device are defined through the _device_ symbol, including
the distance compression signal and the variables used to store the raw scattered field
data, the variables used to store the coordinates and radar position, and the variables
used to store the final imaging results. Range pulse compression of the raw echo data is
performed using the <cufft> function library in CUDA, by which highly parallel FFTs and
IFFTs can be realized. The range compression signal is copied into GPU memory using the
<cudaMemcpy> function with an allocated memory size N f × Nphi × N f f t.

Parallel accelerated computation is mainly implemented on the device by the CUDA
kernel function. Kernel is an important concept in CUDA, and it is a function that is
executed in parallel in a thread on the device. The kernel function is declared with the
<_global_> symbol, and the number of threads required when calling this function needs
to be specified, specifically by <<<grid, block>>>. The kernel function is executed by every
thread. The azimuthal focusing process of the BP algorithm is written as a kernel function,
and the corresponding number of threads are allocated to the kernel function to enable
parallel computation on the GPU.

In Figure 10, the kernel function is responsible for calculating the distances of all pixels
from the radar at each azimuthal moment, as well as phase compensation. The position of
the corresponding azimuthal signal is determined by the distance of the pixel point from
the radar. ISAR imaging using the BP algorithm is obtained by coherently superimposing
the echoes of all pixel points at each azimuthal moment. The blocks and threads are defined
as one-dimensional when running the CUDA function of the BP algorithm. The distribution
of threads in each block is

(
Ny, 1, 1

)
, with Nx blocks in total and (Nx, 1, 1) distribution of

blocks. Nx and Ny are the number of pixels in the x direction and the number of pixels in
the y direction, respectively. In order to optimize the efficiency of the kernel function in
processing large-scale data, computational tasks for imaging pixels larger than 500 × 500
are batch-computed. The maximum number of pixel points computed in each batch is
500× 500 in order to adapt to the resource limitations of the GPU. In the kernel function, the
GPU allocates 250,000 threads for each batch of computational tasks, with every 500 threads
being a block, for a total of 500 blocks. Each thread is responsible for computing the value of
one-pixel point, and multiple batches of data will be executed in parallel on the CUDA core.
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In Figure 10, the scattered field data are first copied from Host Memory to the GPU
Global Memory. Each thread can access the data stored in Global Memory. Constant
Memory is a read-only memory used to broadcast instructions sent by the host. Texture
Memory is used to store texture data. The number of blocks and threads is determined by
the number of pixels Nx in the x direction and the number of pixels Ny in the y direction,
respectively. In a block, all threads execute the same instructions, and each thread executes
the kernel function. The kernel function relies on threads to realize the highly parallel
computation of all the azimuthal focusing calculations.

Figure 11 presents the flow chart of the GPU-accelerated BP algorithm. After range
compression, the imaging region is divided into a grid of pixels of size N f × Nphi. If the
number of pixel grids in the imaging area is less than 500 × 500, then a corresponding
number of threads are allocated to be responsible for computing the echo data of these pixel
grids and accumulating them to the corresponding positions. The combination of these
pixel grids is divided into several sub-regions for parallel processing if the pixels are over
500× 500. Each thread of the GPU is responsible for processing a one-pixel point, including
distance computation, phase compensation, etc. It calculates the current pixel location and
accumulates the echo to the corresponding pixel grid. Once each block has completed the
computation of its sub-region data, the data are transferred to their respective position in
the final image. Finally, the entire image is output.
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4. Results and Discussion
4.1. Validation of GPU-Accelerated SBR Method

The implementation of the GPU-accelerated electromagnetic computational method
and the GPU-accelerated BP imaging method has been previously presented, as described
in this paper. In this section, the validity of GPU-accelerated SBR combining GO with PO
approximations is verified by comparison with RL-GO in FEKO v2020 software. Taking
a full-scale F-22 fighter as an example, RL-GO is set up with two types of ray densities,
one is λ/10 and the other is λ/100. A comparison of far-field RCS is made with the elec-
tromagnetic wave frequency f0 = 3GHz. The model dissection produced 2444 triangular
meshes, and the BVH tree was constructed to produce 4887 leaf nodes. The CAD model is
as in Figure 12. The calculation time and memory cost are listed in Table 1. Our computer’s
CPU is a 12th Gen Intel(R) Core (TM) i5-12490F with a benchmark speed of 3.00 GHz,
manufactured by Intel Corporation for China special edition products. The GPU is an
NVIDIA GeForce RTX 2080 with 8.0 GB of dedicated GPU memory, manufactured by
NVIDIA Corporation in China mainland.
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Table 1. A comparison of calculation time and memory cost for a full-scale F-22 fighter.

Polariza-
tion

Calculation Time (s) Memory (MB)

This Paper
λ/10

RL-GO
λ/10

RL-GO
λ/100

This Paper
λ/10

RL-GO
λ/10

RL-GO
λ/100

Figure 13a VV 207.96 186.4 2303.3 557.6 130.9 181.4
Figure 13b HH 433.195 103.1 1427.43 552.1 136.4 185.1
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Figure 13. RCS angular distribution of a full-scale F-22 fighter: (a) incidence angle θ =90◦, az-
imuth angle φ =0◦∼ 360◦, VV polarization; (b) incidence angle θ =0◦∼ 360◦, azimuth angle φ =0◦,
HH polarization.

Figure 13 shows the comparison of the RCS angular distribution of a full-scale F-22
fighter obtained by our GPU-accelerated SBR method and the parallel RL-GO method in
FEKO. From Figure 13a,b, it is observed that the RCS calculated by our GPU-accelerated
SBR method is generally in good agreement with that by the RL-GO method in FEKO.
There is a slight difference between our GPU-accelerated SBR method and the parallel
RL-GO method with a ray density of λ/100 in FEKO due to the effect of ray density, and the
RL-GO method with a ray density of λ/100 also takes the diffraction field [53] into account.

4.2. ISAR Imaging Simulations

In this section, ISAR imaging results of representative aircraft target are presented
and discussed. The matrix of the backscattered field of representative aircraft targets is
calculated by our GPU-accelerated SBR method, and then the echoes are focused to obtain
ISAR images by utilizing the GPU-accelerated BP algorithm developed in this paper. For



Electronics 2024, 13, 3062 16 of 24

comparison, our GPU-accelerated BP algorithm was also applied to focus the backscattered
field by employing the RL-GO method in the FEKO v2020 software to obtain focused ISAR.

Figure 14 shows the CAD model of a scaled A380 aircraft model with dimensions. This
model has 3770 triangles. Figure 15a–c illustrate three typical observation configurations
with different azimuthal scanning ranges. The incidence angle is fixed at θ = 60◦. The
ISAR imaging parameters for Figures 16 and 18 are set as in Table 2.
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Figure 15. Three typical observation configurations with different azimuth angles under fixed
incidence angle θ =60◦. (a) φ = 45◦ ∼ 135◦; (b) φ = −45◦ ∼ 45◦; (c) φ = −135◦ ∼ −45◦.

Table 2. Parameters of ISAR simulation for Figures 16 and 18.

Parameter Value

f0 1.75 GHz
B 3 GHz

∆φ 90
θ 60 or 120

∆x 0.05 m
∆y 0.05 m

Sampling points 200
Polarization VV

Figure 16 presents ISAR imaging results for three typical observation configurations
with different azimuthal scanning ranges. The incidence angle is fixed at θ = 60◦. Our
GPU-accelerated BP imaging algorithm is applied to focus the backscattering fields to
obtain focused ISAR images. In Figure 16, Figure 16d–f are RL-GO at a ray density of λ/10
without diffraction and Figure 16g–i are RL-GO at a ray density of λ/100 with diffraction.
Comparing Figures 16a–c and 16d–f, it can be found that the results of this paper’s method
and the RL-GO method are in better agreement with those obtained by FEKO’s RL-GO
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method under the condition of the same ray density, and it even outperforms the RL-GO at
specific angles. For example, in Figure 16a,d, the difference in the scattering in the engine
part of the airplane can be seen to be more obvious, and the differences in the scattering in
the engine area of the airplane can be seen to be more obvious in Figure 16c,f; Figure 16f
has strong clutter that overwhelms the information such as the structural features of the
airplane, and the results of Figure 16f are not as good as the results of Figure 16c. When the
ray density is λ/100, the echoes are able to record the geometrical structural features of
the airplane in detail, so Figure 16g–i have very good imaging results compared to Figures
16a–c and 16d–f, which confirms the effectiveness of the GPU-accelerated BP imaging
algorithms in this paper from the side. Table 3 shows the computation time and peak
memory comparisons for Figure 16.
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with a ray density of λ/10; in (d–f), the backscattering fields are obtained by FEKO’s RL-GO method
with a ray density of λ/10; in (g–i), the backscattering fields are obtained by RL-GO with a ray
density of λ/100. (a,d,g) are results for azimuth angle φ =45◦ ∼ 135◦; (b,e,h) are results for azimuth
angle φ =− 45◦ ∼ 45◦; (c,f,i) are results for azimuth angle φ =− 135◦ ∼ −45◦.

Table 3. Computation time and peak memory for Figure 16.

SBR RL-GO

Time (s) Memory (MB) Time (s) Memory (MB)

Figure 16a,d 2423.3 76.2 1584.2 177.8
Figure 16b,e 2669.8 78.4 1614.3 179.6
Figure 16c,f 2623.3 72.5 1474.1 179.5
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It can be concluded that when the ray density is the same, the results of the method in
this paper are in good agreement with those of RL-GO. Next, we analyze the difference
between the results of the two methods when the ray densities are not the same. In
Figure 16a, there are strong echoes from both the engine and the wing portion attached
to the engine. The area indicated by the red arrow 1⃝ in (a) represents the wing position.
At the observation angles φ =45◦ ∼ 135◦, the ray will be reflected once after striking the
wing portion at position 1⃝. Due to the flatness of this portion of the structure, the ray will
subsequently leave the target after being reflected. In our GPU-accelerated SBR method,
multiple scattering is taken into account by ray tracing, in which the maximum reflection
number is 10, while the diffraction field due to target edges is not taken into account,
which leads to a pronounced difference between position 1⃝ in (a) and position 2⃝ in (g).
Scattering spots appear at the positions indicated by the green arrows 3⃝, 4⃝, 5⃝, and 6⃝ in
Figure 16a,b,g,h. Figure 16a,b are the results calculated by the method in this paper, and
Figure 16g,h are the results calculated by the RL-GO with diffraction at a ray density of
λ/100 in FEKO. Both our GPU-accelerated SBR and RL-GO in FEKO are ray-based methods.
These scattering spots are related to the scattering mechanism of the electromagnetic waves
and the ray tracing mechanism. Due to neglection of the diffraction field resulting from
target edges, the target echo in Figure 16c is weaker than that in Figure 16i. A comparison
of the ISAR imaging results of Figure 16a–c with Figures 16d–f and 16g–i demonstrates the
feasibility and efficiency of our scheme by combining GPU-accelerated SBR with the BP
algorithm for fast ISAR imaging simulation.

Figure 17a–c illustrate three typical observation configurations with different az-
imuthal scanning ranges. ISAR imaging results for three typical observation configurations
with different azimuthal scanning ranges are shown in Figure 18a, b, and c, respectively.
In Figure 18, the incidence angle is set as θ = 120◦, and the other parameters are the
same as those in Figure 16. In Figure 18a–c, the backscattering fields are calculated by our
GPU-accelerated SBR method. In Figure 18d–i, the backscattering fields are obtained by the
RL-GO method in FEKO v2020 software, where (d–f) are RL-GO at a ray density of λ/10
and (g–i) are RL-GO at a ray density of λ/100. Since the ray densities are the same and
none of them include the wrap-around field, the results for the corresponding angle ranges
in (a–c) and (d–f) are in good agreement. A comparison of the results of (c) and (f) shows
that the echo strength of the airplane body is very weak in (f). There is also noise. Only the
engine area exhibits strong echoes, which makes this paper’s method work better under the
same ray densities and it can better record the target’s geometric structure information. In
general, the focused ISAR images of backscattered fields calculated by our GPU-accelerated
SBR method are in good agreement with those obtained by FEKO’s RL-GO method. Some
scattering spots can be observed as indicated by the red arrows in Figure 18a,b,g,h, as
in Figure 16. This is due to multiple scattering of electromagnetic waves from the target
surface. For rays reflected multiple times, the phase history of the electromagnetic wave is
distorted. Therefore, the scattering spots indicated by the red arrows in Figure 18a,b,g,h
can be eliminated by reducing the reflection numbers in the ray tracing algorithm. Table 4
shows the computation time and peak memory comparisons for Figure 18.
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Figure 17. Three typical observation configurations with different azimuth angles under fixed inci-
dence angle ο0θ = 12 . (a) ο ο45 ~ 135φ = ; (b) ο ο45 ~ 45φ = − ; (c) ο ο135 ~ 45φ = − − . 

Figure 17. Three typical observation configurations with different azimuth angles under fixed
incidence angle θ =120◦. (a) φ = 45◦ ∼ 135◦; (b) φ = −45◦ ∼ 45◦; (c) φ = −135◦ ∼ −45◦.
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Figure 18. Similar to Figure 16 but with incidence angle θ = 120◦.

Table 4. Computation time and peak memory for Figure 18.

SBR RL-GO

Time (s) Memory (MB) Time (s) Memory (MB)

Figure 18a,d 2315.2 72.4 1655.6 194.6
Figure 18b,e 2647.05 74.2 1702.4 202
Figure 18c,f 2872.9 77.1 1764.2 196.9

Figure 19 shows a CAD model of an electrically large-sized aircraft target, which is
in the electrically large-sized category with an electrical size of 171 × 104 wavelengths.
This CAD model has 712 face elements. ISAR images for this model were computed using
the method in this paper and the RL-GO method in FEKO. The ray densities for both the
method in this paper and the RL-GO method are set to be λ/10. The azimuth centers of
Figure 20a–c are 90◦, 0◦, −90◦. Figure 20 demonstrates three different azimuth ranges. In
the following simulations of Figure 21, the ISAR imaging parameters are set as in Table 5.

Figure 21 shows the ISAR imaging results of both methods for electrically large-sized
aircraft targets, with ray densities of λ/10 for this paper method and RL-GO in FEKO.
Comparing Figures 21b and 21e, 1⃝ and 2⃝ in Figure 21b are the structural information
of the airplane, and 1⃝ is the wing and 2⃝ is the tail, while Figure 21e cannot show this
structural information, so this paper’s method is better than the RL-GO imaging result
when φ =− 45◦ ∼ 45◦. Comparing Figures 21a and 21d, the result of Figure 21a is
obviously better than that of Figure 21d, where phase history distortion occurs at the place
indicated by the white arrows in Figure 21d. Detailed information on the wings, nose, and
tail of the aircraft can be clearly displayed in Figure 21a. This also occurs in Figure 21c,f,
where the white arrows in Figure 21c,f point. It can be clearly seen that the scattered spots
that appear in these places indicated by the arrows are not aircraft structural information.
It is a well-established fact that electromagnetic waves exhibit a multipath effect during
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propagation. This phenomenon entails that an incident wave traverses a multitude of
paths to reach a designated receiving point. Changes in phase history data caused by these
different paths can be superimposed, resulting in phase history distortion. Table 6 shows
the computation time and peak memory comparisons for Figure 21.
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Figure 19. CAD model of an electrically large aircraft.
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Figure 20. Three typical observation configurations with different azimuth angles under fixed
incidence angle θ = 60◦. (a) φ = 45◦ ∼ 135◦; (b) φ = −45◦ ∼ 45◦; (c) φ = −135◦ ∼ −45◦.

Table 5. Parameters of ISAR simulation for Figure 21.

Parameter Value

f0 1.75 GHz
B 3 GHz

∆φ 90
θ 60

∆x 0.05 m
∆y 0.05 m

Sampling points 600
Polarization VV

Table 6. Computation time and peak memory for Figure 21.

SBR RL-GO

Time (h) Memory (MB) Time (h) Memory (MB)

Figure 21a,d 20.1 141.2 16.3 269.6
Figure 21b,e 19.6 140.7 15.5 258.5
Figure 21c,f 20.7 145.6 16.9 273.1

From numerical simulations of ISAR imaging, it is clearly indicated that strong scat-
tering centers as well as target profiles can be observed under large observation azimuth
angles and wide bandwidth. It is also indicated that the ISAR images are heavily sensi-
tive to observation angles. Due to multiple scattering, several triangular patches will be
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hit by identical rays, resulting in the phase history distortion of electromagnetic waves.
Phase history distortion is a common problem with ray methods. Thus, obvious sidelobes
can be observed in focused ISAR images. In comparison with RL-GO in FEKO v2020
software, the feasibility and efficiency of our scheme are demonstrated by combining GPU-
accelerated SBR with BP algorithm for fast ISAR imaging simulations under wide-angle
and wide-bandwidth conditions.
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Figure 21. ISAR imaging results using GPU-accelerated BP imaging algorithm under fixed incidence
angle θ = 60◦ in (a–c), the backscattering fields are calculated by our GPU-accelerated SBR method; in
(d–f), backscattering fields are obtained by FEKO’s RL-GO method at a ray density of λ/10; (a,d) are
results for azimuth φ = 45◦ ∼ 135◦; (b,e) are results for azimuth φ = −45◦ ∼ 45◦; (c,f) are results
for azimuth φ = −135◦ ∼ −45◦, VV polarization.

5. Conclusions

In this paper, a novel bouncing ray method based on GPU and BVH tree acceleration
is presented for ISAR imaging simulations. It employs C++AMP to achieve GPU parallel
acceleration computation, in which a BVH tree structure is constructed according to the
target structure, thereby enhancing ray intersection efficiency. The SAH method is incorpo-
rated into the scene bounding box division, effectively mitigating the impact of bounding
box overlapping on the ray traversal efficiency of the BVH tree structure. To efficiently
perform ISAR imaging simulations, a GPU-based accelerated BP imaging algorithm has
been developed by virtue of CUDA. The accuracy of GPU-accelerated SBR is validated
by comparing the RCS calculated by our SBR method with that obtained by RL-GO in
FEKO. It is demonstrated that the presented GPU-accelerated SBR shows good validity
and reliability. For ISAR imaging simulations, taking an A380 and a simplified aircraft
model as examples, the backscattering fields were calculated utilizing the GPU-accelerated
SBR algorithm under large azimuth angles, ∆φ = 90◦, and wide bandwidths, 3 GHz. The
backscattered echoes are focused using the GPU-accelerated BP imaging algorithm, and the
focused ISAR images of our GPU-accelerated SBR method are in good agreement with those
of FEKO’s RL-GO method, indicating the feasibility and efficiency of our GPU-accelerated
BP ISAR imaging algorithm. The simulations indicate that strong scattering centers as well
as target profiles can be observed clearly from ISAR images under large observation angles
and wide bandwidths. Obvious sidelobes in focused ISAR images can be observed, due
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to the phase history of electromagnetic waves being distorted resulting from multipole
scattering. It is also indicated by numerical simulations that the ISAR imaging results are
heavily sensitive to observation angles. In the future, the present work will be extended
to swarm targets’ ISAR imaging as well as 3D ISAR imaging by developing an efficient
electromagnetic simulation algorithm by combining GPU-accelerated SBR and PTD for
taking edge diffraction into account.
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BP Back Projection
BVH Bounding Volume Hierarchies
C++AMP C++ Accelerated Massive Parallelism
CUDA Compute Unified Device Architecture
CAD Computer-Aided Design
CPU Central Processing Unit
EDM Equivalent Dipole Moment
FFT Fast Fourier Transform
GPU Graphics Processing Unit
GO Geometrical Optics
ISAR Inverse Synthetic Aperture Radar
IFFT Inverse Fast Fourier Transform
Kd-tree K-dimensional tree
MOM Method of Moments
PTD Physical Theory of Diffraction
PO Physical Optics
PEC Perfect Electrical Conductor
RCS Radar Cross Section
RL-GO Ray Launching Geometrical Optics
RMSE Root Mean Squared Error
SBR Shooting and Bouncing Ray
SAH Surface Area Heuristic
SMs Streaming Multiprocessors
SPs Streaming Processors
SIMT Single Instruction, Multiple Threads
TDSBR Time-Domain Shooting and Bouncing Ray
TDPO Time-Domain Physical Optics



Electronics 2024, 13, 3062 23 of 24

References
1. Bhalla, R.; Ling, H. ISAR image formation using bistatic data computed from the shooting and bouncing ray technique. J.

Electromagn. Waves Appl. 1993, 7, 1271–1287. [CrossRef]
2. He, X.Y.; Zhou, X.Y.; Cui, T.J. Fast 3D-ISAR image simulation of targets at arbitrary aspect angles through nonuniform fast Fourier

transform (NUFFT). IEEE Trans. Antennas Propag. 2012, 60, 2597–2602. [CrossRef]
3. Zhang, K.; Wang, C.F.; Jin, J.M. Broadband Monostatic RCS and ISAR Computation of Large and Deep Open Cavities. IEEE Trans.

Antennas Propag. 2018, 66, 4180–4193. [CrossRef]
4. Prickett, M.; Chen, C. Principles of inverse synthetic aperture radar/ISAR/imaging. In Proceedings of the EASCON 1980,

Electronics and Aerospace Systems Conference, Arlington, VA, USA, 29 September–1 October 1980; pp. 340–345.
5. García-Fernández, A.F.; Yeste-Ojeda, O.A.; Grajal, J. Facet Model of Moving Targets for ISAR Imaging and Radar Back-Scattering

Simulation. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 1455–1467. [CrossRef]
6. Lee, J.I.; Yun, D.J.; Kim, H.J.; Yang, W.Y.; Myung, N.H. Fast ISAR Image Formations Over Multiaspect Angles Using the Shooting

and Bouncing Rays. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1020–1023. [CrossRef]
7. Guo, G.; Guo, L.; Wang, R.; Li, L. An ISAR Imaging Framework for Large and Complex Targets Using TDSBR. IEEE Antennas

Wirel. Propag. Lett. 2021, 20, 1928–1932. [CrossRef]
8. Meng, W.; Li, J.; Xi, Y.J.; Guo, L.X.; Li, Z.H.; Wen, S.K. An Improved Shooting and Bouncing Ray Method Based on Blend-Tree for

EM Scattering of Multiple Moving Targets and Echo Analysis. IEEE Trans. Antennas Propag. 2024, 72, 2723–2737. [CrossRef]
9. Yang, P.J.; Wu, R.; Ren, X.C.; Zhang, Y.Q.; Zhao, Y. Doppler spectra of electromagnetic wave scattered from an object flying above

time-varying nonlinear sea surfaces. J. Electromagn. Waves Appl. 2019, 33, 2175–2198. [CrossRef]
10. Ling, H.; Chou, R.C.; Lee, S.W. Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity. IEEE Trans.

Antennas Propag. 1989, 37, 194–205. [CrossRef]
11. Xu, F.; Jin, Y.Q. Bidirectional analytic ray tracing for fast computation of composite scattering from electric-large target over a

randomly rough surface. IEEE Trans. Antennas Propag. 2009, 57, 1495–1505. [CrossRef]
12. Tao, Y.; Lin, H.; Bao, H. GPU-Based Shooting and Bouncing Ray Method for Fast RCS Prediction. IEEE Trans. Antennas Propag.

2010, 58, 494–502. [CrossRef]
13. Meng, W.; Li, J.; Guo, L.X.; Yang, Q.J. An Accelerated SBR Method for RCS Prediction of Electrically Large Target. IEEE Antennas

Wirel. Propag. Lett. 2022, 21, 1930–1934. [CrossRef]
14. Baden, J.M.; Tripp, V.K. Ray reversal in SBR RCS calculations. In Proceedings of the 2015 31st International Review of Progress in

Applied Computational Electromagnetics (ACES), Williamsburg, VA, USA, 22–26 March 2015; pp. 1–2.
15. Feng, T.T.; Guo, L.X. An Improved Ray-Tracing Algorithm for SBR-Based EM Scattering Computation of Electrically Large Targets.

IEEE Antennas Wirel. Propag. Lett. 2021, 20, 818–822. [CrossRef]
16. Yun, K.C.; Fu, W.C. Efficient GPU Implementation of the High-Frequency SBR-PO Method. IEEE Antennas Wirel. Propag. Lett.

2013, 12, 941–944. [CrossRef]
17. Wu, R.; Wu, B.Y.; He, P.X.; Guo, K.Y.; Sheng, X.Q. A Fast Plane Wave Expansion Algorithm for Rigorous Scattering Analysis from

Swarm Targets. IEEE Trans. Antennas Propag. 2023, 71, 7426–7437. [CrossRef]
18. Dong, C.-L.; Guo, L.-X.; Meng, X. An accelerated algorithm based on GO-PO/PTD and CWMFSM for EM scattering from the

ship over a sea surface and SAR image formation. IEEE Trans. Antennas Propag. 2020, 68, 3934–3944. [CrossRef]
19. Dong, C.-L.; Guo, L.-X.; Meng, X.; Wang, Y. An accelerated SBR for EM scattering from the electrically large complex objects.

IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2294–2298. [CrossRef]
20. Meng, W.; Li, J.; Chai, S.R.; Xi, Y.J.; Wen, S.K.; Liu, R.F. An Improved SBR-PTD Method for EM Scattering from Moving Target. In

Proceedings of the 2023 International Applied Computational Electromagnetics Society Symposium (ACES-China), Hangzhou,
China, 15–18 August 2023; pp. 1–3.

21. Li, H.Z.; Dong, C.L.; Meng, X.; Guo, L.X.; Wei, Q.H. A Novel Equivalent Dipole Moment-Based MoM-SBR Hybrid Method
for EM Scattering Computation of Electrically Large Complex Targets. In Proceedings of the 2023 International Conference on
Microwave and Millimeter Wave Technology (ICMMT), Qingdao, China, 14–17 May 2023; pp. 1–3.

22. Wang, Z.; Wei, F.; Huang, Y.; Zhang, X.; Zhang, Z. Improved RD imaging method based on the principle of step-by-step calculation.
In Proceedings of the 2021 2nd China International SAR Symposium (CISS), Shanghai, China, 3–5 November 2021; pp. 1–5.

23. Dong, L.; Han, S.; Zhu, D.; Mao, X. A Modified Polar Format Algorithm for Highly Squinted Missile-Borne SAR. IEEE Geosci.
Remote Sens. Lett. 2023, 20, 1–5. [CrossRef]

24. Boag, A.G.A. Backprojection Imaging of Moving Objects. IEEE Trans. Antennas Propag. 2021, 69, 4944–4954. [CrossRef]
25. Zhang, M.; Ren, Z.; Zhang, G.; Zhang, C. THz ISAR imaging using GPU-accelerated phase compensated back projection algorithm.

J. Infrared Millim. Waves 2022, 41, 448–456. [CrossRef]
26. Arikan, O.; Munson, D.C., Jr. A New Back-Projection Algorithm for Spotlight-Mode SAR and ISAR. In Proceedings of the High

Speed Computing II, Los Angeles, CA, USA, 17–18 January 1989; pp. 107–117.
27. Gong, H.; Liu, Y.; Chen, X.; Wang, C. Scene optimization of GPU-based back-projection algorithm. J. Supercomput. 2023, 79,

4192–4214. [CrossRef]
28. Guo, G.; Guo, L.; Wang, R.; Liu, W.; Li, L. Transient Scattering Echo Simulation and ISAR Imaging for a Composite Target-Ocean

Scene Based on the TDSBR Method. Remote Sens. 2022, 14, 1183. [CrossRef]

https://doi.org/10.1163/156939393X00255
https://doi.org/10.1109/TAP.2012.2189717
https://doi.org/10.1109/TAP.2018.2841423
https://doi.org/10.1109/TAES.2010.5545200
https://doi.org/10.1109/LAWP.2018.2829826
https://doi.org/10.1109/LAWP.2021.3100569
https://doi.org/10.1109/TAP.2024.3352238
https://doi.org/10.1080/09205071.2019.1674191
https://doi.org/10.1109/8.18706
https://doi.org/10.1109/TAP.2009.2016691
https://doi.org/10.1109/TAP.2009.2037694
https://doi.org/10.1109/LAWP.2022.3185329
https://doi.org/10.1109/LAWP.2021.3064856
https://doi.org/10.1109/LAWP.2013.2274802
https://doi.org/10.1109/TAP.2023.3292483
https://doi.org/10.1109/TAP.2019.2963241
https://doi.org/10.1109/LAWP.2018.2873119
https://doi.org/10.1109/LGRS.2023.3324327
https://doi.org/10.1109/TAP.2020.3045500
https://doi.org/10.11972/j.issn.1001-9014.2022.02.011
https://doi.org/10.1007/s11227-022-04785-w
https://doi.org/10.3390/rs14051183


Electronics 2024, 13, 3062 24 of 24

29. Sun, T.-P.; Cong, Z.; He, Z.; Ding, D. An Accelerated Time-Domain Iterative Physical Optics Method for Analyzing Electrically
Large and Complex Targets. Electronics 2022, 12, 59. [CrossRef]

30. Guo, G.; Guo, L.; Wang, R. ISAR Image Algorithm Using Time-Domain Scattering Echo Simulated by TDPO Method. IEEE
Antennas Wirel. Propag. Lett. 2020, 19, 1331–1335. [CrossRef]

31. Zhou, J.; Han, Y. Analyzing the electromagnetic scattering characteristics for plasma targets based on shooting and bouncing ray
method. AIP Adv. 2019, 9, 065106. [CrossRef]

32. Gordon, W.B. High frequency approximations to the physical optics scattering integral. IEEE Trans. Antennas Propag. 1994, 42,
427–432. [CrossRef]

33. Fan, T.T.; Zhou, X.; Yu, W.M.; Zhou, X.Y.; Cui, T.J. Time-Domain Line-Integral Representations of Physical-Optics Scattered Fields.
IEEE Trans. Antennas Propag. 2017, 65, 309–318. [CrossRef]

34. Liao, C. Research on Nearfield Scattering Modeling of Ship on the Sea Surface Based on high Frequency Method (In
Chinese). Master’s Thesis, University of Electronic Science and Technology of China, Chengdu, China, 2021. Available
online: https://kns.cnki.net/kcms2/article/abstract?v=n6BwBobH4uvU7PG733EVJdhS9-f9LApXUEAHzK60Kgv6ciotFWwf1
1njOZZqPyjAOLTnfvU-beMgAqMR8blHbC9mFOJ0F5tkD-vf1xHSqT6eY_XonBN7ouPAQRKMghtFziV-7qPBjXZhfcEiaH_
takq8r-_JoHJuM61BQbTbKyScQeIPY8_hM3AAmLBaJTfo9XIwNvOUOSI=&uni (accessed on 29 July 2024).

35. Stratton, J.A.; Chu, L. Diffraction theory of electromagnetic waves. Phys. Rev. 1939, 56, 99. [CrossRef]
36. Chu, L.J.; Stratton, J.A. Elliptic and spheroidal wave functions. J. Math. Phys. 1941, 20, 259–309. [CrossRef]
37. He, X.-Y.; Wang, X.-B.; Zhou, X.; Zhao, B.; Cui, T.-J. Fast ISAR image simulation of targets at arbitrary aspect angles using a novel

SBR method. Prog. Electromagn. Res. B 2011, 28, 129–142. [CrossRef]
38. Guo, G.; Guo, L.; Wang, R. The Study on Near-Field Scattering of a Target Under Antenna Irradiation by TDSBR Method. IEEE

Access 2019, 7, 113476–113487. [CrossRef]
39. Tang, X.; Feng, Y.; Gong, X. Mo M-PO/SBR Algorithm Based on Collaborative Platform and Mixed Model. Trans. Nanjing Univ.

Aeronaut. Astronaut. 2019, 36, 589–598. [CrossRef]
40. Li, J.; Meng, W.; Chai, S.; Guo, L.; Xi, Y.; Wen, S.; Li, K. An Accelerated Hybrid Method for Electromagnetic Scattering of a

Composite Target–Ground Model and Its Spotlight SAR Image. Remote Sens. 2022, 14, 6632. [CrossRef]
41. Zhu, R. Speedup of Micromagnetic Simulations with C++ AMP on Graphics Processing Units. Comput. Sci. Eng. 2016, 18, 53–59.

[CrossRef]
42. Sihai, W.; Hu, Z.; Haotian, P.; Lu, C. Accelerated Parallelism in Numerical Simulation with C++ AMP. In Proceedings of the 2016

Workshop: Workshop High Performance Computing, Beijing, China, 14–16 November 2016; pp. 53–55.
43. Wynters, E. Fast and easy parallel processing on GPUs using C++ AMP. J. Comput. Sci. Coll. 2016, 31, 27–33.
44. Shyamala, K.; Kiran, K.R.; Rajeshwari, D. Design and implementation of GPU-based matrix chain multiplication using C++AMP.

In Proceedings of the 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT),
Coimbatore, India, 22–24 February 2017; pp. 1–6.

45. Damkjær, J. Stackless BVH Collision Detection for Physical Simulation; University of Copenhagen Universitetsparken: København,
Denmark, 2007; Available online: http://image.diku.dk/projects/media/jesper.damkjaer.07.pdf (accessed on 29 July 2024).

46. Chung, S.; Choi, M.; Youn, D.; Kim, S. Comparison of BVH and KD-tree for the GPGPU acceleration on real mobile devices. In
Proceedings of the Frontier Computing: Theory, Technologies and Applications (FC 2018), Kyushu, Japan, 9–12 July 2019; pp.
535–540.

47. Sopin, D.; Bogolepov, D.; Ulyanov, D. Real-time SAH BVH construction for ray tracing dynamic scenes. In Proceedings of the
Грaфикoн‘2011, Moscow, Russia, 26–30 September 2011; pp. 74–77.

48. Huipeng, Z.; Junling, W.; Di, X.; Xiaoyang, Q. The modified back projection algorithm for bistatic ISAR imaging of space objects.
In Proceedings of the 2016 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC),
Hong Kong, China, 5–8 August 2016; pp. 1–5.

49. Xiao, D. Study on ISAR Imaging of Space Targets Using BP Technology; Nanjing University: Nanjing, China, 2017.
50. Pu, L.; Zhang, X.; Yu, P.; Wei, S. A fast three-dimensional frequency-domain back projection imaging algorithm based on GPU. In

Proceedings of the 2018 IEEE Radar Conference (RadarConf18), Oklahoma City, OK, USA, 23–27 April 2018; pp. 1173–1177.
51. Li, Z.; Qiu, X.; Yang, J.; Meng, D.; Huang, L.; Song, S. An Efficient BP Algorithm Based on TSU-ICSI Combined with GPU Parallel

Computing. Remote Sens. 2023, 15, 5529. [CrossRef]
52. Afif, M.; Said, Y.; Atri, M. Computer vision algorithms acceleration using graphic processors NVIDIA CUDA. Clust. Comput.

2020, 23, 3335–3347. [CrossRef]
53. Ufimtsev, P.Y. Elementary edge waves and the physical theory of diffraction. Electromagnetics 1991, 11, 125–160. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/electronics12010059
https://doi.org/10.1109/LAWP.2020.3000660
https://doi.org/10.1063/1.5096299
https://doi.org/10.1109/8.280733
https://doi.org/10.1109/TAP.2016.2624780
https://kns.cnki.net/kcms2/article/abstract?v=n6BwBobH4uvU7PG733EVJdhS9-f9LApXUEAHzK60Kgv6ciotFWwf11njOZZqPyjAOLTnfvU-beMgAqMR8blHbC9mFOJ0F5tkD-vf1xHSqT6eY_XonBN7ouPAQRKMghtFziV-7qPBjXZhfcEiaH_takq8r-_JoHJuM61BQbTbKyScQeIPY8_hM3AAmLBaJTfo9XIwNvOUOSI=&uni
https://kns.cnki.net/kcms2/article/abstract?v=n6BwBobH4uvU7PG733EVJdhS9-f9LApXUEAHzK60Kgv6ciotFWwf11njOZZqPyjAOLTnfvU-beMgAqMR8blHbC9mFOJ0F5tkD-vf1xHSqT6eY_XonBN7ouPAQRKMghtFziV-7qPBjXZhfcEiaH_takq8r-_JoHJuM61BQbTbKyScQeIPY8_hM3AAmLBaJTfo9XIwNvOUOSI=&uni
https://kns.cnki.net/kcms2/article/abstract?v=n6BwBobH4uvU7PG733EVJdhS9-f9LApXUEAHzK60Kgv6ciotFWwf11njOZZqPyjAOLTnfvU-beMgAqMR8blHbC9mFOJ0F5tkD-vf1xHSqT6eY_XonBN7ouPAQRKMghtFziV-7qPBjXZhfcEiaH_takq8r-_JoHJuM61BQbTbKyScQeIPY8_hM3AAmLBaJTfo9XIwNvOUOSI=&uni
https://doi.org/10.1103/PhysRev.56.99
https://doi.org/10.1002/sapm1941201259
https://doi.org/10.2528/PIERB10122703
https://doi.org/10.1109/ACCESS.2019.2935095
https://doi.org/10.16356/j.1005-1120.2019.04.005
https://doi.org/10.3390/rs14246332
https://doi.org/10.1109/MCSE.2015.132
http://image.diku.dk/projects/media/jesper.damkjaer.07.pdf
https://doi.org/10.3390/rs15235529
https://doi.org/10.1007/s10586-020-03090-6
https://doi.org/10.1080/02726349108908270


Citation: Artene, A.E.; Domil, A.E.;

Ivascu, L. Unlocking Business Value:

Integrating AI-Driven Decision-

Making in Financial Reporting

Systems. Electronics 2024, 13, 3069.

https://doi.org/10.3390/

electronics13153069

Academic Editor: Domenico Ursino

Received: 12 July 2024

Revised: 24 July 2024

Accepted: 30 July 2024

Published: 2 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Unlocking Business Value: Integrating AI-Driven
Decision-Making in Financial Reporting Systems
Alin Emanuel Artene 1,* , Aura Emanuela Domil 2 and Larisa Ivascu 1

1 Management Department, Faculty of Management in Production and Transportation,
Politehnica University of Timisoara, 14 Remus Street, 300009 Timisoara, Romania; larisa.ivascu@upt.ro

2 Department of Accounting and Audit, Faculty of Economics and Business Administration,
West University of Timisoara, 300223 Timisoara, Romania; aura.domil@e-uvt.ro

* Correspondence: alin.artene@upt.ro

Abstract: This research article investigates the synergies between artificial intelligence (AI), digital
transformation (DT), and financial reporting systems within the business context. The central theme
explores how organizations enhance their decision-making processes by integrating AI technologies
into digital transformation initiatives, particularly in financial reporting. The focal point is compre-
hending how the synergy of these integrated systems can unlock substantial business value, instigate
strategic innovation, and elevate overall financial analytics through the adoption of intelligent, data-
driven decision-making methodologies. By harnessing advanced analytics, automation, and adaptive
decision support capabilities, organizations navigate the complexities of a rapidly evolving business
environment, in which neural networks emerge as a valuable tool for calibrating outcomes in the
financial accounting environment, demonstrating effectiveness in processing complex financial data,
identifying patterns, and making predictions, ushering in a new era of transformative possibilities.
The introduction of a game theory payoff matrix in this AI decision-making tool adds a strategic
framework for analyzing interactions among decision-makers, considering strategic choices and
outcomes in a dynamic and competitive context.

Keywords: digital transformation; decision-making systems; integrated systems; neural networks;
business financial reporting; game theory payoff matrix

1. Introduction

Automation, artificial intelligence, and data analysis lead to significant changes in the
way financial institutions operate. In the ever-evolving landscape of financial reporting,
organizations face an urgent imperative to harness the transformative potential of digital
technologies. The impact of digitization on finance is undeniable. The paradigm shift
towards digital transformation represents a critical point where companies must not only
adapt but also innovate to remain competitive in the global marketplace. Central to the
objectives of this evolution is the integration of artificial intelligence (AI) technologies,
which offer unprecedented opportunities to revolutionize strategic management within
economic financial reporting systems. The control process, in this paradigm, evolves from
rigid surveillance to dynamic orchestration.

Embedded AI systems equipped with sophisticated algorithms demonstrate the ability
to continuously learn from data streams, adapt to evolving patterns, and make real-time
decisions. This presents a shift from a deterministic control model to a more adaptive and
probabilistic framework where control is exercised through algorithmic governance and
continuous feedback loops.

In the era of post-pandemic digital transformation, the integration of artificial intel-
ligence technologies is a cornerstone for public and private economic entities that aspire
to navigate the complex landscape of financial reporting and economic productivity with
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precision and agility. The convergence of artificial intelligence and the digitization of
financial reporting systems [1] does not only represent a technological paradigm shift but
also introduces a profound redefinition of control mechanisms and management processes.
Integrated AI systems are reshaping control frameworks and empowering decision-makers
in the dynamic context of financial reporting amid digital transformation.

As businesses embark on their digital transformation and digitization journey [2], the
strategic and subsidized infusion of AI technologies holds the promise of unlocking un-
precedented business value. Traditional financial reporting systems, rooted in deterministic
methodologies, are now at a crossroads as organizations seek to incorporate advanced
artificial intelligence algorithms. The integration of machine learning, predictive analytics,
and cognitive computing into these systems introduces a new dimension of autonomy
and adaptability. As AI becomes an active participant in decision-making processes, the
contours of control mechanisms must be reevaluated.

Traditional hierarchical models are challenged by the distributed nature of decision-
making in embedded AI systems [3], where algorithms learn, adapt, and contribute au-
tonomously. The need to understand the complexities and implications of this integration
has become paramount, particularly in terms of its impact on financial reporting decision-
making. Traditional reporting systems, despite being an integral part of organizational
functioning, now face the imperative to evolve. The following question arises: how can
judicious integration of AI technologies improve decision-making processes in the context
of financial reporting during the digital transformation process?

Figure 1 shows AI-driven decision-making in digital transformation. This includes
digital transformation initiatives, AI integration, decision-making enhancement, benefits,
use cases, consideration, future trends, implementation strategies, and measurement met-
rics. Each of these directions is important in the evolution of digitization. Evaluating each
direction, the following can be stated:

• Digital transformation initiatives: these represent steps that contribute to DT. Com-
ponents that contribute to the success of the DT process, strategic elements, and
opportunities and challenges may be included.

• AI integration: this includes defining how AI has an important role in DT, the differ-
ent types of associated technologies, and the implementation of opportunities and
solutions. All this contributes to important support in the DT process.

• Decision-making enhancement: this refers to the use of data to gain competitive
advantages, predictive analytics, and automation of organizational processes, and
streamline processes through effective decision-making.

• Benefits: the benefits identified by the beneficiaries are multiple and among them
are the improvement of accuracy, time and cost efficiency, the improvement of the
customer’s experience, and other related benefits.

• Example: evaluating the specific elements in which AI can be used, we can mention
financial reporting, operation management, customer-facing the applications of AI,
and many others.

• Consideration: the important elements that must be evaluated in this approach are the
ethical implications, security, and human–AI collaboration.

• Future trends: this field is growing considerably, and future approaches should be
anticipated at the organizational level through well-thought-out strategies and ap-
proaches (emerging trends, evolution of the field, and technological approaches).

• Implementation strategies: the elements of strategic management are opportune at the
organizational level for good alignment with technological advancement.

• Measurement metrics: this entire approach must be measured, and the perfor-
mance and success indicator metrics for AI implementation include correct
organizational approaches.
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In a landscape where data-driven insights drive organizational success, the potential
benefits of AI—from streamlining processes to discovering actionable intelligence—invite
organizations to explore new frontiers in decision-making capabilities. Against this back-
ground, this article undertakes an exploration of the transformative role that AI technologies
are playing in reshaping the financial reporting decision-making landscape in the age of
digital transformation. Delving into the complicated interplay between AI integration and
the evolving nature of financial reporting systems, we seek to provide nuanced insights that
connect theoretical advances with practical implications. Our goal is to guide organizations
to a comprehensive understanding of how AI, when seamlessly integrated, can not only
meet but exceed decision-making needs in the dynamic field of financial reporting in the
digital age.

2. Literature Review

The integration of artificial intelligence (AI) into financial reporting systems has gained
significant attention in the recent literature [4] due to its potential to transform traditional
financial processes and unlock business value. The authors of [5] investigate the impact
of integrating artificial intelligence into accounting information systems for enhancing
non-financial performance in manufacturing companies, revealing significant positive
effects on both the efficiency of accounting information systems and overall non-financial
performance. Numerous studies have emphasized the role of AI in enhancing financial
decision-making processes. Ref. [1] demonstrated the effectiveness of machine learning
algorithms in predicting financial trends, optimizing resource allocation, and providing
valuable insights for strategic planning. The integration of neural networks, as discussed
by [6], has shown promise in automating tasks, improving forecasting accuracy, and
supporting decision-makers in the financial domain.

The role of big data and leveraging AI-driven decision-making and digital transforma-
tion in financial reporting systems unlocks business value, aligning with stakeholder prefer-
ences, and addressing challenges and opportunities in the evolving financial landscape [5].
In the context of the modern economy, the transformative impact of big data extends
beyond its common use by economists, prompting a shift in focus toward understanding
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how others’ utilization of data influences market outcomes [5]. This exploration involves
incorporating big data into contemporary economic and financial theories. Notably, one
application involves leveraging big data to enhance the decision-making of financial market
participants, influencing firm prices, cost of capital, and investment dynamics.

The concept of digital transformation in financial reporting has been explored exten-
sively in the literature. Scholars such as the authors of [7,8] discussed the evolution of
financial reporting systems from manual processes to advanced digital platforms. The
shift towards cloud-based solutions, the automation of data entry tasks, and the use of
advanced analytics tools have been identified as key components of digital transformation
in financial reporting [9].

Research by Sorensen [10] investigates the importance of aligning financial decisions
with stakeholder preferences. Ref. [10] highlights the need for tools that consider the
perspectives of various stakeholders, such as Company Management and Shareholders.
The integration of AI-driven decision-making tools, informed by neural networks, offers a
mechanism to align strategic choices with the preferences of key stakeholders.

The literature also recognizes challenges associated with the integration of AI and
digital transformation in financial reporting. Concerns related to data privacy, regulatory
compliance, and the need for skilled professionals capable of navigating the intersection of
finance and AI have been discussed [3,11]. However, studies also highlight the opportu-
nities for cost savings, efficiency improvements, and strategic advantages that arise from
successful implementation [12]. Numerous studies emphasize the importance of financial
KPIs in performance measurement and strategic decision-making within organizations [13]
Metrics such as return on investment (ROI), earnings per share (EPS), and profit margin are
recognized as critical indicators of financial health. Researchers argue that incorporating
these KPIs into neural networks can enhance the accuracy of financial predictions and
decision support systems [14,15].

Examining the intersection of game theory and financial decision-making [16] explores
how strategic interactions among market participants, influenced by information asym-
metry and competition, impact financial outcomes. The study may not directly focus on
KPIs but provides insights into decision dynamics. While there might not be an extensive
body of literature explicitly combining financial KPIs, decision-making, and game theory,
some studies provide a foundation for understanding the interconnectedness of these
concepts. Addressing the transparency and interpretability of AI decision models, Ref. [17]
discusses the importance of explainability to gain the trust and acceptance of AI tools in
decision-making, especially in sensitive domains like healthcare and finance.

The literature review indicates a growing body of research emphasizing the diverse
applications, challenges, and ethical considerations associated with the integration of AI
tools in decision-making. Understanding the impact of AI across various domains provides
a foundation for future developments in creating a more effective, transparent, and ethical
decision-support system.

In recent years, accounting and audit companies have tapped into the potential of
AI to revolutionize traditional processes within financial institutions and have developed
applications of machine learning in finance. JP Morgan Chase, a global leader in finan-
cial services, developed the Contract Intelligence, or COiN, platform, an AI-driven tool
designed to review legal documents and extract critical data points and clauses, reduc-
ing up to 360,000 h annually, consuming significant human resources and enhancing the
precision and scalability of operations, setting a new standard for efficiency in financial
reporting. Another compelling example comes from Deloitte, a powerhouse in audit and
assurance services which employed ACL Analytics, a sophisticated data analytics software,
to elevate its audit processes. This tool harnesses the power of AI and machine learning
to sift through vast volumes of financial data, identifying anomalies, trends, and patterns
that warrant further scrutiny. By integrating neural networks, auditors can concentrate
their efforts on high-risk areas, thereby improving the quality and depth of their audits and
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providing clients with valuable, data-driven recommendations, fostering more informed
decision-making and strategic planning.

3. Materials and Methods

This research paper uses a comprehensive foundational research methodology to
unlock business value by integrating AI-based decision-making with digital transforma-
tion in financial reporting systems. The logical process described in this methodology
serves as a step-by-step road map, guiding the investigation into the intersection between
artificial intelligence (AI) and digital transformation in the economy in the context of
the digitalization of financial reporting. The main objective is to develop a theoretical
framework that improves decision-making processes by assimilating advanced artificial
intelligence technologies into existing financial reporting systems. Through this research
we went through systematic stages, starting with the identification of the research problem,
followed by an extensive literature review to gather relevant information on artificial in-
telligence, digital transformation, and current financial reporting systems. The theoretical
foundation was then mapped by synthesizing existing knowledge and identifying gaps in
current understanding. Subsequently, the authors formulated a research design to guide
the empirical investigation.

Integrating AI-based decision-making with digital transformation into financial re-
porting systems requires careful consideration of technological, organizational, and ethical
dimensions. The methodology addresses these issues by incorporating a multidisciplinary
approach, ensuring a holistic understanding of the challenges and opportunities associated
with implementing artificial intelligence in financial reporting.

By navigating through this methodical process, the research aims to provide valuable
information to both academia, business, and industry. The expected outcome is a solid
theoretical framework that not only clarifies the synergies between artificial intelligence
and digital transformation but also provides practical guidance for organizations seeking
to improve their financial reporting decision-making capabilities.

This research aims to bridge the gap between theoretical advances and practical
implications, thereby unlocking the untapped business value inherent in integrating AI-
driven decision-making with digital transformation in financial reporting systems.

4. Digital Transformation Tools for the Decision-Making Process

Digital transformation tools for financial reporting can significantly support the
decision-making process within organizations, developing strategies that are resilient
to different economic conditions. They play a crucial role in supporting decision-making
processes in financial reporting by providing real-time data, advanced analytics, automa-
tion, and collaborative features. These tools contribute to more informed, strategic, and
data-driven decision-making within organizations. The integration of advanced technolo-
gies and digital tools into financial reporting systems offers several benefits that enhance
decision-making capabilities. Decision-makers can access up-to-date information on key
financial metrics, performance indicators, and market trends, allowing for more informed
and timely decision-making [17,18].

Advanced analytics and data visualization tools help transform complex financial data
into easily understandable visual representations. This aids decision-makers in identifying
patterns, trends, and anomalies, facilitating data-driven decision-making. Digital tools often
incorporate forecasting and predictive analytics capabilities. By analyzing historical data
and identifying patterns, these tools can assist decision-makers in making more accurate
predictions about future financial trends and outcomes. Incorporating artificial intelligence
and machine learning (ML) algorithms enhances the capabilities of financial reporting sys-
tems. These technologies can provide intelligent insights, identify opportunities, and support
decision-making by analyzing large datasets and facilitating collaboration and communication
among different stakeholders involved in the decision-making process [14,15].
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Decision-makers can assess the financial implications of various decisions, ensuring
alignment with regulatory requirements and risk mitigation strategies and enabling sce-
nario planning by allowing decision-makers to model different financial scenarios and
assess their potential impact. Analysis of strategic interactions among multiple decision-
makers, often in competitive situations, can be employed to support managers and Share-
holders in the decision-making process. In business contexts, it can be used to model and
analyze decision-making scenarios involving multiple stakeholders, such as competitors,
suppliers, and customers [19,20].

Game theory and machine learning provide strategic insights for risk assessment by
analyzing diverse sets of data and identifying potential trends or anomalies and by helping
managers and Shareholders anticipate the actions and reactions of others [18]. They aid in
the making of decisions that consider the likely responses of competitors and collaborators,
leading to more informed strategies. Neural networks, a subset of machine learning and
AI, are adept at pattern recognition and prediction. In decision-making, neural networks
can analyze large datasets, identify patterns, and make predictions based on historical and
real-time information. This capability is valuable for managers and Shareholders when
evaluating various decision options and their associated risks.

This conceptual map (Figure 2), provides a visual representation of the interconnected
concepts, illustrating how game theory and neural networks, when integrated into decision
support systems, contribute to strategic decision-making processes and enhance overall
decision quality for stakeholders [21]. The combination of game theory and neural networks
can be particularly powerful. Neural networks can analyze data to inform decision-makers
about the likely outcomes of different strategies, while game theory can help model the
strategic interactions and competitive dynamics among stakeholders. By leveraging neural
networks to analyze historical data and predict outcomes, decision-makers can use game
theory to optimize their strategies based on a deeper understanding of the competitive
landscape. AI, including game theory and neural networks, can be integrated into decision-
support systems that provide actionable insights to managers and Shareholders.
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These systems leverage advanced analytics to enhance decision-making processes.
Managers can use AI tools in the decision-making process to conduct scenario analysis,
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assessing the potential outcomes of different decisions under various conditions. This aids
in the making of decisions that are more robust and adaptable to different circumstances

4.1. Developing a Neural Network for Integrating AI in Decision-Making Processes

Developing a neural network for integrating AI in financial reporting involves design-
ing a model that can analyze and interpret financial data from balance sheets. The choice of
a three-layer neural network for accounting and financial reporting tasks is not an inherent
rule, but rather a commonly used architecture that has shown effectiveness in various
applications. A three-layer architecture is relatively simple and easier to interpret when
we compare it to deeper counterparts. This architecture has fewer parameters and layers,
which ostensibly makes it more manageable. However, this should not obscure the reality
that even a three-layer neural network can function as a complex black box. The inherent
non-linear transformations and the interactions between layers make it challenging to
decipher how specific inputs are translated into outputs. In financial reporting, where
transparency and accountability are paramount, the opaque nature of neural networks,
regardless of their depth, can lead to significant interpretability challenges. Because inter-
pretability is often crucial, and as stakeholders need to understand and trust the results of
the model, this complexity is not just a theoretical concern but a practical one that impacts
trust and reliability in real-world applications.

Three-layer neural networks are notably powerful due to their ability to approximate a
wide range of functions. This capability is rooted in Kolmogorov’s superposition theorem,
which asserts that a three-layer neural network can represent any multivariate function,
whether continuous or discontinuous. This makes such networks versatile for various
applications, including financial reporting systems where capturing complex, non-linear
relationships within data is crucial [22,23]. One of the primary advantages of a three-
layer neural network is its relative simplicity and interpretability compared to deeper
networks. While it can be challenging to interpret the decision-making process of very deep
neural networks, three-layer models strike a balance by being complex enough to capture
intricate patterns while remaining simpler to analyze and debug. This interpretability
is particularly important in financial contexts where transparency and accountability are
paramount [24,25].

Simpler models are also less prone to overfitting and can be more robust, especially
when dealing with limited data. For many accounting and financial reporting tasks, a
moderate number of hidden layers can effectively capture the underlying patterns and
relationships in the data.

We designed the mathematical model for a neural network with 31 input units, 16
hidden units, and 2 output units as follows:

x1, x2, ..., x31tobetheinputfeatures

h1, h2, ..., h16 tobethehiddenlayerunits

y1, y2 tobetheoutputlayerunits

The mathematical model of the neural network can be expressed as follows:
Hidden layer computation:

hj = ReLU
(
∑ i = 131wij(1)xi + bj(1)

)
, for j = 1, 2, . . . , 16

where ReLU(a) = max(0, a) is the Rectified Linear Unit activation function.
Output layer computation:

yk = Softmax
(
∑ j = 116wjk(2)hj + bk(2)

)
, for k = 1, 2

were
Softmax(a)i = ∑ j =

eai
∑ 1eai

istheSoftMaxactivationfunction.
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The parameters of the model (weights and biases) are learned during the training
process to minimize a specific loss function, typically associated with the task at hand (e.g.,
classification or regression). The training involves adjusting the weights and biases using
optimization algorithms such as stochastic gradient descent (SGD).

The model is trained by iteratively performing forward propagation, calculating
the loss, and then using backpropagation to update the model parameters. The training
process continues until the model converges or until a predetermined number of epochs
is achieved. Once trained, the neural network can be used to make predictions on new
data by performing forward propagation with the learned parameters. This mathematical
approach forms the basis of training using a three-layer neural network for financial
reporting tasks, connecting the input layer with the balance sheet structure to the hidden
layer, and ultimately predicting financial KPIs in the output layer. Adjustments can be
made based on the specific characteristics of your data and task requirements.

In financial settings where data can be limited and computational resources may be
constrained, a three-layer architecture strikes a balance between complexity and efficiency.
Extremely deep networks may suffer from vanishing or exploding gradient problems
during training, making it challenging for the model to learn effectively. A three-layer
network is less prone to these issues, especially when using activation functions like ReLU
(Rectified Linear Unit) that mitigate the vanishing gradient problem [26].

The input layer should be designed to capture relevant information from the balance
sheet. As seen in Figure 3. And further explained in Appendix A. Each node in the
input layer corresponds to a specific feature or variable from the balance sheet, such as
assets, liabilities, equity, taxes, depreciation, net revenue, etc. Including features related to
the balance sheet structure allows the neural network to learn patterns and relationships
within the financial data. This information is crucial for understanding the financial health
and position of the economic entity. Although this is a proposal model for an economic
entity, the effectiveness of our neural network depends on the quality and relevance of the
accounting provided. It should be ensured that the selected features in the input layer are
meaningful and that there is sufficient data to train the model effectively.
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The hidden layer is where the neural network learns complex representations and
patterns from the input features. By connecting the input layer to the hidden layer, the
network can extract meaningful insights and relationships. If the economic entity’s goal
is to increase business value, it makes sense to correlate the hidden layer with financial
KPIs. Financial KPIs often serve as performance indicators that directly impact the overall
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value and success of a business. The hidden layer can learn to abstract and combine
features from the input layer to identify patterns associated with successful financial
outcomes or increased business value. The choice of the two output layers depends on the
specific objectives and how the company defines and relates to business value, whether
by profitability or revenue growth. The exact KPIs may vary depending on the industry,
company goals, and the nature of the business that integrates the neural network AI tool.
One of the key indicators of a successful business is its ability to generate increasing revenue
over time. The first outcome layer could represent the predicted revenue growth. The
neural network would then be trained to learn patterns in the input data that correlate with
higher revenue.

The mathematical model would have two output nodes, each corresponding to one
of these outcomes. For binary classification, the company might use a sigmoid activation
function in the output layer, and for regression tasks, the company might use linear
activation [17].

(1) Y1 = σ(H·W1
(2) + b1

(2))

(2) Y2 = σ(H·W2
(2) + b2

(2))

where σ is the sigmoid activation function, and Y1 and Y2 represent the predicted values
for revenue growth and profitability, respectively.

The third output node can be included if the economic entity might be able to ac-
count for negative financial KPIs that they want to minimize like operating costs or the
expense ratio.

(3) Y3 = σ(H·W3
(2) + b3

(2))

4.2. Using Game Theory AI Tools in the Decision-Making Process

Game theory is powerful in the era of digitalization [20] and AI because it provides a
structured approach to decision-making in complex, dynamic, and uncertain environments.
It helps decision-makers navigate strategic interactions, allocate resources efficiently, and
adapt to the rapidly changing landscape of technology and business. As we previously men-
tioned, we encourage economic entities to apply game theory to their business processes
to unlock business value through AI-driven decision-making and digital transformation
in financial reporting systems and create a payoff matrix that represents the interactions
between different decision-makers or stakeholders. In the context of our research, these
decision-makers could include the Company Management, Shareholders, AI system, and
other relevant entities.

We assume there are two key decision-makers: Company Management (CM) and
Shareholders (SH), and there are two strategic choices for each: implement AI-driven
financial reporting (AI) or stick to traditional reporting (TR). The payoffs are expressed in
terms of business value or utility for each combination of choices.

Explanation of the Payoffs

• High, High: If both Company Management and Shareholders choose to implement
AI-driven financial reporting, they both receive high business value or utility.

• Low, High: If Company Management opts for AI while Shareholders stick to tra-
ditional reporting, Company Management might experience low value (due to the
implementation costs, for example), while Shareholders receive high value (as they
may prefer the familiar traditional reporting).

• High, Low: If Company Management sticks to traditional reporting while Sharehold-
ers prefer AI-driven reporting, Company Management might achieve high value (as
they avoid implementation costs), but Shareholders receive low value (as they desire
the benefits of AI-driven reporting).

• Medium, Medium: If both Company Management and Shareholders stick to tradi-
tional reporting, they both achieve a medium level of business value or utility.
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We can elaborate on the payoffs in terms of increasing value for both Company
Management and Shareholders based on two strategic choices: implement AI-driven
financial reporting or stick to traditional reporting. The values represent the perceived
business value or utility, with higher values indicating higher perceived value. High,
medium, and low are qualitative representations of the perceived value, and the actual
numerical values would depend on the specific context and preferences of stakeholders.
The payoffs are described in Table 1, and the actual values would depend on factors such as
the industry, the specific goals and preferences of stakeholders, and the perceived benefits
and drawbacks of AI-driven reporting versus traditional reporting in the given context.
This matrix provides a structured way to understand how the decisions of each party
influence the perceived value for both Company Management and Shareholders:

Table 1. Payoff matrix.

Shareholders

Company
Management

AI TR
AI High, High Low, High
TR High, Low Medium, Medium

• High, High (AI):

# Company Management (CM): High value, as AI-driven financial reporting is
expected to enhance efficiency, accuracy, and strategic decision-making, leading
to increased overall business performance.

# Shareholders (SH): High value, as they benefit from improved trans-
parency, better-informed decision-making by management, and potentially
increased profits.

• Low, High (TR):

# Company Management (CM): Low value, as sticking to traditional reporting
may result in missed opportunities for efficiency gains, strategic insights, and
cost savings offered by AI-driven reporting.

# Shareholders (SH): High value, as they may prefer the familiarity and stabil-
ity of traditional reporting, potentially perceiving less risk or disruption to
their investments.

• High, Low (AI):

# Company Management (CM): High value, as the implementation of AI-driven re-
porting satisfies the management’s objective of adopting innovative technologies
and staying competitive.

# Shareholders (SH): Low value, as they might be disappointed with the deci-
sion not to stick with traditional reporting, potentially perceiving higher risks
or uncertainties.

• Medium, Medium (TR):

# Company Management (CM): Medium value, as sticking to traditional reporting
may provide stability but may not leverage the potential benefits offered by
AI-driven reporting.

# Shareholders (SH): Medium value, as they maintain a sense of stability but may
miss out on potential improvements in decision-making and efficiency.

CFOs face both challenges and opportunities in the AI decision-making process within
a given industry and regulatory environment. These can vary based on the specific cir-
cumstances of each organization. They must navigate complex data privacy regulations
to ensure that the use of AI aligns with privacy laws, particularly in industries dealing
with sensitive customer information. Another challenge that management faces soon is
keeping up with evolving regulations related to AI and ensuring that AI systems comply
with industry-specific laws and standards.
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Game theory matrices can be tailored to various decision-making scenarios, and
when applied to the context of Chief Financial Officers (CFOs) making decisions in the
realm of AI, we propose four matrices that can be taken into consideration in the decision-
making process: CFOs making AI-related decisions can use game theory matrices to
navigate four key scenarios: early vs. late AI adoption, external vendor vs. in-house AI
development, data sharing collaboration vs. data protection, and proactive vs. reactive
regulatory compliance, balancing benefits, costs, and risks for competitive advantage
and innovation.

4.3. Ethical and Privacy Issues in AI-Driven Financial Reporting

In this relatively new AI-driven financial reporting environment, data privacy concerns
are paramount. The extensive data requirements of AI systems often encompass sensitive
financial and personal information, raising the specter of unauthorized access and data
breaches [27]. The very foundation of our work relies on the integrity and confidentiality
of the data we handle. As we integrate AI, we must be vigilant in protecting these data
through robust encryption methods, ensuring that sensitive information remains secure
both in transit and at rest. Stakeholders must be fully informed about how their data are
collected, stored, and utilized. This transparency extends to obtaining explicit consent
from individuals whose data are being used. By implementing stringent data governance
policies, we can delineate clear access controls and ensure that data are only accessible to
authorized personnel under appropriate circumstances. Accountability and transparency in
AI systems are critical and it is imperative that app developers establish clear accountability
frameworks that define the responsibilities of AI users, operators, and decision-makers.
When errors occur, there must be a transparent process for identifying and addressing the
source of the problem. Implementing explainable AI techniques can significantly aid this
process. These techniques allow us to understand and articulate how AI systems make
decisions, thereby fostering trust and accountability among stakeholders [28].

With the widespread adoption of international accounting standards, regulatory com-
pliance is an ever-present concern in our profession. AI applications in financial reporting
must adhere to a myriad of regulatory requirements, from financial regulations to data
protection laws. Engaging in ongoing dialogue with regulatory bodies can provide valuable
guidance and help ensure that our AI systems are compliant with current laws. Regular
compliance audits are essential to verify adherence and address any gaps in our processes.

Security risks are an inherent aspect of integrating AI into financial reporting. AI
systems can be targeted by cyberattacks, potentially leading to data breaches or the manip-
ulation of financial information [29]. To mitigate these risks, we must implement advanced
cybersecurity measures and develop comprehensive incident response plans. Regular
security assessments will help identify and address vulnerabilities, ensuring the integrity
and reliability of our AI systems. In real-life situations, several advanced cybersecurity
measures have proven effective in safeguarding AI-driven financial reporting systems, such
as multi-factor authentication that significantly enhances security by requiring users to pro-
vide two or more verification factors to gain access to a system, end-to-end encryption that
ensures data are encrypted from the moment they are created until they are received and
decrypted by the intended recipient, or conducting regular security audits and penetration
testing that allow organizations to identify and address vulnerabilities in their systems
proactively [29].

5. Results and Discussion

Combining a neural network model with game theory, as represented in a matrix, can
be a powerful approach, and it is often referred to as game-theoretic machine learning and is
used for decision support in companies. The neural network can be used to predict financial
KPIs or other relevant outcomes, and the game theory matrix can help analyze the strategic
interactions between different entities or stakeholders. It aims to understand how different
agents or players, each with their own objectives, make decisions in a competitive or
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cooperative environment. We use game theory as a branch of mathematics and economics to
monitor the interactions between rational decision-makers, often referred to in the literature
as players, in situations where the outcome of one player’s decision depends on the
decisions of others, and we propose to combine machine learning techniques and integrate
them with game theory to model and predict the behavior of players who can gain from
positive business value creation. In our game theory, the players represent the Shareholders
and the management team, and strategies include increased market capitalization by
increasing revenues or profitability and payoffs represented in the matrix. Strategies
proposed by the research are the choices available to each player such as choosing the
digitalization and incorporation of AI path or sticking to traditional methods of accounting
and reporting, and payoffs represent the outcomes associated with specific combinations
of strategies chosen by all players. To apply the strategies, predictive models, such as the
neural networks with tree layers, can be employed to estimate the likely choices or actions
of players based on historical accounting data extracted from the balance sheet and profit
and loss data or other relevant features.

Given the specifications of our neural network and the structure of the payoff matrix
from game theory, we suggest naming the theoretical model “Decision Harbor AI” a name
that reflects the integration of artificial intelligence, financial decision-making, and strategic
analysis and symbolizes a safe and informed harbor for decision-making aided by artificial
intelligence. Game-theoretic machine learning provides a framework for understanding
and predicting strategic interactions [30]. By integrating machine learning models with
game theory concepts, we predict it will become possible to gain insights into decision-
making processes in complex, dynamic environments. This approach can be valuable
for making informed decisions in competitive or cooperative scenarios where multiple
stakeholders are involved [31].

In our scenario, we have a game theory matrix with two players: Company Man-
agement and Shareholders and the matrix represents the possible outcomes based on the
decisions made by these players. We can train the neural network to predict the financial
KPIs or outcomes of interest, such as revenue growth, profitability, and cost efficiency as
seen in Figure 4. After we trained the neural network to predict positive performance indi-
cators, we used the trained neural network to make predictions for each player (Company
Management, AI, and TR) based on the input features and the KPI in the hidden layer.
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In bad financial years, the distribution of data may shift. The patterns and relationships
between input features and financial outcomes may change, leading to a mismatch between
the training and testing data. The neural network, trained on historical data, may struggle
to generalize to these new conditions. The model’s predictive performance may degrade
during bad financial years if the patterns observed during training no longer hold. The
model might make inaccurate predictions, especially if it has not encountered similar
scenarios in the training data (Figure 5).
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We suggest that the company implements a strategy for continuous model training to
adapt to evolving financial conditions. The model should be regularly updated with new
data, especially during periods of financial turbulence, to ensure it remains relevant. For
the model to lead to good financial decisions, the management must conduct a scenario
analysis to assess the model’s performance under various financial conditions. This may
involve testing the model against simulated scenarios that represent different economic
states, including good and bad financial years. If the neural network performs well during
good financial years, it provides validation of the model’s robustness. It suggests that
the model can adapt to different financial conditions and continues to make accurate
predictions when conditions are favorable. Good financial years can positively reinforce
the use of the model for decision-making. Reliable predictions in our company during
these periods can contribute to effective strategic planning, resource allocation, and other
decisions that enhance business value. Decision-makers may gain increased confidence
in the model’s predictions during good financial years. This confidence can lead to more
reliance on the model for guiding decisions.

The Deming Cycle (PDCA) may be used as an iterative four-step management method
for continuous improvement. Applying the PDCA cycle to the continuous training and
scenario analysis of our neural network model in the context of evolving financial conditions
is a sensible and effective approach. We must monitor the training process and assess
whether the model’s performance improves or remains stable, execute the scenario analysis
using the prepared simulation scripts or tools, and assess the model’s accuracy, sensitivity,
and specificity across different scenarios to identify any patterns of underperformance
or overfitting.

If the scenario analysis of our neural network reveals shortcomings, we must consider
adjusting the model or the scenario generation process. This may involve redefining fea-
tures, introducing new features, or modifying the simulation approach. The theoretical
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model can incorporate any necessary improvements to enhance the model’s ability to
handle diverse financial conditions. We can apply stress testing to our model [23], like how
banks conduct stress tests to assess the resilience of their financial systems under adverse
conditions. In the context of our neural network model and game theory matrix, stress
testing can help us understand how well the model performs and how robust decision-
making is in the face of extreme or unexpected financial scenarios. Deep learning can be
applied to the input layer in our network in the context of dynamic balance sheet stress
testing [31,32]. If the balance sheet that generates financial information for the input layer
data has a temporal dimension like quarterly or yearly, we can consider recurrent neural
networks or Long Short-Term Memory networks (LSTMs) to capture temporal patterns
and dependencies in the data. If our input data include diverse sources like financial
statements, market data, and economic indicators, we suggest applying architectures that
support multimodal data integration. This allows the model to learn from different types
of information simultaneously. Overall, it is important to tailor the deep learning approach
to the specific requirements and characteristics of our financial data and stress testing
objectives. Our theoretical model DecisionHarborAI can be implemented in public orga-
nizations as well. The application of AI tools, like this theoretical two-layer model, in the
public sector has the potential to bring about significant benefits like assisting in analyzing
the impact of different policies, helping policymakers understand potential outcomes and
make informed decisions, providing insights into optimizing resource allocation to achieve
desired outcomes, evaluating the effectiveness of public programs and initiatives, and
enhancing citizen engagement by providing data-driven insights into decision-making
processes, fostering transparency and trust between the public and government [33].

To effectively implement such a model, several practical recommendations emerge.
Regular updates and retraining of the neural network with new data are crucial to main-
taining accuracy and relevance.

The first step is providing a picture or a PDF file of a balance sheet to our API. This
will be conducted in a mobile app or a web application. As soon as a picture or PDF
is received, it is converted to a TXT file. A parser takes the TXT gained from the OCR
and converts it into structured JSON using machine learning. The JSON is then returned
as the output from the API. From here, data from the balance sheet can be processed
further. The comprehensive dataset is then used to train a neural network, capable of
predicting key financial performance indicators such as revenue growth, profitability, and
cost efficiency. The DecisionHarborAI model goes a step further by incorporating a game
theory framework. This allows for a nuanced analysis of strategic interactions between
stakeholders, such as management and Shareholders. By understanding these dynamics,
the institution can align its strategic decisions with the interests of all parties involved,
thereby maximizing business value.

To ensure robustness, continuous scenario analysis and stress testing are conducted.
This practice not only validates the model’s predictions under varying conditions but also
prepares the institution for potential economic fluctuations. The outcomes are profound:
enhanced decision-making capabilities, significant efficiency gains through automation,
and a strategic alignment that drives overall business performance.

Limitations must also be considered when implementing AI-driven financial reporting
models such as DecisionHarborAI. One of the most significant limitations is the quality of
the data fed into the AI models. AI systems require vast amounts of high-quality data to
function optimally. However, financial data can often be incomplete, inconsistent, or noisy.
Inaccurate or poor-quality data can lead to erroneous predictions and flawed decision-
making processes. Organizations must invest considerable effort in data cleansing and
validation to ensure that the data used for training and operational purposes is accurate
and reliable. This can be resource-intensive and may not always be feasible, particularly
for smaller institutions with limited budgets. Like all AI models, DecisionHarborAI will be
trained on historical data and may perform well under conditions similar to those present
in the training dataset. The ability of our theoretical model to adapt to economic shifts,
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regulatory changes, and unforeseen global events such as financial crises or pandemics is
a critical concern [34]. The DecisionHarborAI model may fail to generalize effectively to
new, unseen scenarios, leading to performance degradation. Continuous model retraining
and validation will be necessary to ensure that DecisionHarborAI remains relevant and
accurate, but this can be challenging to manage and requires ongoing investment.

6. Conclusions

When implementing a neural network for financial accounting, it is important to
consider factors such as data quality, model interpretability, and the specific regulatory
environment. The model that this research proposes offers an integrated approach to
decision support by combining the predictive capabilities of neural networks with the
strategic insights provided by game theory. This integration aims to enhance decision-
making processes in complex and dynamic environments and shifts the model’s focus
to predicting financial indicators and supporting financial decision-making. The neural
network component of the new AI tool is designed to provide financial predictions and
insights based on historical data. This includes forecasting key financial indicators such as
revenue growth, profitability, and cost efficiency. Neural networks can be a valuable tool
for calibrating outcomes in the financial accounting environment, and have demonstrated
effectiveness in processing complex financial data, identifying patterns, and making pre-
dictions. The inclusion of a game theory payoff matrix in this new AI decision-making
tool introduces a strategic framework for analyzing interactions among decision-makers.
This allows for the consideration of strategic choices and outcomes in a more dynamic
and competitive context. AI digital transformation tools have the potential to significantly
enhance financial decision-making processes and overall strategic management. These
tools can help organizations leverage data-driven insights and automate routine tasks,
potentially improving efficiency and decision accuracy. However, it is important to rec-
ognize that AI technologies also come with challenges and disadvantages, such as data
privacy concerns, the risk of algorithmic biases, and the need for substantial computational
resources. Additionally, the complexity of AI models can make them difficult to interpret
and trust, which may limit their practical application in certain contexts. Therefore, while
AI offers promising advancements, it is essential to approach its integration with a balanced
perspective, acknowledging both its benefits and its limitations. All future developing
decision-making assistance tools must continuously learn and update their predictions,
ensuring relevance and accuracy over time. The model that this paper suggests must be
equipped with the capability to undergo stress testing and scenario analysis, allowing it to
evaluate its performance under various financial conditions, including both favorable and
adverse scenarios, contributing to its robustness.

Neural network payoff matrix fusion represents a comprehensive and adaptive de-
cision support tool that leverages the strengths of neural networks and game theory to
provide valuable insights for financial decision-making in both private and public sectors
and provides tangible value to businesses. The continuous training, scenario analysis,
and strategic framework contribute to its potential effectiveness in dynamic and uncertain
environments. The concept of integrating AI-driven decision-making is directly reflected in
the conclusions of this paper. The digital tools mixed combine the predictive capabilities of
neural networks with a game theory framework, emphasizing the integration of advanced
AI techniques for more informed decision-making. The model’s success will depend on
thorough testing, collaboration with domain experts, and ongoing refinements based on
real-world feedback.

Digital transformation tools can significantly aid the financial decision-making process
and overall strategic management in a company by analyzing historical financial data
to make accurate predictions about future trends and outcomes. These tools can assess
and predict potential risks by analyzing various data sources. This enables organizations
to proactively identify and mitigate risks in financial decision-making and to automate
repetitive and routine tasks, such as data entry, reconciliation, and reporting.
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AI digital transformation tools play a crucial role in enhancing financial decision-
making processes and overall strategic management. These tools empower organizations
to leverage data-driven insights, automate routine tasks, and navigate the complexities of
the modern business landscape more effectively.
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Appendix A

Table A1. Description of the layers in the proposed neural model—Decision Harbor AI.

Input Layer ∈ R31 I Hidden Layer ∈ R16 H Output Layer ∈ R2 O

Net revenue
Gross revenue

Revenue Growth

Net Income

Taxes Gross income

Interest expenses
EBITDA

Depreciation

Amortization
Profit margins

Cost of goods sold

Operating expenses
Cash Flow from operations

Operating income

Change in working capital
Free cash flow

Operating Cahs flow

Capital expenditure
ROE

Shareholders’ equity

Average total assets
ROA

Total liabilities

Current assets
Debt to equity ration

Current liabilities

Cash
Current ratio

Profitability

Cash equivalents

Net accounts receivable
Quick ratio

Prepaid expenses

Share price
Price to earnings ratio

Earnings per share

Preferred equity
Book value per share

Dividend per share

Value per share
Dividend yield

Total shares

Revenue growth
Market capitalization

Earnings

Godwill
Growth metrics

Fixed assets
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Abstract: Autonomous pollination robots have been widely discussed in recent years. However, the
accurate estimation of flower poses in complex agricultural environments remains a challenge. To
this end, this work proposes the implementation of a transformer-based architecture to learn the
translational and rotational errors between the pollination robot’s end effector and the target object
with the aim of enhancing robotic pollination efficiency in cross-breeding tasks. The contributions are
as follows: (1) We have developed a transformer architecture model, equipped with two feedforward
neural networks that directly regress the translational and rotational errors between the robot’s end
effector and the pollination target. (2) Additionally, we have designed a regression loss function
that is guided by the translational and rotational errors between the robot’s end effector and the
pollination targets. This enables the robot arm to rapidly and accurately identify the pollination
target from the current position. (3) Furthermore, we have designed a strategy to readily acquire a
substantial number of training samples from eye-in-hand observation, which can be utilized as inputs
for the model. Meanwhile, the translational and rotational errors identified in the end-manipulator
Cartesian coordinate system are designated as loss targets simultaneously. This helps to optimize
the training of the model. We conducted experiments on a realistic robotic pollination system. The
results demonstrate that the proposed method outperforms the state-of-the-art method, in terms of
both accuracy and efficiency.

Keywords: pollination robot; transformer; offset errors

1. Introduction

Robot-assisted pollination has been a topic for over a decade [1]. It is becoming an
increasingly important contributor to crop production in the agricultural industry, and
it is providing solutions to pressing challenges, such as the decline in natural pollinators.
Pollination robots are categorized into several types, to meet diverse agricultural needs.
Autonomous robots, equipped with advanced vision and artificial intelligence, navigate
and pollinate independently. Remotely controlled or semi-autonomous robots require
human oversight, suitable for complex environments. Unmanned aerial vehicles (UAVs)
efficiently pollinate large fields from above. These robotic systems are designed to mimic
the pollination process traditionally performed by bees and other insects. Utilizing ad-
vanced sensors, vision systems, and precision manipulators, robotic pollinators identify
and interact with flowers, depositing pollen with high accuracy and consistency.

Various studies have been discussed in the field of automated pollination with ap-
plications in the pollination of kiwifruit [2,3], bramble flowers [4], vanilla [5], and tomato
flowers [6]. The pollination technique requires the physical transfer of pollen from the
male to the pistils (the reproductive organs of the female flowers) [7]. To minimize pollen
loss and ensure precise transfer to the stigmas, it is necessary to address the difficulties
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of collecting pollen and the challenges of maintaining its activity [8]. Unfortunately, this
requires considerable time and effort, which has not been carefully considered in the exist-
ing pollination approaches. The difficulties originate from the very small size of the pistils,
as well as the challenge of accurately identifying their rotation and orientation.

To this end, this work proposes a methodology based on a transformer architecture
that aims to enhance the operational efficiency of robotic pollination in cross-breeding tasks.
The output layer of the model incorporates two separate feedforward neural networks,
each designed to regress the translational and rotational discrepancies between the robot
and the pollination target, respectively. Unlike traditional transformer loss functions, we
have designed a novel loss function that is informed by the translational and rotational
discrepancies between the robot’s end effector and the pollination targets. This enables
the robot arm to rapidly and accurately identify the pollination target from the current
observation view. Meanwhile, we have also designed a strategy to collect large-scale
training samples from eye-in-hand observation and to designate the translational and
rotational errors identified within the end-manipulator Cartesian coordinate system as
loss targets. The observed images in the current and target positions, combined with
the translational and rotational errors between them, provide a large scale for training
data, thereby enhancing the model training. Figure 1 shows the pollination robot used in
this work.

The remainder of this work is organized as follows: the related works are outlined in
Section 2; the detailed descriptions of the method are introduced in Section 3; Sections 4–6
present the experiments, discussion, and conclusion, respectively.

RGB camera

pollen

robot arm

offset error(∆Tx, ∆Ty, ∆Tz, ∆Wx, ∆Wy, ∆Wz)

pistils

Figure 1. The pollination robot primarily consists of a UR5 robotic arm and a monocular RGB
camera, configured in an eye-in-hand structure. At the end of the robotic arm, there is a pollination
brush used for pollinating the pistils. The illustration depicts a robotic arm engaged in pollination,
where the “offset error” marked in red represents the content that the model needs to learn. Here,
∆Tx, ∆Ty, and ∆Tz denote the components of the translational error along the X, Y, and Z axes,
respectively, while ∆Wx, ∆Wy, and ∆Wz represent the components of the rotational vector, indicating
the rotational errors.

2. Related Work
2.1. Pose Estimation

Achieving high precision in the end effector pose of a robotic arm poses significant
challenges. To enhance the precision of the end effector pose, additional sensors, such as
LiDAR or pressure sensors, are often employed, which can increase costs. Some methods
are based on 6D object pose estimation, constructing templates to scan different positions in
the input image, calculating similarity scores at each position, and obtaining the best match
by comparing the similarity scores [9,10]. Others use feature-based methods, where CNN
models directly regress the 3D coordinates of each pixel [11], or they describe the posterior
density of a specific object pose through CNNs, comparing the observed image with the
rendered image [12]. Additionally, some methods combine the advantages of template-
based and feature-based approaches within a deep learning framework. The network
integrates bottom-up pixel-level labeling with top-down object pose regression, predicting
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the 3D position and 3D rotation of the object in a decoupled manner [13]. All these methods
invariably use depth sensors to capture the depth information D of the target object. How-
ever, for scenarios where depth information cannot be captured, such as in the agricultural
pollination robot discussed in this paper, the hollow regions of pollination flowers result
in poor depth information acquisition. Moreover, the trained models incorporating depth
information [11–13] do not directly regress and predict the 3D position information of the
target object. The aforementioned template-based and feature-based models are trained
on point clouds, but they still face challenges when handling non-convex polyhedra and
non-manifold data. Existing point-cloud training methods are primarily suitable for regular
shapes, such as convex polyhedra and manifolds. These methods are limited when dealing
with the complex and irregular shapes of flowers in agricultural environments, which often
present non-polyhedral and non-manifold structures. This limitation makes it difficult to
directly apply traditional point-cloud training methods. Additionally, there is a discrepancy
between point-cloud training in virtual environments and real-world applications, which
can affect the model’s performance in real-world scenarios.

By contrast to the pose-estimation techniques introduced earlier, which rely on additional
sensors to capture depth-enhanced image data for constructing point-cloud training—a practice
difficult to implement in non-convex and non-manifold agricultural environments—our method
utilizes only conventional cameras, to acquire RGB images from the pollination robot’s end
effector. This approach enables seamless end-to-end training in real-world settings, thereby
eliminating the discrepancies commonly found between point-cloud training in virtual
environments and their practical application in the field.

2.2. Traditional and Deep Learning Methods for Improving Precision

To improve the precision of the pollination end effector, traditional methods can be
realized through the design of the robotic arm. For example, LI K designed a robotic arm
for kiwifruit pollination [14], achieving high precision by expressing the end effector veloc-
ity and joint angular velocities through the Jacobian matrix. During trajectory planning,
quintic polynomial interpolation ensures the continuity and smoothness of the velocity and
acceleration curves of each joint. Forward kinematics and Monte Carlo methods are used
for simulation analysis, to cover the entire pollination area with the end effector. In the
vision system, a binocular camera [15] is used to obtain the 3D coordinates of flowers in
real time, combining with the control system for trajectory planning and interpolation point
calculation, to precisely control each joint motor and achieve point-to-point precise pollina-
tion. However, this robotic arm relies on binocular cameras to obtain the 3D coordinates of
the flowers, and strong light or occlusions can affect the accuracy of the vision system.

Traditional algorithms can still achieve certain effects in specific agricultural pollina-
tion domains. A recent study by N Duc Tai [16] involved using segmentation methods
to locate and segment cantaloupe flowers, employing mathematical models based on the
biological characteristics of the cantaloupe flowers to determine the key points of each
flower’s growth direction, and using an inverse-projection method to convert the position
of the flower from a 2D image to a 3D space, thus achieving flower pose localization.

In recent years, with the development and application of deep learning, STRADER
J’s BrambleBee [4] pollination robot has combined traditional algorithms and deep learn-
ing algorithms to estimate flower poses. The system uses a two-stage image-processing
framework to recognize flowers and estimate their poses. It first employs a Naive Bayes
pixel-level segmentation algorithm, then uses a convolutional neural network for classi-
fication and pose refinement, ensuring the accuracy of the recognition results. Finally,
an octree-based obstacle map and a factor graph represent the flower map, mapping the
flowers and their positions in 3D to optimize the pose estimation. Khubaib Ahmad’s
automatic watermelon flower pollination robot [17] utilizes deep learning to detect the 2D
information of flowers and combines it with traditional algorithms, to calculate the depth
of the flower positions, thereby achieving flower localization. The robot then adjusts the
mechanical arm, using servo searching, until it reaches the ideal pollination position.
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YANG’s [18] vision-based servo automated pollination robot uses more advanced
target-detection algorithms, such as YOLOv5, YOLACT++ [19], and DETR [20], to de-
tect flowers, identifying the position and orientation of the pistil through rotation object-
detection technology. The system then employs a pseudo-binocular ranging strategy,
calculating the 3D coordinates of the pistil by moving the camera position and using eye–
hand calibration to transform these coordinates into the robot arm’s operational coordinate
system. During the pollination task, the system combines visual servo control strategies,
performing coarse positioning by moving the end effector near the flower, followed by
precise positioning using a circular search trajectory to ensure accurate contact between the
pollen brush and the pistil. However, the system still has an end effector precision error of
15 mm. Although the circular search trajectory can eventually achieve precise positioning,
the process is time-consuming, taking nearly 19 s to complete pollination of a single flower.
If the end effector precision can be improved, the efficiency of precise positioning through
the circular search trajectory will significantly benefit.

Both the traditional methods of N Duc Tai and the deep learning-based pollination
robots of STRADER J, Khubaib Ahmad, and YANG significantly impact the success rate
and efficiency of pollination operations through errors in estimating the pose of pollination
targets. For instance, the pollination robots of N Duc Tai and YANG can only ensure
successful pollination by maintaining a large servo search area, which leads to reduced
pollination efficiency. Consequently, our work proposes a deep learning method to learn
the translational and rotational errors between the flower and the pollination end effector.
By compensating for these errors, the positioning accuracy of the robot’s end effector is
enhanced. This reduction in the servo mechanism’s search range and path ultimately
improves the efficiency of the pollination process.

2.3. Transformer Architecture and Position Encoding

The transformer architecture, introduced by Vaswani et al. [21], has significantly
impacted Natural Language Processing (NLP) and computer vision. Transformers utilize
the self-attention mechanism to capture complex dependencies within input data, making
them effective for understanding visual information. In computer vision, transformers
process images by segmenting them into patches and linearly embedding these segments,
enabling powerful attention mechanisms for tasks like image classification, object detection,
and generating image descriptions. In robotics, transformers can predict the error offsets of
a robotic arm’s end by analyzing sequences of images or sensor data, enhancing precision
and accuracy.

The introduction of position encoding [22] in predicting translational offset error and
rotational pose offset error at the robotic arm’s end further improves spatial awareness and
accuracy. By embedding spatial position information directly into the transformer model,
it enhances the model’s ability to discern the relative and absolute positions of objects in a
scene, which is critical for precise error estimation.

The self-attention mechanism of transformers can capture long-range dependencies,
allowing the model to directly calculate the relationships between any two elements within
an input image feature sequence, considering all the input data rather than just local infor-
mation. This characteristic helps reduce the issue of local optima. Additionally, through
fine-grained attention allocation, transformer-based models can identify and emphasize
the features and relationships most relevant to the current task. Therefore, employing
a transformer model equipped with positional encoding to predict the translational and
rotational errors between the pollination robot’s end effector and the target object is a
viable approach.

3. Method
3.1. Offset Error

To describe the translational offset error and the rotational pose offset error, two
Cartesian coordinate systems, CA and CB, need to be constructed at the target flower and at
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the end effector of the pollination robot, respectively. The Cartesian coordinate system CA,
constructed on the flower, has its origin O at the end of the pistil. The plane formed by the x
and y axes is parallel to the plane of the flower petals, and the z axis is parallel to the pistil,
pointing inward, as shown in Figure 2b,c. The Cartesian coordinate system CB, constructed
at the end of the pollination robot, has its origin O at the end of the brush, obtained by
translating the UR5 robotic arm’s TCP coordinate system, as shown in Figure 2d. CA can
be derived from CB through a 4 × 4 translation–rotation matrix TR:

TR =


R11 R12 R13 t1
R21 R22 R23 t2
R31 R32 R33 t3
0 0 0 1

 (1)

CA = TR · CB (2)

(b) (c) (d)(a)

Figure 2. (a) The ideal zero-error pollination position. (b–d) The Cartesian coordinate systems’
positions on the flower and at the end of the robotic arm, respectively.

The translational offset error and rotational pose offset error are the translation vector
t and the rotational vector derived from the rotation matrix R of the translation–rotation
matrix TR, respectively:

t =
[
t1 t2 t3

]T (3)

R =

R11 R12 R13
R21 R22 R23
R31 R32 R33

 (4)

When the end effector of the pollination robot is in the ideal pollination posture,
the values of the translational offset error and the rotational pose offset error approach
zero. At this moment, the brush at the end of the pollination robot is perpendicular to the
plane of the petals of the target flower and just in contact with the pistil, i.e., the coordinate
systems CA and CB coincide, as shown in Figure 2a.

θ = cos−1(
trace(R)− 1

2
)

−→
V =

1
2 sin(θ)

R32 − R23
R13 − R13
R21 − R12


−→
W = θ

−→
V

(5)

The translational offset error and rotational pose offset error predicted by the model
are denoted as t̂ and R̂, respectively. The differences between the actual and predicted
translational offset error and rotational pose offset error from the end of the robotic arm to
the pistil of the target flower are calculated as the translational error (TE) and the rotational
error (RE), respectively. According to Equation (5), the rotation matrices R and R̂ can be

converted into rotational vectors
−→
W and

−̂→
W :

TE = ∥t̂ − t∥ (6)
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RE = 1 −
−̂→
W

−→
W

∥−̂→W∥∥−→W∥
(7)

The unit of TE is centimeters (cm), representing the spatial distance between the
predicted translational error and the actual translational error. RE is dimensionless, rep-
resenting the cosine distance between the predicted rotational vector error and the actual
rotational vector error.

3.2. Attention Module

The attention module is implemented based on the self-attention mechanism, which
enables the model to weigh the importance of different features within the input data.
By applying this mechanism, the model can adaptively concentrate computational re-
sources on regions of the image that contain key information for predicting pose offsets
(∆Tx, ∆Ty, ∆Tz, ∆Wx, ∆Wy, ∆Wz). Furthermore, with the introduction of position encoding
in the self-attention mechanism, the model achieves a comprehensive understanding of
the image. This provides additional information for addressing symmetry issues in object
pose prediction, enhancing the model’s accuracy and augmenting its general capability in
various scenarios encountered by pollination robots. This method not only improves the
accuracy of the model but also strengthens its versatility in the diverse conditions faced by
pollination robots.

3.3. Feature Extraction

Given the unique ability of transformer models to process image data, we utilize a
pre-trained convolutional neural network, ResNet-50 [23], as the feature extraction network,
to convert original images into high-dimensional feature vectors. These features are then
fed into the transformer model for further processing. We compare feature extraction net-
works of different depths, to determine the optimal feature representation. This approach
leverages the strong ability of ResNet-50 to capture detailed spatial hierarchies in images,
providing a rich set of features for the transformer model to analyze. By incorporating
this hybrid architecture, combining the strengths of CNNs in feature extraction with the
advanced attention mechanism of transformers, the model achieves a nuanced understand-
ing of image content relevant for predicting the pose offset errors. This method facilitates
identification and focusing on crucial aspects of the input data, thereby enhancing the
accuracy and efficiency of the pose-estimation process.

3.4. Proposed Approach

This work introduces a novel network model incorporating an attention module,
designed to enhance prediction accuracy by focusing on the most critical parts of the input
data. This model is particularly suited for analyzing image data captured by the end
effector of a pollination robot, aiming to accurately predict the position offset of the end
effector relative to the target object in a Cartesian coordinate system. During training,
the model takes image data from the robotic arm’s end as input, and it outputs a six-
dimensional vector (∆Tx, ∆Ty, ∆Tz, ∆Wx, ∆Wy, ∆Wz) representing the translational offset

errors ∆T = (∆Tx, ∆Ty, ∆Tz) and the rotational offset errors
−→
W = (∆Wx, ∆Wy, ∆Wz) in the

three directions of the Cartesian coordinate system.

3.5. Offset Error Prediction

The input to the model is an RGB image captured by an “eye-in-hand” RGB camera
on the robotic arm, depicting the positional state of the robotic arm’s end effector during
pollination and the pollination flower. The output is a vector representing the pose offset
vector (∆Tx, ∆Ty, ∆Tz, ∆Wx, ∆Wy, ∆Wz), which includes the translational and rotational
errors of the robot’s end effector relative to the target object. To achieve this, the model
employs two feedforward neural networks to directly map the attention-focused features
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into the three-dimensional offset space and the three-dimensional rotational space. Figure 3
illustrates the entire algorithmic process.

An input image

CNN

set of image features

transformer
encoder-
decoder

FFN

FFN

3D translation of error offset

3D rotation of error offset

positional
encoding

+

Figure 3. The diagram illustrates the workflow of the proposed algorithm. The process begins with
the input image, which undergoes feature extraction via a convolutional neural network (CNN), to
obtain high-dimensional image features. These features are then augmented with positional encoding
before being input into the transformer module. The transformer’s output is further processed by
two distinct feedforward neural networks, tasked with predicting translational and rotational errors,
respectively.

3.6. Network Architecture

In this work, we have adopted a customized transformer model designed to process
serialized image features and predict the translational offset error and rotational pose offset
error at the end of a robotic arm. We have modified the original transformer model by
introducing two-dimensional positional encoding, to preserve the spatial information of
the input images. The output layer is customized, to generate 3D translational offset and a
rotational pose offset error vector. As shown in Figure 4, a ResNet50 serves as the backbone
for extracting a rich feature set from the input image data. To retain the spatial information
among the elements in the images, we apply sinusoidal position encoding to the extracted
features, which are then summed with the features before being fed into the encoder.
To capture information from different subspaces, a multi-head attention mechanism with
five heads is employed in the encoder. The output of the encoder is subsequently fed into
the decoder. Following the standard architecture of the transformer, the decoder utilizes
a multi-head attention mechanism to transform two embeddings of size d. These query
objects are transformed by the decoder into output embeddings, which are then decoded
by two separate feedforward networks into the translational offset error and the rotational
pose offset error, respectively.

ResNet50

Backbone

positional encoding

+

transformer
encoder

encoder

FFN FFN

translational
offset error

rotational vector
offset error

decoder

transformer
decoder

set of image features

Figure 4. The final model employs ResNet50 as the backbone network to learn high-level features
from the input image. These features are then supplemented with positional encoding before being
passed to the encoder. Subsequently, the decoder first outputs a feature vector for the translational
offset error, which is used as input for a feedforward neural network designed for prediction. This
feature vector is then used as the query input for the decoder, resulting in another feature vector that
is fed into a separate feedforward neural network for predicting the rotational pose offset error.
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4. Experiments
4.1. Data Preprocessing

The image data used in this experiment are all from a proprietary dataset, which
consists of images captured by a camera mounted on the robotic arm during the pollination
process, where each image uniquely represents the pose of a flower to be pollinated.
As shown in Figure 5, the orientation of the flowers relative to the end of the robotic arm
was categorized into five directions: left, right, upwards, downwards, and front. Detailed
statistical information is available in Table 1.

(Upwards) (Right)(Left)(Front)(downwards)

Figure 5. Flowers with different orientations relative to the end effector of the robotic arm.

Table 1. The dataset includes the number of images of flowers oriented in different directions relative
to the the end effector of the robotic arm.

Orientations Number of Flowers Proportion (%)

L 261 20.6
R 274 21.7
F 230 18.2
U 256 20.3
D 243 19.2

“F”, “L”, “R”, “U”, and “D” represent front, left, right, upwards, and downwards orientations.

To ensure the consistency of the input data, all images captured by the robotic arm’s
end camera were first resized to a uniform resolution of (224 × 224). Subsequently, the im-
ages were normalized, scaling the pixel values to the [0, 1] range, to enhance the sta-
bility of the model training. Moreover, a series of data-augmentation techniques, in-
cluding scaling, cropping, and color transformation, were applied, to increase data di-
versity and prevent overfitting. Regarding the label data, we assumed the position off-
set error ∆T = (∆Tx, ∆Ty, ∆Tz) and the rotational offset error ∆

−→
W = (∆Wx, ∆Wy, ∆Wz),

with ||∆T|| < D, where D was a constant. The position offset error Equation (8) and
rotational offset error Equation (9) were normalized and scaled to [−1, 1], as follows:

∆Tn =
∆T
D

(8)

−→
W = θ

−→
V (9)

θ =
√

∆W2
x + ∆W2

y + ∆W2
z (10)

−→
V = (

∆Wx

θ
,

∆Wy

θ
,

∆Wz

θ
) (11)

The symbol θ in the equation (10) represents the rotation angle, and
−→
V denotes the

unit vector along the axis of rotation. The normalized label data were (∆Tn,
−→
V , θ

2π ).

4.2. Evaluation Metrics

In the model presented in this paper, we separately predict the translational offset
error and the rotational pose offset error, thus designing two loss functions. The first loss
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function, named LossT , measures the mean squared distance between the spatial position
offset error predicted by the model for the end effector of the pollination robotic arm to the
pistil of the target flower and the actual spatial offset error. LossT is defined as follows:

LossT =
1

2m ∑
x∈M

(T̂n − Tn)
2 (12)

where M is the set of the test dataset, m is the number of elements in the set, and T̂n and
Tn are the translational offset error predicted by the model and the true translational offset
error obtained via Equation (8), respectively.

The second loss function, named LossR, measures the discrepancy between the spatial
rotational error predicted by the model for the end effector of the pollination robotic arm
to the pistil of the target flower and the actual spatial rotational error. LossR is defined
as follows:

LossR =
1

2m ∑
x∈M

(
1
σ2

1
(∥θ̂ − θ∥2) +

1
σ2

2
(1 −

−̂→
V
−→
V

∥−̂→V ∥∥−→V ∥
) + log(σ1σ2)) (13)

where M is the set of the test dataset and m is the number of elements in the set. Variables
θ̂, θ,

−̂→
V , and

−→
V represent the predicted and actual rotational angles and axes obtained via

Equations (9)–(11), with σ1 and σ2 being the parameters that need to be learned.
The combined loss function used for model training is defined as

Loss = αLossT + βLossR (14)

This loss function in Equation (14) comprehensively measures the translational offset
error loss and the rotational offset error loss during model training. Parameters α and β
are hyperparameters representing weights that need to be systematically adjusted during
model training.

4.3. Training Details

The model training was conducted in a computational environment equipped with
NVIDIA V100 GPUs. We used the Adam optimizer [24], with the initial learning rate set to
0.01, and we employed a learning rate decay strategy that gradually reduced the learning
rate to 0.00001 as training progressed. A custom loss function, Equation (14), was used
during the training process. In the model training, the setting of the hyperparameters
in Equation (14) affected the model’s ability to converge. After extensive experiments,
we finally set α = 0.0025 and β = 1, which allowed the model to converge more easily
during training.

In the dataset, flowers with different orientations were randomly shuffled, and then
the data were divided into 10 subsets, using the K-fold cross-validation method. Each
time, one subset was used as the test set, and the remaining nine subsets were used as the
training set. This process was repeated 10 times. During the model training, we observed
that the model initially converged rapidly and then gradually stabilized. Figure 6 shows
the changes in the values of loss, translational error, and rotational error during the model
training process:
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Figure 6. Changes in loss, TE, and RE during the model training process.

4.4. Results

To the best of our knowledge, we are the first to predict the translational offset error
and rotational pose offset error of a robotic arm’s end effector relative to a target object using
only RGB image information. Therefore, this paper focuses on the accuracy improvements
of the translational offset error and rotational pose offset error of the robot’s end effector
when using our proposed method compared to the state-of-the-art YANG method [18] as
the baseline. Additionally, we highlight the enhancement in the efficiency of pollinating a
single flower.

We conducted experiments on flowers with different orientations in groups, to analyze
translational and rotational offset errors as well as detection speed. The experimental results
showed slight variations for flowers with different orientations. As shown in Table 2 and
Figure 7, flowers facing forward achieved the best results, in terms of experimental accuracy,
with the smallest translational offset error and rotational pose offset error compared to
flowers in other orientations. Flowers facing upwards came next. Due to environmental
symmetry, there was almost no difference in results for flowers facing left and right. Flowers
facing downwards had the worst results, in terms of both translational offset error and
rotational pose offset error. However, the detection speed of the model for flowers with
different orientations remained almost constant.

Table 2. Experimental results of the model on flowers with different orientations.

Orientations TE RE FPS

L 0.82 0.0049 41
R 0.82 0.0049 42
F 0.78 0.0047 43
U 0.80 0.0048 42
D 0.87 0.0051 41

“F”, “L”, “R”, “U”, and “D” represent front, left, right, upwards, and downwards orientations.

0.78 0.80 0.82 0.84 0.86 0.88
0.0046

0.0048

0.0050

0.0052

R
E

TE

Front

Downwards

Left   Right

Upwards

Left Right Front Upwards Downwards
0

20

40

FP
S

Orientations

 Detection Speed

Figure 7. Distribution of the model’s rotational and translational error detection for flowers with
different orientations, as well as the detection speed.

We conducted our experiments using the YANG pollination robot. The YANG pol-
lination robot’s process of pollinating a single flower can be divided into five steps in
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chronological order. After the fourth step, the positioning accuracy of the YANG pollina-
tion robot’s end effector relative to the target pistil was 1.5 cm. At this point, we introduced
a new step called “Fine adjustment position”. We input the image of the flower’s pose
relative to the robot’s end effector into our trained model, to predict the translational and
rotational offset errors. Based on the predicted values, the pose of the pollination robot’s
end effector was adjusted.

As shown in Table 3, thanks to the new “Fine adjustment position” step, the transla-
tional distance and rotational discrepancy between the pollination robot’s end effector and
the pollination target were further reduced, narrowing the range for the next servo search
pollination step. Our experiments showed that the average time for servo search pollina-
tion was only 3.1 s, achieving a pollination success rate comparable to YANG’s pollination
robot at 86.19%. As shown in Table 4, after applying our method to the pollination robot,
the average distance accuracy between the robot’s end effector and the target pistil reached
0.81 cm, an improvement of 46.67%. The rotational pose offset error calculated according
to Equation (14) also reached 0.0049. The total time to complete the pollination of a single
flower was reduced by nearly half, with an average efficiency improvement of 50.9%.

Table 3. Comparison of the average time cost for each step of the pollination system after incorporat-
ing our method.

Step YANG (Baseline)
Time Cost (S) Our Time Cost (S)

Flower detection 0.0928 0.0927
Pistil identification 0.025 0.024
Position calculation (robot motion included) 1.8 1.8
Flower reaching (robot motion included) 4.2 4.2
Fine adjustment position / 0.024
Servoing (robot motion included) 12.7 3.1

The “Fine adjustment position” step is an additional step. With this step included, the time spent in the “Servoing”
step is greatly reduced, achieving the same pollination success rate in just 3.1 s. All numbers are recorded
in seconds.

Table 4. Comparison of translational offset error and rotational pose offset error when applying our
algorithm to flowers oriented in different directions compared to the baseline.

Orientations Method TE RE Time Cost (s)

L YANG’s 1.53 / 18.78
Our 0.82 0.0050 9.22

R YANG’s 1.52 / 18.80
Our 0.82 0.0050 9.23

F YANG’s 1.48 / 18.85
Our 0.80 0.0048 9.22

U YANG’s 1.53 / 18.79
Our 0.81 0.0049 9.24

D YANG’s 1.55 / 18.83
Our 0.83 0.0052 9.26

“F”, “L”, “R”, “U”, and “D” represent front, left, right, upwards, and downwards orientations. YANG’s method
served as the baseline.

This paper conducted several ablation experiments, to verify the impact of different
backbones and the addition of positional encoding on the model’s prediction of the trans-
lational offset error and the rotational pose offset error. ResNet50, ResNet18, ResNet101,
VGG16, VGG19, DenseNet-121, and DenseNet-201 were selected as the backbone feature
extraction networks. For each backbone, experiments were conducted with and without
positional encoding. The experimental results, shown in Table 5 and Figure 8, indicate
that different backbones and the addition of positional encoding significantly affect the
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model’s final prediction accuracy. The version of the model with ResNet50 as the backbone
feature extraction network and positional encoding added achieved the best performance
in predicting the translational offset error and the rotational pose offset error, reaching
8.1 mm and 0.0049, respectively.

Table 5. The impact of different backbones within the model on the accuracy of predicting the
translational offset error and the rotational pose offset error.

Backbones Positional Encoding TE RE

ResNet50 ! 0.81 0.0049
% 1.19 0.0051

ResNet18 ! 0.92 0.0053
% 1.33 0.0054

ResNet101 ! 0.86 0.0050
% 1.21 0.0050

VGG16 ! 0.96 0.0053
% 1.32 0.0055

VGG19 ! 0.99 0.0054
% 1.33 0.0055

DenseNet-121 ! 0.92 0.0054
% 1.23 0.0055

DenseNet-201 ! 1.10 0.0055
% 1.38 0.0057

A check mark (!) indicates that the model included positional encoding, while a cross (%) indicates that the
model did not include positional encoding.

0.8 0.9 1.0 1.1 1.2 1.3 1.4
0.0048

0.0050

0.0052

0.0054

0.0056

0.0058
 With Positional Encoding
 No Positional Encoding

R
E

TE

ResNet50

DenseNet-121

DenseNet-201 VGG19

VGG16ResNet18

ResNet101 ResNet101

ResNet50

ResNet18

DenseNet-121 VGG16

DenseNet-201

Figure 8. Distribution of translational and rotational error for different model backbones with and
without the addition of positional encoding.

5. Discussion

This work proposes a transformer-based approach that achieves end-to-end prediction
of translational and rotational errors between the robotic pollination arm’s end effector
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and the target pollination position, solely using RGB image information. Our experimental
results demonstrate that this method effectively narrows the error range of the robotic
end effector within a known error margin, thereby enhancing the overall efficiency of the
robotic pollination.

In this work, our method exhibited slight variations in results when dealing with
flowers of different orientations, particularly larger translational and rotational errors
with downwards-facing flowers. This may be attributed to the relative positioning of
the robot’s camera angle to the flower orientation, complicating the accurate recognition
and localization of flowers in specific orientations. Through experimentation, we also
observed that the versions of the model that utilized positional encoding performed better
in accurately predicting translational and rotational errors. Additionally, the different
backbone networks used for extracting features from input images had a significant impact
on the model’s performance.

This work has potential limitations despite the demonstrated effectiveness of the
proposed method in reducing translational and rotational errors between the pollination
robot’s end effector and the target: (1) The dataset used in this study was specifically col-
lected for experimental purposes, which may limit the model’s generalization capabilities
across varied environments and flower types; (2) The model’s performance may be com-
promised under different lighting conditions and in obstructed environments, impacting
its overall effectiveness. These issues emphasize the need for further enhancements before
practical deployment, necessitating future research to explore additional methods that
improve the model’s adaptability and reliability in diverse agricultural environments.

6. Conclusions

This work presents an innovative method that utilizes the powerful spatial learning
and understanding capabilities of a transformer-based deep learning model to achieve
end-to-end prediction of translational and rotational errors between the pollination robot’s
end effector and the target pollination position using only RGB images. Our experimental
results demonstrate that this method is effective in further reducing the error range of
the pollination robot’s end effector within a known error range, thereby improving the
overall efficiency of the pollination robot. Future work could focus on investigating the
prediction of translational and rotational errors between the robotic end effector and target
positions within datasets containing a more diverse range of flower types, under varying
lighting conditions and occlusions. Such work would aim to enhance the robustness and
generalization capabilities of the model, providing a feasible approach to improving the
accuracy of generic robotic end effectors.
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Abstract: In the rapidly evolving field of unmanned aerial vehicle (UAV) applications, the com-
plexity of task planning and trajectory optimization, particularly in high-dimensional operational
environments, is increasingly challenging. This study addresses these challenges by developing the
Adaptive Distortion Suppression Correlation Filter Cooperative Optimization (ARCF-ICO) algorithm,
designed for high-dimensional UAV task allocation and trajectory planning. The ARCF-ICO algo-
rithm combines advanced correlation filter technologies with multi-objective optimization techniques,
enhancing the precision of trajectory planning and efficiency of task allocation. By incorporating
weather conditions and other environmental factors, the algorithm ensures robust performance at low
altitudes. The ARCF-ICO algorithm improves UAV tracking stability and accuracy by suppressing
distortions, facilitating optimal path selection and task execution. Experimental validation using
the UAV123@10fps and OTB-100 datasets demonstrates that the ARCF-ICO algorithm outperforms
existing methods in Area Under the Curve (AUC) and Precision metrics. Additionally, the algorithm’s
consideration of battery consumption and endurance further validates its applicability to current
UAV technologies. This research advances UAV mission planning and sets new standards for UAV
deployment in both civilian and military applications, where adaptability and accuracy are critical.

Keywords: multi-objective optimization; UAV trajectory planning; correlation filters; adaptive
algorithms; task allocation

1. Introduction

In the era of the Internet of Things, unmanned aerial vehicles (UAVs) have become
essential tools across various domains due to their flexibility and efficiency. As the com-
plexity and diversity of UAV missions increase, the need for advanced high-dimensional
multi-objective task allocation and trajectory planning becomes critical. Recent studies by
Chen et al. [1–3] have introduced innovative algorithms that enhance the path planning
and cooperative behavior control of heterogeneous UAVs. These methods improve the
operational efficiency and adaptability of UAVs in dynamic and complex environments,
addressing contemporary challenges in UAV deployment.

The rapid development of UAV technology has led to a growing demand for UAV
applications in multitasking environments. However, in complex multi-objective environ-
ments, a single UAV often struggles to handle multiple tasks simultaneously, necessitating
the collaboration of multiple UAVs. Research on high-dimensional multi-objective UAV
task allocation and trajectory planning based on deep learning aims to address optimization
challenges in multi-UAV collaborative task allocation, achieving intelligent management
and scheduling of UAVs to enhance task execution efficiency and accuracy [4].

Electronics 2024, 13, 3071. https://doi.org/10.3390/electronics13153071 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13153071
https://doi.org/10.3390/electronics13153071
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0008-6674-2740
https://orcid.org/0000-0001-5504-7197
https://orcid.org/0000-0003-2982-4225
https://doi.org/10.3390/electronics13153071
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13153071?type=check_update&version=3


Electronics 2024, 13, 3071 2 of 17

In the realm of national strategic development, the progression and utilization of
unmanned aerial vehicle (UAV) technology emerge as pivotal technological enablers for
strategic initiatives. Through the refinement of UAV task planning, pivotal sectors within a
nation stand to witness heightened levels of productivity and efficiency, thereby fostering
the cultivation of novel, high-quality productivity, a concept championed by Yao and
Liu [5]. Their work underscores the importance of delineating theoretical frameworks and
practical pathways to drive progress. Moreover, the evolution of UAV technology not only
augments a nation’s technological capabilities but also fortifies its global competitiveness,
as illuminated by Ma and Chen [6]. Their exploration of national transitions underscores
the incontrovertible role of technological innovation in shaping economic and strategic
trajectories. With UAV technology serving as a cornerstone innovation, its multifaceted
applications across domains such as national defense, transportation, and agriculture
contribute significantly to enhancing a nation’s overall competitiveness. Thus, by aligning
UAV technology with broader strategic imperatives, the aspirations of advancing progress
and fortifying national competitiveness, as espoused by the new development paradigm,
stand poised for realization.

Deep learning models have played a significant role in UAV task allocation and tra-
jectory planning. Common deep learning models include convolutional neural networks
(CNNs) [7], recurrent neural networks (RNNs) [8], deep reinforcement learning (DRL) [9],
generative adversarial networks (GANs) [10], and transfer learning, each with its advan-
tages and limitations. For instance, CNNs are suitable for image processing tasks but lack
efficiency in handling sequential data [11], while RNNs can process sequential data but
suffer from issues like vanishing and exploding gradients. DRL can handle tasks with
delayed rewards but involves a complex training process, while GANs can generate data
but exhibit instability during training. Transfer learning can leverage previously learned
knowledge to expedite learning on new tasks but requires addressing domain differences.

This study aims to address high-dimensional multi-objective UAV task allocation
and path planning problems using an Adaptive Distortion Suppression Correlation Filter
(ARCF). We will develop an ARCF network that integrates the states, actions, and reward
functions of UAV missions to enable intelligent decision-making for task allocation and
path planning. Specifically, we will employ deep reinforcement learning techniques to
train the network, allowing it to learn optimal behavioral strategies for UAVs in complex
environments. During the training process, we will utilize replay memory units to store
historical experiences and combine target and estimation networks to enhance the stability
and efficiency of the learning process.

The main contributions of this paper are as follows:

• Propose a novel Adaptive Distortion Suppression Correlation Filter Cooperative
Optimization (ARCF-ICO) algorithm, enhancing the accuracy and stability of UAV
mission planning.

• Integrate multi-objective optimization techniques, achieving efficient intelligent decision-
making for UAV task allocation and path planning in complex environments.

• Present experimental results which show that the ARCF-ICO algorithm outperforms
existing methods in terms of AUC and Precision metrics on UAV123@10fps and
OTB-100 datasets.

2. Related Work
2.1. Single-Objective Optimization for Unmanned Aerial Vehicle Trajectory Planning

The trajectory planning for unmanned aerial vehicles (UAVs) is fundamentally an
optimization problem with practical implications. Li and Duan [12] incorporated threat cost
and fuel cost into a weighted optimization objective and employed an improved universal
gravitational search algorithm to enhance the global search convergence, thereby improving
the quality of optimal solutions for UAV trajectories. Qu et al. [13] combined a simplified
grey wolf optimizer with an enhanced symbiotic organism search to propose a novel hybrid
algorithm for obtaining feasible and effective routes. Dasdemir et al. [14] designed a generic
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preference-based single-objective evolutionary algorithm to optimize both the total distance
of planned routes and radar detection threats. Yao et al. [15] introduced a hybrid algorithm
based on a model predictive control and an improved grey wolf optimizer for planning
optimal trajectories for UAV target tracking in urban environments. Papaioannou et al. [16]
addressed the challenges of passively monitoring multiple moving targets in obstructed
environments with UAVs by designing a model predictive guidance controller combined
with a joint estimation and control strategy. Ren et al. [17] proposed a multi-objective
path planning (MOPP) approach using the Non-dominated Sorting Genetic Algorithm II
(NSGA-II), optimized for both distance and safety, demonstrating its efficiency in an urban
setting by employing octree-based spatial subdivisions and safety index maps.

However, current research on trajectory planning for both single and multiple UAVs
often focuses on single-objective optimization, either considering a single objective or inte-
grating multiple optimization objectives into a single one through linear weighting. Such
optimization approaches heavily rely on subjective weighting coefficients set by decision-
makers, directly impacting the optimization results, and may overlook trajectories with
outstanding performance in relatively minor objectives. In recent years, despite the increas-
ing attention to multi-objective optimization-based trajectory planning problems, typically
considering only two to three optimized objectives, the practical optimization requirements
for UAV trajectory planning extend beyond a limited number of objectives. Addressing this
issue, establishing a trajectory planning model based on high-dimensional multi-objective
optimization becomes particularly crucial to simultaneously optimize various performance
aspects of trajectories.

2.2. High-Dimensional Multi-Objective Optimization for UAV Trajectory Planning

High-dimensional multi-objective optimization problems are prevalent in both life and
engineering practices, where multiple objectives need simultaneous optimization, often
with inter-objective correlations leading to conflicting situations. In such cases, alternative
optimization schemes need to be considered to ensure the generation of equivalent solutions
in the absence of correlated information from other schemes.

Storn and Price [18] proposed the Differential Evolution (DE) algorithm, a population-
based method similar to steady-state replacement mechanisms, for solving real-parameter
optimization problems. New offspring only compete with their corresponding parents,
and if offspring exhibit better fitness, they replace them. With the emergence of new bio-
inspired heuristics such as Particle Swarm Optimization [19], Grey Wolf Algorithm [20],
Whale Algorithm [21], and Sparrow Search Algorithm [22], understanding how they apply
to different types of objective optimization problems becomes crucial. The literature has
optimized UAV trajectory distance and trajectory threat cost using genetic algorithms and
smoothed them [23].

The demarcation of high-dimensional multi-objective optimization algorithms lies
in whether the number of optimized objectives exceeds four [24]. With an increasing
number of optimized objectives, the number of non-dominated solutions generated during
the solving process of multi-objective optimization algorithms exponentially increases,
significantly affecting the algorithm’s performance and efficiency [25,26]. Additionally,
the selection pressure generated by multi-objective optimization algorithms in solving
high-dimensional multi-objective problems is often insufficient to guide individuals in the
population towards ideal points.

Strategies to enhance these two indicators mainly fall into three categories: (1) Enhancing
the selection pressure of algorithms by changing Pareto dominance methods to accelerate the
convergence rate of populations. GrEA [27] uses grid-based evaluation metrics to enhance
the selection pressure of algorithms. NSGA-III [28] uses a reference point strategy instead of
NSGA-II’s crowding distance strategy [29] to select excellent individuals from non-dominated
solutions, thereby improving the convergence of algorithms. 1by1EA [30] selects offspring in-
dividuals one by one based on individual convergence when environmental selection occurs,
then enhances the diversity of populations through niche techniques. RPEA [31] continually
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generates a series of well-converged and distributed reference points based on the current
population to guide evolution. (2) Decomposing a complex high-dimensional multi-objective
optimization problem into a group of sub-problems and co-optimizing these sub-problems.
MOEA [32] decomposes the problem into a series of adaptively decomposed single-objective
optimization sub-problems and then aggregates information from neighboring problems.
MaOEA/Ds [33] uses a set of uniformly distributed self-guided reference vectors in space to
divide the decision space into multiple small subspaces and judge the merits of individuals in
subspaces. Yi et al. [34] proposed a multi-objective evolutionary optimization method based
on objective decomposition, decomposing the problem into several sub-problems and solv-
ing each sub-problem in parallel, fully utilizing the information of other sub-populations to
improve the selection pressure of non-dominated solutions. (3) Strategy based on evaluation
metrics. Evaluating the superiority and inferiority of individuals comprehensively through
evaluation metrics, and then selecting excellent individuals for genetic operations. However,
the computational complexity of such strategies is usually high, and such evaluation metrics
are commonly used to assess the quality of algorithm optimization results [35].

In the process of collaborative trajectory planning for multiple UAVs, it is necessary to
consider not only the individual trajectory attributes but also the spatial coordination among
multiple UAVs. To avoid the impact of combining multiple optimization objectives into a
single one through weighting on trajectory planning, a model based on high-dimensional
multi-objective optimization is proposed for collaborative trajectory planning for multiple
UAVs. This model optimizes UAV trajectory distance cost, trajectory safety cost, trajectory en-
ergy cost, and spatial coordination among multiple UAVs as optimization objectives. Unlike
existing approaches that treat the trajectory of a single UAV as an individual in the popula-
tion and optimize the trajectories of multiple UAVs separately, in this model, multiple UAV
trajectories are treated as a whole entity in the population, and optimization is performed
simultaneously on multiple UAV trajectories. Additionally, comprehensive evaluations of
the convergence and diversity of individuals in the population are conducted, and mating
strategies of the algorithm for trajectory planning problems are improved to enhance con-
vergence performance [35,36]. Through the algorithm, a set of Pareto-optimal trajectories for
multiple UAVs are obtained for decision-makers to use. Decision-makers can select the most
suitable trajectories for their mission attributes from this set of Pareto-optimal trajectories.

3. Multi-UAV Flight Path Planning Modeling
3.1. Problem Description

In the context of collaborative trajectory planning for multiple unmanned aerial ve-
hicles (UAVs), a group of UAVs are tasked to navigate from multiple starting points to a
series of specified target points to execute complex missions. The mission scenario is set
within an area protected by various defense systems, where UAVs must cleverly evade
threats in enemy radar coverage and anti-aircraft fire zones, while considering the per-
formance limitations and cooperation requirements of each UAV. Based on this scenario,
we conduct simulation analyses of UAV group navigation and mission execution paths in
three-dimensional space. The computational assumptions are as follows:

(1) All UAVs maintain consistent flight speed during mission execution. (2) Each
trajectory segment is divided into straight flight paths. (3) Each UAV possesses identical
performance characteristics.

The core of collaborative trajectory planning for multiple UAVs involves the design of
trajectory cost models and collaborative spatial models. Trajectory cost primarily considers
distance, threat, and energy consumption. The objective of the model is to minimize these
costs while enhancing spatial coordination among UAVs.

Assuming there are Nz target points, each requiring reconnaissance, strike, and confir-
mation tasks represented as Smj , where j ∈ [1, Nz] denotes the jth target point’s mth task
type, corresponding to reconnaissance, strike, and confirmation (m = 1, 2, 3). Hence, the
total number of tasks is ∑Nz

n=1 ∑3
m=1 Smn . Each task has specific time windows [cmn , dmn ],

and designated ammunition requirements zj for strike tasks at each target point.
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The UAV group consists of Np reconnaissance UAVs, Nq strike UAVs, and Npq-
reconnaissance-and-strike-integrated UAVs, totaling Nv = Np + Nq + Npq UAVs, indexed
as u ∈ [1, Nv]. Each UAV u has a capability vector Capabilityu corresponding to its task
type, where Capabilityu(m) represents the capability of UAV u to perform task type m,
taking values of 1 or 0. The payload capacity of each UAV u is zu, and if UAV u∗ lacks strike
capability, then zu∗ = 0. It is assumed that the relationship between fuel consumption f pu
and flight speed Vu of each UAV u is f pu = αu × Vu, where α represents the proportionality
between fuel consumption and flight speed, and Vu is within the range [ku, ju], denoting
the minimum and maximum speeds.

In urban environments, the problem of multiple UAVs tracking multiple ground
targets is depicted in Figure 1, where N UAVs are ready to execute M tasks. The UAV set is
denoted as U = {U1, U2, . . . , UN}, and the target set is denoted as H = {H1, H2, . . . , HM},
with task types represented by Mi = {1, 2} (Mi = 1 for reconnaissance, Mi = 2 for strike).

To demonstrate UAV heterogeneity and the specific performance requirements of
mission scenarios, Zum is used to represent the UAV performance matrix, where matrix
elements represent the UAV’s ability to execute a certain task. For example, if there are
three UAVs and their performance matrix Zum is shown in Table 1, Zum(1, 1) = 0.9 indicates
that UAV 1’s reconnaissance task capability is 0.9. If H1 is a reconnaissance task (M1 = 1)
with a minimum requirement capability of 0.6, then among the three UAVs U1, U2, U3, only
U1 (0.9) can meet the task requirements of H1.

Table 1. UAV capability value.

Unmanned Aerial Vehicle
Ability Value

Scout Track
U1 0.9 0.4
U2 0.3 0.9
U3 0.5 0.5

Figure 1. Multi-UAV task allocation in urban scenarios.

3.2. Optimization Design Objective Model

Our goal is to minimize the total fuel consumption of the entire UAV fleet during task
execution while maximizing the efficiency of task completion. Therefore, we define the
following cost functions.

Total Fuel Consumption Cost: This represents the total fuel consumption of UAVs
from takeoff, task execution, to return to the airport. The fuel consumption of each UAV
depends on the flight distance and speed. If we define the fuel consumption of UAV u
performing task k from point Pi to Pj as fu,k,i,j, then the total fuel consumption Ff uel can be
expressed as

Ff uel =
Nu

∑
u=1

3

∑
k=1

Np

∑
i=0

Np

∑
j=1

Xu,k,i,j · fu,k,i,j (1)

Task Time Fitness Cost: This measures the difference between the completion time
of tasks and the midpoint of their time windows. The goal is to make the UAVs’ task
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execution times as close to the midpoint of the task time windows as possible. If we denote
the time window fitness of UAV u as Tadapt,u, then the total time window fitness Ftime is

Ftime =
Nu

∑
u=1

Tadapt,u =
Nu

∑
u=1

∣∣∣∣∣
Np

∑
i=0

Np

∑
j=1

3

∑
k=1

Xu,k,i,j · (tu,k,i,j −
sk,j + ek,j

2
)

∣∣∣∣∣ (2)

Combining the above two cost functions, we form a bi-objective optimization problem:

Minimize F = α · Ff uel + β · Ftime (3)

where α and β are parameters that balance the importance of the two objectives. In
Equation (3), the objective functions are normalized to ensure that each contributes equally
to the overall optimization. The normalization process involves scaling each objective
function to a [0, 1] range based on their respective maximum and minimum values observed
during the initial runs.

3.3. Constraints

In the UAV trajectory planning problem, we must consider the following constraints,
including weather conditions to account for low-altitude operations.

Task Execution Constraint: Ensure that each task is executed by at least one UAV with
the corresponding capability. The constraint formula for task execution is as follows:

Nu

∑
u=1

Xu,k,i,j ≥ 1 ∀k, ∀i, ∀j (4)

Here, Xu,k,i,j represents the binary decision variable indicating whether UAV u executes
task k from point Pi to Pj. Nu is the total number of UAVs. k represents the task type. i
represents the starting point index. j represents the ending point index.

Capability Matching Constraint: The tasks performed by UAVs must comply with
their capability limitations. The constraint formula for capability matching is as follows:

Nu

∑
u=1

Xu,k,i,j ≥ 1 ∀k, ∀i, ∀jXu,k,i,j ≤ Capabilityu,k ∀u, ∀k, ∀i, ∀j (5)

where Capabilityu,k represents the capability of UAV u to perform task k.
Weather Conditions Constraint: Operations at low altitudes are influenced by weather

conditions such as wind speed, precipitation, and visibility. These factors are incorporated
into the trajectory estimation to ensure safe and reliable operations. The constraint formula
for weather conditions is as follows:

Wu,k,i,j ≤ Wmax ∀u, ∀k, ∀i, ∀j (6)

where Wu,k,i,j represents the weather impact on UAV u while performing task k from point
Pi to Pj. Wmax is the maximum allowable weather impact.

Flight Time Constraint: Ensure that the time for a UAV to fly from one task point to
the next does not exceed the specified maximum value. The constraint formula for flight
time is as follows:

tu,k,i,j − tu,k,i,j−1 ≤ Tmax ∀u, ∀k, ∀i, ∀j > 1 (7)

where tu,k,i,j represents the time at which UAV u arrives at task point j while performing task
k, starting from point Pi. Tmax is the maximum allowable flight time between consecutive
task points.

3.4. Performance Metrics

Performance evaluation is crucial to validate the effectiveness of our optimization
model. We utilize the following performance metrics:
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Task Coverage: The ratio of successfully assigned and completed tasks to the total
number of tasks. Task coverage can be expressed as

Coverage =
Number of successfully assigned and completed tasks

Total number of tasks
(8)

Average Battery Consumption: The average battery consumption of UAV formation
to perform all tasks is expressed as follows:

Average Battery Consumption =
∑Nu

u=1 Battery used by u
Nu

(9)

Endurance: Endurance measures the operational time of the UAVs, ensuring they can
complete tasks within their battery limits. It is expressed as

Endurance =
∑Nu

u=1 Operational time of u
Nu

(10)

Time Efficiency: The difference between the completion time of all tasks and the
earliest start time. It can be expressed as

Time Efficiency = max
u∈U

{tcompletion,u} − min
u∈U

{tstart,u} (11)

Through these performance metrics, we can comprehensively evaluate the effective-
ness of the optimization algorithm, enabling further adjustments to model parameters or
algorithmic improvements.

4. Adaptive Genetic Multi-Objective Estimation Algorithm

The ARCF (Adaptive Response Map Correction Filter) algorithm aims to integrate the
response map distortion occurring during the tracking process with the training process
of the filter, thereby enhancing the algorithm’s performance (as depicted in Figure 2). To
suppress response map distortion, the first step is distortion identification (i.e., determine
when response map distortion occurs). It introduces the Euclidean norm to define the
difference between the previous frame M1 and the current frame M2 response maps.

Figure 2. Flowchart of the ARCF algorithm.

The primary objective of the ARCF algorithm is to combine the response map distor-
tion generated during target tracking with the filter training process, enhancing tracking
performance by dynamically updating the filter. Response map distortion is primarily
caused by the target’s rapid motion or external environmental factors such as occlusion
and illumination changes. The ARCF algorithm identifies and suppresses these distortions
by analyzing the changes in response maps between consecutive frames, specifically by
computing the Euclidean distance between the response maps of two frames.
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In the algorithm, the response maps of two consecutive frames F1 and F2 are denoted as
M1 and M2, respectively, and aligned using the shift operation ψ to calculate their differences.
The formula for calculating the difference is

∆M = ψ(M1, M2) =
√

∑
p,q
(M1[p, q]− M2[p, q])2 (12)

Here, p and q represent the spatial coordinates of the response map.
Based on the aforementioned difference measure, the objective function of the ARCF

algorithm can be described as an optimization problem, aiming to minimize response map
distortion while maximizing the accuracy of target tracking. The objective function consists
of a distortion term and a regularization term, expressed as

min
h

{
λ∥h∥2 + γ

D

∑
d=1

∥h ∗ Md − Yd∥2 + ϵ∆M

}
(13)

where h is the filter, ∗ denotes the convolution operation, Md is the input response map for
the d-th channel, Yd is the desired output response map, and λ, γ, and ϵ are coefficients
adjusting the importance of each term.

For computational efficiency, the objective function is further transformed into the
frequency domain. In the frequency domain, the formula becomes

min
H

{
λ∥H∥2 + γ∥F (H)⊙ X − Y∥2 + ϵ∆M

}
(14)

where F represents the Fourier transform, ⊙ denotes element-wise multiplication, and X
and Y are the input and desired output frequency–domain representations, respectively.

By employing the ADMM (Alternating Direction Method of Multipliers) algorithm to
solve the optimization problem, the filter can be effectively updated. The solution process
involves two main sub-problems: optimizing the filter and updating the response map.
This approach effectively suppresses response map distortion caused by rapid motion or
external environmental changes, thereby improving the stability and accuracy of the tracking
algorithm. The ARCF algorithm can be summarized as Algorithm 1.

Algorithm 1: The Procedure of ARCF
Initialize filter h0, learning rates λ, γ, ϵ
Set maximum iterations T
for t = 1 to T do

Capture current frame Ft
Compute response map Mt using ht−1
if t > 1 then

Compute distortion ∆M =
√

∑p,q(Mt[p, q]− Mt−1[p, q])2

end if
Update filter in frequency domain:
Ht = arg minH λ∥H∥2 + γ∥F (H)⊙ Xt − Yt∥2 + ϵ∆M
Update response map Mt:
Mt = Ht ∗ Ft
Check convergence:
if ∥F (Ht)−F (Ht−1)∥ < threshold then

break
end if
Update ht with Ht in spatial domain

end for
Output the global best solution Gbest = hT
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4.1. ARCF-ICO Algorithm

The ARCF-ICO algorithm integrates significant enhancements to the original ARCF
strategy, focusing on both solution convergence and diversity within a high-dimensional
optimization space. This is particularly pertinent in the context of UAV mission plan-
ning, where diverse operational environments and rapidly evolving mission requirements
necessitate a robust and adaptive optimization approach.

In the initial phase of the ARCF-ICO algorithm, priority is given to achieving high
convergence rates. This ensures a rapid alignment of UAVs towards optimal trajectories
or solution sets, effectively addressing immediate operational needs such as surveillance
or threat detection. As the algorithm progresses, emphasis shifts towards preserving
diversity among solutions. This is crucial in UAV operations to explore a range of potential
flight paths or tactical strategies, thereby avoiding local optima and enhancing mission
outcome robustness. The ARCF-ICO algorithm is designed to be implemented by various
categories of UAVs, including fixed-wing, rotary-wing, and hybrid UAVs. These UAVs can
be used in both commercial and military applications, depending on their capabilities and
mission requirements.

The comprehensive evaluation indicator for convergence and diversity (CAD) [37] is a
newly proposed metric designed to assess both the convergence and diversity of solutions
within our ARCF-ICO framework. This novel indicator is defined as follows:

CAD(ui, U) =

[
1 + rand(0.8, 1)× M ×

(
t

tmax

)θ

× D(ui, U)

]
× (1 − C(ui, U)) (15)

where D(ui, U) represents the diversity measure and C(ui, U) denotes the convergence
measure for UAV ui within the fleet U. The parameter M denotes the number of objectives,
and θ governs the balance between convergence and diversity as the algorithm iterates
from t to tmax—the maximum number of generations.

Diversity D(ui, U) is computed as

SDE(ui, U) = min
ui∈U,j ̸=i

√
m

∑
k=1

sde( f ′k(ui, U), f ′k(uj, U))2 (16)

where sde( f ′k(ui, U), f ′k(uj, U)) is defined as:

sde( f ′k(ui, U), f ′k(uj, U)) =

{
f ′k(uj, U)− f ′k(ui, U) f ′k(uj, U) > f ′k(ui, U)

0 otherwise
(17)

Convergence C(ui, U) of a UAV in relation to the fleet is quantified as

C(ui, U) =
Disc(ui, U)√

m
(18)

where Disc(ui, U) represents the Euclidean distance from UAV ui to the ideal solution in
the normalized objective space.

By integrating these strategies, ARCF-ICO dynamically adapts UAV mission planning
and response tactics according to evolving environmental conditions and operational
demands, optimizing both the efficiency and effectiveness of deployed UAVs.

4.2. ARCF-ICO Multi-Objective Planning

In the ARCF-ICO multi-objective optimization model, we have devised an efficient
mating strategy tailored for the complex task environments encountered by UAVs. This
strategy combines the favorable traits of individuals within the population and introduces
stochastic elements to increase population diversity, thereby enhancing the adaptability and
flexibility of the algorithm. The ARCF-ICO algorithm is applicable to missions conducted
in Visual Line Of Sight (VLOS) [38], Beyond Visual Line Of Sight (BVLOS) [38], and fully
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autonomous operations. The flexibility of the algorithm allows it to adapt to different
operational constraints and requirements.

Within the context of UAV trajectory planning, the trajectory points generated by each
UAV for each trajectory segment are represented by the following matrix:

X = [X1, X2, . . . , Xm]
T (19)

where Xi is an N × 3L matrix representing the ith individual in the population, N is the
number of UAVs, and L is the number of trajectory segments.

During the mating process in the parent population, two parents P1 and P2 are selected
based on their comprehensive evaluation indicator CAD. The CAD calculation formula is
as follows:

CAD(P) =
1
N

N

∑
i=1

[
1 + rand(0.8, 1)× M ×

(
t

tmax

)θ

× D(Pi, P)

]
× (1 − C(Pi, P)) (20)

where D(Pi, P) and C(Pi, P) represent the diversity and convergence indicators of individ-
ual Pi, M is the number of objective functions, θ is the balance parameter, t is the current
generation, and tmax is the maximum generation.

The mating operation is as follows, combining the trajectory information of the two
parents to generate new offspring trajectories:

Pnew,j = αP1,j + (1 − α)P2,j (21)

where P1,j and P2,j denote the position coordinates of parents P1 and P2 at the jth trajectory
point, respectively, and α is a random number between 0 and 1 used to control the contri-
bution ratio of the two parents in the newly generated offspring. The individual mating
operation is shown in Figure 3.

Figure 3. Individual mating operation.

This design ensures that UAVs can adjust their flight strategies according to actual
task requirements and environmental changes when executing tasks such as surveillance,
reconnaissance, or other complex missions. Furthermore, the multi-objective optimization
approach allows UAVs to optimize other important task metrics, such as flight time and
fuel efficiency, while ensuring task efficiency, thereby ensuring comprehensive and high-
performance mission execution.

5. Simulation and Result Analysis
5.1. Datasets

To comprehensively evaluate the performance of the algorithm, we utilize two widely
used datasets: the UAV123@10fps dataset [39] and the OTB-100 dataset [40]. Below are the
specific details of each dataset:

UAV123@10fps Dataset: This dataset comprises 123 tracking scenarios captured using
UAVs in aerial environments. It includes a mix of real-world and synthetic scenes gener-
ated using simulators. The dataset covers 12 different tracking challenge environments,
providing a diverse set of scenarios for evaluation.

OTB-100 Dataset: The OTB-100 dataset consists of 100 real-world tracking scenarios
captured manually. It encompasses 11 distinct tracking challenge environments, offering a
wide range of scenarios to assess algorithm performance.
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The utilization of these datasets enables a comprehensive evaluation of the algorithm
across various tracking challenges and environmental conditions. Its specific information
is shown in Table 2 below.

Table 2. UAV123@10fps and the OTB-100 dataset details.

UAV123@10fps OTB-100

Serial Number Challenge Name Number Challenge Name Number

1 Scale Variation (SV) 109 Scale Variation (SV) 65

2 Aspect Ratio Change (ARC) 68 Occlusion (OCC) 49

3 Background Clutter (BC) 21 Illumination Variation (IV) 38

4 Camera Motion (CM) 70 Motion Blur (MB) 31

5 Fast Motion (FM) 28 Deformation (DEF) 43

6 Full Occlusion (FOC) 33 Fast Motion (FM) 43

7 Illumination Variation (IV) 31 Out-of-Plane Rotation (OPR) 64

8 Low Resolution (LR) 48 In-Plane Rotation (IPR) 52

9 Out-of-View (OV) 30 Background Clutters (BCs) 33

10 Partial Occlusion (POC) 73 Out-of-View (OV) 14

11 Similar Object (SOB) 39 Low Resolution (LR) 10

12 Viewpoint Change (VC) 60 - -

5.2. Experimental Parameter Setting

In the setup of the experiments, the hardware configuration used includes
an Intel Core i9-13700 processor and 32 GB of memory. The software configuration is
based on the MATLAB R2019a platform. Regarding parameter settings, the regularization
parameter is set at 1.2, following the settings from the original ARCF algorithm. After
experimental adjustments, another regularization parameter is set to 0.001. The learning
rate for the target template, denoted by η, is set to 0.0192, again following the guidelines
from the original ARCF algorithm.

5.3. Correlation Evaluation Indices

For the ARCF-ICO multi-objective optimization algorithm in UAV mission planning,
we employ three improved evaluation metrics to comprehensively assess algorithm perfor-
mance: Area Under the Curve (AUC), Center Location Error (CLE), and Precision. These
metrics effectively gauge the performance and accuracy of UAVs during mission execution.

Area Under the Curve (AUC): This metric evaluates the overall success rate of UAVs
across multiple flight tasks, particularly in maintaining target objectives in complex envi-
ronments. AUC is calculated as

AUC =
area(Bpred ∩ Btrue)

area(Bpred ∪ Btrue)
, (22)

where Bpred represents the predicted target location rectangle by the UAV algorithm, and
Btrue represents the rectangle of the true target location.

Center Location Error (CLE): This metric measures the average Euclidean distance
between the predicted center position of the UAV and the true center position of the target.
High accuracy in CLE is essential for ensuring precise execution of tasks such as monitoring
and reconnaissance. CLE is calculated as

CLE =
√
(xpred − xtrue)2 + (ypred − ytrue)2, (23)

where (xpred, ypred) is the predicted center position by the UAV, and (xtrue, ytrue) is the true
center position of the target.
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Precision: Precision measures the accuracy of UAV localization within a specific
threshold t, i.e., the proportion of frames where the prediction error of the target’s center
position is within the threshold. This is a critical metric for evaluating the real-time tracking
performance of UAVs. Precision is calculated as

Precision =
Nt≤threshold

Ntotal
, (24)

where Nt≤threshold is the number of frames where CLE is less than or equal to the threshold
t, and Ntotal is the total number of frames. The threshold t is typically set to 20 pixels.

Through these three evaluation metrics, the performance of UAVs in executing tasks
in complex environments, such as path planning accuracy and stability, can be compre-
hensively assessed. These metrics not only aid in optimizing UAV operational strate-
gies but also provide crucial feedback for further algorithm improvement and flight
parameter adjustments.

5.4. Comparison Study

In this chapter, the ARCF-ICO algorithm is evaluated using two datasets: UAV123@10fps
and OTB-100. To better understand the performance of the proposed ARCF-ICO algorithm, it
will be compared with eight popular algorithms in the field of video object tracking, including
KCF [41], LDES [42], MCCT-H [43], Staple [44], fDSST [45], and AutoTrack [46]. LDES and
AutoTrack algorithms were published in AAAI2019 and CVPR2020, respectively, focusing on
UAV datasets, while the remaining five algorithms are classic correlation filter-based tracking
algorithms in recent years.

Figure 4 illustrates the comprehensive comparison of the ARCF-ICO algorithm with
the other six mainstream algorithms in the UAV123@10fps dataset in terms of AUC and
Precision. From the figure, it can be observed that the proposed ARCF-ICO algorithm
achieves the highest performance, with a comprehensive AUC of 0.516 and comprehensive
Precision of 0.712, outperforming the other six algorithms. The AutoTrack and LDES
algorithms rank second and third, with comprehensive AUC values of 0.504 and 0.492, and
comprehensive Precision values of 0.682 and 0.655, respectively. Compared to the ARCF-
ICO algorithm, AutoTrack and ARCF algorithms have lower AUC by 1.2% and 2.4%, and
lower Precision by 3.0% and 5.7%, respectively. The remaining five algorithms, MCCT-H,
Staple, fDSST, and KCF, have lower AUC values, ranging from 0.285 to 0.456, and lower
Precision values, ranging from 0.384 to 0.581, compared to the ARCF-ICO algorithm.

Figure 4. Comparison between AUC and Precision in the UAV123@10fps dataset.

Table 3 presents the comprehensive Precision comparison of various algorithms in the
12 challenging environments of the UAV123@10fps dataset. It can be observed from Table 3
that the ARCF-ICO algorithm consistently ranks first in Precision across all 12 challenging
environments. The AutoTrack and LDES algorithms rank second in ten and two challenging
environments, respectively. Thus, the comparison results from Table 3 demonstrate that the
ARCF-ICO algorithm adapts well to most complex tracking challenges and exhibits robust
tracking performance.



Electronics 2024, 13, 3071 13 of 17

Table 3. UAV123@10fps Precision comparison table for various challenge scenarios of the dataset.

Our Algorithm Contrast Algorithm
Challenge Name

ARCF-ICO AutoTrack LDES MCCT-H fDSST Staple KCF

SV 0.724 0.672 0.642 0.545 0.521 0.496 0.372

ARC 0.692 0.686 0.631 0.591 0.552 0.503 0.336

BC 0.702 0.621 0.603 0.503 0.521 0.467 0.415

CM 0.684 0.691 0.633 0.512 0.488 0.472 0.375

FM 0.696 0.664 0.628 0.498 0.508 0.475 0.311

FOC 0.693 0.677 0.689 0.582 0.571 0.436 0.388

IV 0.669 0.673 0.642 0.603 0.598 0.479 0.406

LR 0.688 0.645 0.667 0.654 0.635 0.527 0.416

OV 0.741 0.714 0.656 0.672 0.626 0.426 0.403

POC 0.744 0.725 0.702 0.625 0.645 0.539 0.369

SOB 0.752 0.714 0.693 0.564 0.586 0.545 0.388

VC 0.763 0.702 0.671 0.625 0.645 0.535 0.426

Table 4 shows the comparative results of various algorithms’ comprehensive Precision
across 11 challenging environments within the OTB-100 dataset. From Table 4, it is apparent
that the ARCF-ICO algorithm ranks first in Precision in all 11 environments, with the
AutoTrack and LDES algorithms ranking second in five and three environments, respectively.
Additionally, the MCCT-H and Staple algorithms achieve second place in the Fast Motion
and Out-of-Plane Rotation challenges, respectively. Hence, the comparison results from
Table 4 further validate the effectiveness of the ARCF-ICO algorithm.

Table 4. OTB-100 Precision comparison table for various challenge scenarios of the dataset.

Our Algorithm Contrast Algorithm
Challenge Name

ARCF-ICO AutoTrack LDES MCCT-H fDSST Staple KCF

FM 0.517 0.485 0.497 0.505 0.422 0.388 0.263

BC 0.483 0.476 0.496 0.476 0.412 0.433 0.314

MB 0.514 0.502 0.467 0.443 0.402 0.367 0.278

DEF 0.482 0.477 0.472 0.425 0.378 0.336 0.266

IV 0.541 0.538 0.533 0.501 0.445 0.388 0.325

IPR 0.477 0.432 0.375 0.468 0.305 0.325 0.213

LR 0.533 0.532 0.596 0.492 0.462 0.439 0.306

OCC 0.488 0.482 0.457 0.426 0.430 0.422 0.239

OPR 0.563 0.552 0.512 0.423 0.458 0.563 0.325

OV 0.534 0.529 0.505 0.412 0.433 0.368 0.336

SV 0.545 0.537 0.546 0.447 0.448 0.392 0.268

5.5. Simulation Visualization

Figure 5 illustrates the task allocation results obtained by the ARCF-ICO algorithm,
demonstrating that this dynamic allocation problem is essentially a nonlinear programming
problem with optimal solutions. The left panel of Figure 5 shows the Pareto solutions
for UAV task allocation and trajectory planning derived from the UAV123@10fps dataset,
while the right panel presents the solutions from the OTB-100 dataset. The Pareto front in
both panels indicates the trade-offs between different objectives, showcasing the efficiency
and effectiveness of the ARCF-ICO algorithm in handling multi-objective optimization. In
addition, we also show the MATLAB simulation task assignment results of 10 UAVs in
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Figure 6. As can be seen from Figure 6d, 10 UAVs are about to find the corresponding target
object.

Figure 5. ARCF-ICO algorithm solution task assignment. Pareto solutions for UAV task allocation and
trajectory planning derived from the UAV123@10fps dataset (left) and the OTB-100 dataset (right).

Figure 6. MATLAB simulation task assignment demonstration of 10 UAVs. (a) The initial state of the
UAV; (b,c) Intermediate status of UAV task assignment; (d) Final status of UAVs assignment.

Furthermore, simulation tests are conducted on scenes from the OTB-100 dataset. The
environment map is divided into five sub-maps, but using the ARCF-ICO algorithm alone
for UAV path planning may not achieve the fastest model training speed. This could be due
to the continuous trial-and-error learning process of the ARCF original algorithm in the envi-
ronment, which requires more time. Figure 7 illustrates the trajectory planning of UAV tasks
in the cropped environment maps of the OTB-100 dataset using the ARCF-ICO algorithm.

Figure 7. The ARCF-ICO algorithm is demonstrated in the cropping environment map of OTB-100
dataset for UAV mission planning. Blue dot represents the training time for each algorithm.
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6. Conclusions and Discussion

This study presents the ARCF-ICO algorithm to address multi-objective optimization
in UAV mission planning, enhancing UAV tracking performance in complex environments.
By focusing on both convergence and diversity, the ARCF-ICO algorithm adapts to rapid
environmental changes and dynamic mission demands through real-time filter updates.
Validation using the UAV123@10fps and OTB-100 datasets demonstrates that the ARCF-
ICO algorithm outperforms existing methods in AUC and Precision metrics, indicating
superior tracking accuracy and robustness. However, two primary limitations are identified:
the algorithm’s suboptimal performance with extremely high-speed dynamic targets and
the need for improved computational efficiency. Future research will explore more efficient
algorithmic structures to reduce computational resource consumption while optimizing
the response to high-speed moving targets. Overall, the ARCF-ICO algorithm offers a
significant technological advancement for multi-objective optimization in UAVs, providing
substantial theoretical and practical value for both civilian and military applications.
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Abstract: Millions of individuals are living with upper extremity amputations, making them poten-
tial beneficiaries of hand and arm prostheses. While myoelectric prostheses have evolved to meet
amputees’ needs, challenges remain related to their control. This research leverages surface elec-
tromyography sensors and machine learning techniques to classify five fundamental hand gestures.
By utilizing features extracted from electromyography data, we employed a nonlinear, multiple-kernel
learning-based support vector machine classifier for gesture recognition. Our dataset encompassed
eight young nondisabled participants. Additionally, our study conducted a comparative analysis of
five distinct sensor placement configurations. These configurations capture electromyography data
associated with index finger and thumb movements, as well as index finger and ring finger move-
ments. We also compared four different classifiers to determine the most capable one to classify hand
gestures. The dual-sensor setup strategically placed to capture thumb and index finger movements
was the most effective—this dual-sensor setup achieved 90% accuracy for classifying all five gestures
using the support vector machine classifier. Furthermore, the application of multiple-kernel learning
within the support vector machine classifier showcases its efficacy, achieving the highest classification
accuracy amongst all classifiers. This study showcased the potential of surface electromyography
sensors and machine learning in enhancing the control and functionality of myoelectric prostheses
for individuals with upper extremity amputations.

Keywords: myoelectric sensor; hand gesture; support vector machine; prosthetic hand; classification;
machine learning

1. Introduction

In 2017, the global count of unilateral upper limb amputees exceeded 11.3 million, with
an additional 11.0 million individuals experiencing bilateral upper limb amputations [1].
Within Canada, around 6800 individuals live with an amputation proximal to the wrist [2].
A recent study [2] compared the utility outcomes and costs associated with two interven-
tions for treating hand amputations: hand vascularized composite allotransplantation and
myoelectric hand prostheses. The conclusion was that treating unilateral amputations with
myoelectric prostheses was more cost-effective.

Myoelectric prosthetic hands have emerged as a pivotal avenue for restoring both
gesture and prehensile capabilities in upper-limb amputees, offering a non-invasive alter-
native to permanent surgical interventions [2]. Prevalent control systems in prostheses
often utilize a trigger-based mechanism relying on one or two surface electromyography
(EMG) channels [3,4]. This setup maps single muscle contraction events to predefined
movement sequences, necessitating explicit user commands for mode switching [3,4]. This
sequential switching introduces latency in execution times, requiring multiple distinct
commands to transition between different grip modes [3,4]. The non-intuitive nature of
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this grip-switching process, coupled with awkward control dynamics and a lack of suffi-
cient feedback, has been identified as a primary contributor to the low acceptance rates
observed for myoelectric prosthesis devices [5,6]. Addressing these challenges is essential
for enhancing the usability and acceptance of myoelectric prosthetic devices within the
user community [5,6].

Several endeavors to classify sEMG (surface electromyography) signals from human
forearm muscles have been documented in previous works. To mitigate intuitiveness
concerns, prototype solutions within the existing literature focus on deciphering user
gesture intentions by targeting distinct flexor and extensor muscles in the forearm [7].
The voluntary contractions of the remaining forearm muscles after amputation can be
identified through machine learning classifiers, such as artificial neural network (ANN),
linear discriminant analysis (LDA), and support vector machine (SVM) classifiers. SVM is
often chosen due to its mathematical interpretability and global optimization. It performs
well even with a small training set [8]. SVM’s elasticity parameter, also known as the box
constraint hyperparameter C, controls the maximum penalty imposed on margin-violating
observations and aids in preventing overfitting [8]. Palkowski and Redlarski [9] employed
two EMG sensors on the forearm, sampling data at 16 Hz, to discern six whole hand
and wrist gestures using an SVM classifier. Lee et al. [10] successfully classified ten hand
gestures using features obtained by three EMG sensors and achieved an accuracy exceeding
90% for each participant. However, their machine learning model underwent training and
testing on participant datasets without cross-participant data amalgamation to assess the
model’s generalization capability. This restrictive testing approach introduces bias into
the classification accuracy, raising questions about the applicability of this technology in
prosthetic hands. Other previous works [8,11,12] achieved high accuracy of over 90% for
classifying multiple whole hand and wrist gestures, like wrist opening/closing, ulnar and
radial deviation, and flexion-extension. However, whole hand and wrist gestures are less
challenging to classify and offer a limited functional application for upper limb amputees
seeking the restoration of manual dexterity.

The efficacy of targeting specific muscles requires the strategic deployment of elec-
trodes and their configuration—a critical consideration for feature-based approaches that
are relatively unexplored in the literature.

This project aimed to improve hand gesture classification accuracy, strategic sensor
placement, and the selection of practical gestures for potential integration with myoelectric
prosthetic hands. Therefore, this study investigated the development of a multiple kernel
learning (MKL)-based SVM classifier for classifying five intricate hand gestures crucial
for amputees—power grasp (clenching of the wrist), hook grip (four-digit grasp), fine
pinch (using index finger and thumb), coarse pinch (using all five digits), and point gesture
(flexing of digit 3, 4, and 5). The research methodology involved building the classifier
using data collected across five distinct sensor configurations, each utilizing one or two
EMG sensors on the forearm toward a minimalistic data collection approach, while striving
to identify the optimal sensor placement to obtain the highest classification accuracy.

2. Materials and Methods
2.1. Experimental Procedure

sEMG data were collected from the right hand of eight participants without neuro-
logical/musculoskeletal impairment or diagnosis (age: 21 ± 2 years (mean ± SD), body
height: 169.5 ± 2.8 cm (mean ± SD), body weight: 57.9 ± 9.5 kg (mean ± SD), 7 males and
1 female). All participants were acquainted with the experimental procedures. Informed
consent was obtained from all subjects involved in the study. The study was conducted
in accordance with the Declaration of Helsinki and approved by the Institutional Ethics
Committee of the University of Alberta (AB T6G 2N2, approved on 25 April 2022).

The sEMG signals were acquired using bipolar MyoWare 2.0 Muscle sensors [13]
(SparkFun Electronics, Niwot, CO, USA) chosen for their potential for integration into
low-cost hand prostheses. The previous version of this sensor has been frequently used in
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the literature because of its low cost, easy-to-customize features, and favorable performance
reports in validation studies, showing it to be comparable to more expensive commercial
EMG systems [14,15]. MyoWare 2.0 has three electrodes—mid-muscle, end-muscle, and
reference [13]. Before being acquired by the microcontroller, the differential signal passed
through an instrumentation amplifier with a high CMRR (common mode rejection ratio,
which is the ratio of differential gain to common-mode gain of the amplifier stage) (140 dB)
and unitary gain to eliminate common noise sources, such as the 50 Hz line noise. Subse-
quently, the signal was filtered by a first-order band-pass filter with cut-off frequencies at
20 Hz and 498 Hz [13]. Following this, the signal underwent rectification and smoothing,
achieved by a low-pass envelope detection circuit (3.6 Hz) embedded in the sensor hard-
ware, resulting in a linear envelope of the EMG signal. The enveloped EMG output was
then acquired by the microcontroller (Arduino UNO) with a sampling frequency of 780 Hz
(SD = 5Hz) to address concerns regarding undersampling in previous studies [16].

The EMG sensor placement configurations were based on the gestures aimed to be
classified. The sensors were placed only along those forearm muscles majorly responsible
for flexion of the index finger, ring finger, and thumb. The five gestures used were (1) a
coarse pinch using all five digits, (2) a fine pinch using index finger and thumb, (3) a hook
grip (four-digit grasp), (4) point gesture (flexing of digits 3, 4, and 5), and (5) a power grasp
(clenching of the wrist), labelled as 0 to 4, respectively, for the classifier. These five gestures
(Figure 1) are considered to have high utility for amputees in their daily lives and are also
seen in commercial prosthetics [3,4].
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Figure 1. The five different gestures with their corresponding prediction labels: (a) coarse pinch,
(b) fine pinch, (c) hook grip, (d) point gesture, and (e) power grasp.

The EMG sensors were placed at three locations on the ventral side of the forearm
(Figure 2) for five different configurations to acquire sEMG signals from muscles primar-
ily responsible for the flexion of the index finger, ring finger, and thumb. The sensor
configurations were based on [17–19] and are described as follows:

• C1: One sensor placed proximal to the wrist along the flexor pollicis longus to acquire
the thumb flexion data.

• C2: One sensor placed proximal to the wrist along flexor digitorum superficialis to
acquire the index finger flexion data.

• C3: One sensor placed along flexor digitorum superficialis and flexor digitorum
profundus to acquire ring finger flexion data.

• C4: Two sensors placed proximal to the wrist along flexor digitorum superficialis to
acquire index finger flexion data and proximal to the elbow along flexor digitorum
superficialis and flexor digitorum profundus to acquire ring finger flexion data.
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• C5: Two sensors placed proximal to the wrist along the flexor digitorum superficialis
to acquire index finger flexion data and along the flexor pollicis longus to acquire the
thumb flexion data.

The participants were asked to perform each gesture repeatedly 20 times, with a time
interval of two seconds between each repetition. After performing one round of data
collection for a single gesture, the participant took a 4 min rest to relax their muscles to
prevent fatigue before beginning the next round for a new gesture. The signals measured
from the two EMG sensors were recorded simultaneously.
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2.2. Data Processing

Figure 3 shows a flowchart of the data processing steps involved in the entire experi-
ment and modeling pipeline. First, the EMG data were recorded by sensors and filtered to
eliminate noise. Second, the signals were segmented into shorter sequences, and time and
frequency domain features were extracted to capture distinct characteristics of the EMG
data. Third, the processed data were used for hand gesture classification using machine
learning, where an 80–20 train-test split was performed to train and evaluate the models.
Fourth, the hyperparameters of the machine learning models for the given dataset were
tuned using a 10-fold grid search cross-validation method to enhance performance. Fifth,
the classifiers were trained using the full training dataset and these optimized hyperpa-
rameters. Sixth, the model’s performance was assessed using unseen testing data and the
evaluation metric—the accuracy score—to reflect the model’s effectiveness in classifying
the EMG data.

Addressing noise in EMG signals is crucial to enhance classification accuracy. Em-
ploying an efficient filtering technique significantly contributes to refining EMG signal
classification. To refine the EMG signals obtained for specific gestures from each partici-
pant, a digital filtering process was applied. This process aimed to eliminate erratic peaks
and local extrema clutter from the long-envelope EMG signals as seen closely in Figure 4.
Among various filtering methods, the Gaussian smoothing filter (GSF), recommended
in [20], emerged as a promising approach, leading to improved EMG signal modeling
and accuracy (Figure 4). To facilitate feature extraction-based analysis, the long EMG data
sequence per participant for a single gesture was segmented into smaller windows, each
containing four gestures for a specific participant. The individual sequences are about
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8000 samples long and were stored separately for subsequent time and frequency domain
feature extraction.
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2.3. Feature Extraction and Selection

Feature extraction is crucial for reducing the dimensionality of the data representing a
gesture, thereby enabling the classification of gestures. A total of 22 time and frequency
domain features were extracted from the 8000 sample long segmented EMG signals for
every gesture. Features included statistical measures such as root mean square (RMS),
variance (VAR), mean absolute value (MAV), slope sign change (SSC), zero crossings
(ZC), waveform length (WL), median absolute deviation (MAD), skewness, kurtosis, and
energy. These features are well-established in the literature for their utility in gesture
recognition [21,22]. The time-frequency domain features include autoregressive model
coefficients (5th order), entropy (based on approximate coefficients of 1D discrete wavelet
transform of level 4), variance estimates (based on maximum overlap discrete wavelet
transform of level 3), spectral entropy, mean frequency, and band power. The wavelet
transforms were based on the Daubechies-2 wavelet. The above features have been used
multiple times in the literature [10,23,24]. To facilitate effective classification, the extracted
features were normalized to a mean of zero by subtracting the mean from every sample
and normalizing it using standard deviation.

Principal component analysis (PCA) was utilized in the feature selection phase as a key
step to further reduce the dimensionality of the feature space, which was derived from the
segmented EMG data obtained by the two sensors. With an initial feature set comprising
44 distinct features (22 × 2 sensors), PCA was utilized to transform these features into a
new set of principal components. The primary objective was to retain the most informative
components while reducing dimensionality. The top features capturing over 95% variability
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across the dataset were meticulously selected. This selection criterion ensured the retention
of only those components that significantly contributed to the data’s variance, thereby
compressing the feature space while preserving its essential information. These selected
components, which captured the most of the dataset’s variability, were then exclusively
fed into the classifier. This strategic use of reduced, yet informative, PCA-derived features
aimed to enhance classification performance by focusing on the most critical aspects of the
EMG data.

2.4. Machine Learning Classifier

In this paper, SVM was employed to classify five hand gestures. As SVM is a kernel-
based method, selecting proper kernel functions and associated hyper-parameters is an
important task. This problem is usually solved by a trial-and-error approach. Moreover, a
typical single-kernel SVM application frequently adopts the same hyper-parameters for
each class, and it may not be suitable when feature pattern distributions are significantly
different among different classes. Although there are different kernels, such as the Gaussian
kernel, polynomial kernel, and sigmoid kernel, it is often unclear which is the most suitable
kernel for a given dataset, and thus it is desirable for the kernel methods to use an optimized
kernel function that adapts well to the data set at hand and the type of the boundaries
between classes. An efficient way to design a kernel that is optimal for a given data set is to
consider the kernel as a convex combination of basis kernels as illustrated in Equation (1).
Such an MKL-based SVM is inspired by [25].

K(x, y) = a · K1(x, y) + b · K2(x, y) + c · K3(x, y) + d · KRBF(x, y) (1)

Here, K1 is the linear kernel, K2 is the quadratic kernel, K3 is the cubic kernel, and
KRBF is the Gaussian or the radial basis function kernel with unity standard deviation.
The coefficients {a, b, c, d} are hyperparameters to be tuned using a 10-fold grid search
cross-validation. The elasticity parameter or box constraint C is also a hyperparameter
expressing the degree of loosing constraint. A large C can classify the training samples
more correctly but also end up overfitting and reducing the testing accuracy, hence, the
box constraint is also tuned using a 10-fold grid search cross-validation. The training and
testing of the data are done using a typical 80–20 train-test split. PCA was used for feature
selection to further reduce the dimensionality of the input vector given to the classifier and
only choose statistically significant features.

Further analysis encompassed utilizing three machine learning classifiers: naïve Bayes,
decision tree, and KNN. This was undertaken to evaluate the performance of SVM within
the specific dataset and experimental conditions, focusing on robustness with an increasing
number of gestures and varying sensor configurations. Although SVMs are well-established
as effective for EMG-based gesture recognition [26,27], the research aims to investigate
these findings within our unique setup that uses commercially available low-cost sEMG
sensors. By confirming the robustness and effectiveness of SVMs in this application,
further evidence will be added to the established theory, considering any nuances from our
specific dataset.

3. Results
3.1. Sensor Configuration Assessment

The best set of hyperparameters resulting in the highest accuracies on testing data
for the SVM, naïve Bayes, KNN, and decision tree classifiers, built using an amalgamated
dataset of all participants across different sensor configurations, is shown in Table 1,
Table 2, Table 3 and Table 4, respectively. The associated hyperparameters are tuned
using a 10-fold grid search cross-validation, and the labels used for each gesture are given
in Figure 1.
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Table 1. Optimal hyperparameter configuration for SVM-based gesture classification using 10-fold
cross-validation. SVM kernel order is the order of pure polynomial kernel. {a, b, c, d} are the MKL
coefficients. C is the box constraint. C1, C2, C3, C4, C5 are the five different sensor configurations.

Hyper Parameters
Configurations of Sensors

C1 C2 C3 C4 C5

Classifying five gestures including
coarse pinch, fine pinch, hook grip,
point gesture, and power grasp

SVM kernel order 3 - - - -

MKL coefficients

a - 10 0.1 0.1 1

b - 0.5 1 1 0.001

c - 0.1 10 10 0

d - 0 0 0 0

C (box constraint) 1 0.1 0.5 0.5 1

Classifying two gestures including
fine pinch and power grasp

SVM kernel order 1 3 1 2 3

MKL coefficients

a - - - - -

b - - - - -

c - - - - -

d - - - - -

C (box constraint) 10 1 0.5 0.02 1

Table 2. Optimal hyperparameter configuration for the naïve Bayes-based gesture classification using
10-fold cross-validation. Distribution kernel ‘N’ is the normal kernel and ‘B’ is the box (uniform) kernel.

Hyper Parameters
Configurations of Sensors

C1 C2 C3 C4 C5

Classifying five gestures including
coarse pinch, fine pinch, hook grip,

point gesture, and power grasp

Distribution kernel
(N/B) N B N N N

Bandwidth 0.05 0.8 0.08 0.15 0.42

Classifying two gestures including
fine pinch and power grasp

Distribution kernel
(N/B) N N N N N

Bandwidth 0.1 0.05 0.1 0.05 0.05

Table 3. Optimal hyperparameter configuration for the KNN-based gesture classification using 10-fold
cross-validation. D1 to D4 denote Euclidean, cosine, city block, and Minkowski distance functions.

Hyper Parameters
Configurations of Sensors

C1 C2 C3 C4 C5

Classifying five gestures including
coarse pinch, fine pinch, hook grip,
point gesture, and power grasp

Distance function D1 D2 D1 D1 D1

K value 1 1 1 1 2

Classifying two gestures including
fine pinch and power grasp

Distance function D1 D3 D2 D1 D4

K value 1 1 1 1 1
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Table 4. Optimal hyperparameter configuration for the decision tree-based gesture classification
using 10-fold cross-validation.

Hyper Parameters
Configurations of Sensors

C1 C2 C3 C4 C5

Classifying five gestures including
coarse pinch, fine pinch, hook grip,
point gesture, and power grasp

Minimum leaf size 1 9 2 2 2

Classifying two gestures including
fine pinch and power grasp Minimum leaf size 2 9 9 2 2

Table 5 presents the performance results of various classifiers on two separate gesture
classification tasks with different configurations (C1, C2, C3, C4, C5) and provides a com-
parative overview of the accuracy of different classifiers across five distinct and unrelated
sensor configurations for gesture classification tasks. In classifying five gestures, the SVM
classifier’s performance ranges from 75% to 90%, with the highest accuracy observed in
configuration C5. The KNN’s accuracy fluctuates, achieving its highest at 82% with C4 and
slightly lower at 80% with C5. Naïve Bayes shows its best result at 70% with C5, while the
decision tree classifier caps at 75% with the same configuration.

Table 5. Testing accuracies for the SVM, KNN, naïve Bayes, and decision tree classifiers across
different sensor configurations. C1 to C5 are the five different sensor configurations.

Classifier
Configuration Ci

C1 C2 C3 C4 C5

Classifying five gestures including
coarse pinch, fine pinch, hook grip,

point gesture, and power grasp

SVM 75% 75% 84.6% 87.2% 90%

KNN 67.9% 73.9% 69.2% 82% 80%

Naïve Bayes 53.6% 51.3% 61.5% 61.5% 70%

Decision Tree 57.2% 59% 56.4% 59% 75%

Classifying two gestures including
fine pinch and power grasp

SVM 100% 100% 100% 100% 100%

KNN 100% 86.7% 100% 93.3% 100%

Naïve Bayes 100% 73.3% 100% 93.3% 93.3%

Decision Tree 100% 86.7% 100% 80% 100%

In contrast, the task of classifying two gestures, fine pinch and power grasp, sees a no-
tably higher and perfect performance from the SVM classifier, maintaining 100% accuracy
across all configurations. The KNN and decision tree classifiers also perform exceptionally
well, with KNN achieving 100% accuracy in all but C2 and C4, where it scores slightly
lower at 86.7% and 93.3%, respectively. The Naïve Bayes and decision tree classifiers
exhibit a perfect 100% accuracy for configuration C3. This distinct difference in perfor-
mance across tasks suggests that certain classifiers, especially SVM, may be more robust to
changes in configurations or are better suited for binary classification tasks in the context of
gesture recognition.

3.2. Classifier Assessment

The confusion matrix for the SVM classifier across different configurations has been
meticulously plotted to provide a comprehensive visualization of the model’s performance
(Figure 5).
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4. Discussion

The study extends beyond assessing classification accuracy, delving into the complexi-
ties of classifying an increasing array of gestures, as corroborated by prior research [28].
This investigation further reveals the limitations of using a single sensor for EMG data
acquisition, which restricts the number of distinctly identifiable classes. We evaluated the
effectiveness of four machine learning classifiers—SVM, naïve Bayes, KNN, and decision
tree—over five distinct sensor configurations for collecting detailed hand gesture EMG
data from the forearms of eight participants. An extensive set of 22 features, encompassing
both time and frequency domains per sensor, were extracted from the EMG signals. Prior
studies suggest that a mixed-domain feature set can bolster classifier performance [29].
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The application of PCA to select key features significantly reduced feature space di-
mensionality, enhancing classification accuracy. The results, as summarized in Tables 1–5,
identified sensor setup C5 (two sensors placed proximal to the wrist along flexor digitorum
superficialis and flexor pollicis longus) as the most effective, yielding the highest accuracy
with SVM, naïve Bayes, and decision tree classifiers. The SVM classifier, empowered by MKL,
consistently achieved over 90% accuracy in gesture classification through C5, as shown in
Table 2 and Figure 5. The dual-sensor configuration of C5, which captures data from the
muscles controlling thumb and index finger movements, suggests an advantageous strategy
for sensor placement in prosthetic hand design.

The fine pinch gesture, depicted in Figure 1b, emerged as particularly challenging
due to its lower muscle contraction levels and reliance on just two fingers, making it more
prone to noise. C5’s precise sensor positioning over the active muscles during this gesture
enabled the capture of more nuanced data. A comparison of C1 and C5 (Figure 2) illustrates
the significant influence of an additional EMG sensor on classification accuracy, confirming
the superiority of dual-channel over single-channel EMG in gesture recognition.

When space constraints limit sensor placement near the wrist on a prosthetic arm,
C4 (two sensors placed proximal to the wrist along flexor digitorum superficialis and
along flexor digitorum superficialis and flexor digitorum profundus) emerges as a feasible
alternative, achieving 87.2% accuracy with SVM (Table 5). These results highlight the
importance of both sensor location on the muscle and proximity to the muscle belly for
optimal data collection.

MKL’s enhancement of SVM performance is evident in sensor configuration C3 (one
sensor placed along flexor digitorum superficialis and flexor digitorum profundus), where
a single sensor competes closely with the dual-sensor C4 in accuracy (SVM testing accuracy,
Table 5). MKL’s adaptive selection of kernel functions for C3’s data is a significant advance
over single-kernel methods. The SVM’s hyperparameter C plays a pivotal role in balancing
model complexity against overfitting, with a range of values from 0.01 to 10, evaluated
through a 10-fold grid search cross-validation (Table 1). This fine-tuning was crucial for
developing an optimized SVM model with strong generalization capabilities for precise ges-
ture classification. Thus, for prosthetic arms that can only incorporate one EMG sensor, C3
is the recommended setup. The use of MKL with SVM significantly improves performance
over base SVMs, especially for classifying multiple gestures and allowed us to achieve
non-zero MKL coefficients for classifying all five gestures as detailed in Table 1. While base
SVMs excel in binary classification, MKL handles the complexity of EMG signals better by
combining multiple kernels. This results in robust classification of five distinct gestures,
justifying the added complexity of MKL.

The confusion matrices demonstrate SVM’s high performance over different gestures
at around 80% to 100% with the C5 configuration. Additionally, SVM excelled as a binary
classifier for the fine pinch versus power grasp gestures (Figure 1), achieving 100% accuracy.
A noted trend is the reduction in classification accuracy with an increasing number of ges-
tures, a phenomenon that resonates with previous findings [26]. This decline is attributed
to the broader dispersion of EMG signals in the forearm and the resultant signal overlap
from simultaneous muscle contractions when performing complex gestures.

A potential limitation of the present study, when extended to real-time online EMG
classification, is the slight variation in the lengths of EMG segments in the time domain
used for feature extraction across different gesture configurations. This limitation can be
readily addressed by selecting precisely equal segment lengths during online application.
Another limitation of the current work is the sample size of eight participants. This sample
size is similar to other samples sizes in the literature [25,27]. However, the limited sample
size may affect the robustness of accuracies obtained to a certain level. The current study
serves to validate the proposed methodology on a small scale, and it is planned to conduct
future experiments with a larger sample size and include individuals with limb differences
to directly evaluate the application of our findings in prosthetic hand control. This will
enhance the generalizability and relevance of the current research.
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Future research will apply the findings from this paper to replicate hand gestures in
a myoelectric hand prosthetic in real-time. It will also explore different sensor configura-
tions and machine learning techniques to further enhance the performance of myoelectric
prostheses. Additionally, the development of more sophisticated feature extraction and
classifier optimization methods could be beneficial in handling multifaceted EMG signal
analysis. This study serves as a steppingstone towards the realization of more efficient and
effective myoelectric prostheses, and it is hoped that the insights gained will inspire further
exploration in this promising field.

5. Conclusions

This study has made significant strides in the field of myoelectric prosthetic technology,
with key findings that have the potential to shape future research and applications. The su-
perior performance of the dual-channel configuration index-ring and index-thumb (C4 and
C5) underscores the importance of optimal sensor placement in enhancing the functionality
of myoelectric prostheses. The application of MKL in the SVM classifier, particularly in
placing one sensor in ring (configuration C3), has demonstrated its efficacy in achieving
high classification accuracy even with a single sensor. The observed decrease in accuracy
with an increase in the number of gestures highlights the need for comprehensive feature
extraction and classifier optimization for complex EMG signal analysis. These findings
collectively pave the way for advancements in myoelectric prostheses, emphasizing the
need for refined sensor configurations and machine learning methodologies to improve
gesture recognition accuracy.
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Abstract: The widespread availability of GPS-enabled devices and advances in positioning tech-
nologies have significantly facilitated collecting user location data, making it an invaluable asset
across various industries. As a result, there is an increasing demand for the collection and sharing of
these data. Given the sensitive nature of user location information, considerable efforts have been
made to ensure privacy, with differential privacy (DP)-based schemes emerging as the most preferred
approach. However, these methods typically represent user locations on uniformly partitioned grids,
which often do not accurately reflect the true distribution of users within a space. Therefore, in
this paper, we introduce a novel method that adaptively adjusts the grid in real-time during data
collection, thereby representing users on these dynamically partitioned grids to enhance the utility
of the collected data. Specifically, our method directly captures user distribution during the data
collection process, eliminating the need to rely on pre-existing user distribution data. Experimental
results with real datasets show that the proposed scheme significantly enhances the utility of the
collected location data compared to the existing method.

Keywords: location privacy; density distribution; differential privacy; geo-indistinguishability

1. Introduction

The proliferation of GPS-enabled devices and recent advances in positioning technolo-
gies have made it easier to collect user location data, making them a valuable asset for
various sectors. These data play an important role in areas such as personalized marketing,
real-time traffic analysis, recommendations, etc. For example, real-time traffic analysis
utilizes location data to optimize traffic flow, reduce congestion, and improve navigation
systems for more efficient travel [1,2]. Additionally, location-based recommendations for
services, restaurants, and events provide users with relevant and timely suggestions, en-
hancing their overall experience [3,4]. As a result, the demand for collecting and sharing
user location data continues to increase.

User location data are sensitive because they contain personal information, such as
home or company addresses, hospital visit records, and even political affiliations [5–7].
For example, by collecting and analyzing the positioning information of visitors in a large
indoor shopping mall, it is possible to infer sensitive details, such as their shopping patterns.
In addition, location data can be cross-referenced with other data sets to draw even more
precise conclusions about an individual’s lifestyle and choices [8]. For example, frequent
visits to certain types of businesses or locations can indicate specific health conditions,
hobbies or even religious practices. As a result, the indiscriminate collection of location
data raises significant privacy concerns. Consequently, considerable efforts have been made
to protect the privacy of users’ location data when handling such data.

As differential privacy (DP) [9,10] has become the de facto standard for handling
sensitive personal data, significant efforts have been made to apply it to location data.
As a result, numerous DP-based methods have been proposed to collect, process, and
analyze location data while preserving privacy. Many of these approaches represent user
location data using grids, where the entire domain is uniformly partitioned into disjoint
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grids, and a user’s location is represented by the grid in which his or her actual position
lies [11–14]. Although representing user location using uniformly partitioned grids is
straightforward, it does not account for the actual distribution of users within the space.
This approach often results in lower utility of collected location data, as it assumes that
users are evenly and uniformly distributed throughout the area. However, this is not true
in most real-world scenarios, where some areas are denser than others. For example, in
an urban environment, the city center may have a high concentration of users, while the
suburbs have a lower density. This discrepancy can negatively impact the accuracy and
effectiveness of subsequent analyses. Therefore, more sophisticated grid representations
that align with actual user distributions are necessary to improve data utilization and
enhance the performance of these applications.

Existing solutions assume the existence of prior information about the distribution
of users, typically obtained from historical data. However, such historical data may not
always be available for many applications. More importantly, prior information about the
distribution of users derived from historical data may not match the current distribution as
it may change over time or in response to special social events. For example, major events
such as festivals can dramatically change user movement patterns and densities, rendering
historical data obsolete or misleading [15]. Therefore, it is preferable to instantaneously
extract information about the distribution of users during data collection and adaptively
adjust the grid accordingly.

In this paper, we propose a novel method that simultaneously extracts the distribution
of users and adaptively adjusts the grid in real-time during location data collection. The
contributions of this work can be summarized as follows:

• First, we introduce a method to effectively compute the distribution of users during
DP-based location data collection. This approach is able to effectively capture user
distribution in real-time and adapt to dynamic changes in user behavior.

• Then, we propose a method to adaptively adjust the grid to maximize the utility of
the collected location data under DP. This adaptive grid adjustment is designed to
improve the granularity and relevance of the data, ensuring that the most significant
and densely populated areas are prioritized, thus improving the overall quality and
applicability of the data.

• We evaluated the performance of the proposed algorithms using real-world datasets.
The evaluation results demonstrated that the proposed scheme significantly enhances
the utility of the collected location data compared to existing methods

The rest of this paper is organized as follows: Section 2 reviews related work. In
Section 3, we provide background information. In Section 4, we introduce a novel method
that simultaneously extracts user distribution and adaptively adjusts the grid in real-time
during location data collection. In Section 5, we experimentally evaluate the proposed
approach with real datasets. Finally, Section 6 presents our conclusions

2. Related Work

Numerous DP-based methods have been developed to collect, process, and analyze
location data while preserving privacy. In this section, we provide a brief overview of
these methods.

Local differential privacy (LDP) is a variant of DP in which each user individually
perturbs his own sensitive data before reporting it to the server. Kim and Jang [12] propose
an LDP-based data aggregation approach designed for workload-aware collection of indoor
positioning data, while ensuring user privacy. Their method identifies an optimal data
encoding and perturbation strategy within the LDP framework to minimize the overall
estimation error for the given workload. LDPTrace [14] is designed to synthetically generate
locally differentially private trajectory data. In this method, user location information is
collected using LDP to ensure privacy, and these perturbed data are then used to generate
synthetic trajectories. Kim et al. [3] present a method for recommending the next point-of-
interest, utilizing location data collected under LDP.
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Metric differential privacy (MDP) extends the standard differential privacy frame-
work to handle data with inherent metric or distance measures [16]. This extension is
particularly useful for location-based data. Geo-indistinguishability (Geo-Ind) is a specific
application of MDP designed for location-based services [11,17,18]. Mobile Crowdsens-
ing (MCS) frameworks often use Geo-Ind to collect location information from workers
and assign tasks in a privacy-preserving manner. Wang et al. [19] was the first to use
Geo-Ind to protect the location privacy of workers in the MCS process. Their proposed
framework includes three steps: First, the MCS server generates a function that satisfies
Geo-Ind. Next, each worker downloads this function, obfuscates their true location, and
uploads the obfuscated location to the server. Finally, the MCS server assigns tasks to
workers based on the obfuscated location information. In [20], location privacy protection
in vehicle-based MCS is investigated, where the roadmap is modeled as a weighted di-
rected graph with task and worker locations as points on the graph. The authors propose
an optimization mechanism-based obfuscation scheme that achieves location obfuscation
through a probabilistic distribution over the graph that satisfies Geo-Ind. Jin et al. [21]
proposes a user-centric location privacy trading framework for MCS. Following the notion
of Geo-Ind, they design a location obfuscation mechanism that allows each worker to
probabilistically obfuscate his true location using his own privacy budget. Zhang et al. [13]
introduces an obfuscation method that satisfies Geo-Ind to collect location information
from workers in MCS. Huang et al. [22] propose a privacy-aware scheme for MCS-based
noise monitoring, where the server publishes tasks and workers report perturbed locations
and noise levels under DP. Each worker collaborates with a master, carefully selected from
the workers in the same group, to achieve group-level Geo-Ind. Zhao et al. [23] explored
the privacy protection of individuals’ locations in the context of analyzing the geographic
directional distribution of the community. They defined community information using a
covariance matrix and integrated it into the proposed geo-ellipse indistinguishability based
on Geo-Ind. This geo-ellipse indistinguishability provides quantifiable privacy guarantees
for locations within Mahalanobis space. Yu et al. [24] highlighted the weaknesses of cur-
rent Geo-Ind-based location obfuscation mechanisms, especially when users consistently
share their locations with multiple LBS providers over a long period of time. To address
this issue, they introduced PrivLocAd, a system that uses location profiling to generate
obfuscated locations, thereby protecting user privacy against multi-platform adversarial at-
tacks. Zhao et al. [25] introduced a novel privacy concept called vector-indistinguishability,
which builds on Geo-Ind to provide a privacy guarantee for location-dependent relations.
They have developed four mechanisms to achieve vector-indistinguishability, using both
Laplace and uniform distributions. Mendes et al. [26] utilized user velocity and report
frequency to measure the correlation between locations. They extended Geo-Ind to enhance
privacy preservation in continuous online reporting scenarios. Specifically, they introduced
a velocity-aware Geo-Ind that automatically balances privacy and utility based on the
user’s velocity and frequency of location reports.

EGeoIndis [27] is a vehicle location privacy protection framework designed for traffic
density estimation. It leverages Geo-Ind to protect vehicle location privacy during the
traffic density estimation process. In [28], the authors proposed a deep learning-based
method to estimate the density distribution using location data collected under Geo-Ind.
Chen et al. [29] develop a method to create a COVID-19 vulnerability map using the
density distribution of volunteer participants with COVID-19 symptoms. They exploit
Geo-Ind to collect participants’ locations in a privacy-preserving manner to ensure the
confidentiality of sensitive health information. Fathalizadeh et al. [30] present a framework
for implementing Geo-Ind for indoor environments. The proposed framework considers
two scenarios for applying Geo-Ind, reporting an obfuscated point to the location service
provider that satisfies DP.

The proposed approach in this paper leverages Geo-Ind, which is a representative
model in the domain of privacy-preserving location data collection. However, the pro-
posed approach differs from other Geo-Ind-based methods in several ways. First, existing
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methods typically rely on the availability of historical data to infer user distribution, which
presents significant challenges. Historical data may not always be accessible or current,
resulting in inaccurate inferences of user distribution. Second, most existing methods
use static grid structures, resulting in a fixed representation that does not account for the
dynamic movement of users. In contrast, the proposed method addresses these limitations
by adaptively adjusting grids in real-time during data collection. This dynamic adjustment
captures the current user distribution without relying on historical data, thereby enhancing
the utility of the collected data.

3. Background and Problem Statement

In this section, we provide the necessary background for this paper and state the
problem addressed in this paper.

3.1. Background

Recently, DP has emerged as the de facto standard for privacy-preserving data process-
ing. DP is based on a formal mathematical definition that provides a probabilistic privacy
guarantee against attackers with arbitrary background knowledge [9]. It ensures that an
attacker cannot determine with high confidence whether a given individual is included in
the disseminated data. DP is formally defined as [9,10]:

Definition 1. (ϵ-DP) A randomized algorithm A satisfies ϵ-DP, if and only if for (1) any
two neighboring datasets, D1 and D2, and (2) any output O of A, the following is satisfied:

Pr[A(D1) = O] ≤ eϵ × Pr[A(D2) = O]. (1)

Two datasets, D1 and D2, are considered neighboring if they differ by only one record.
The above definition indicates that, for any output of A, an adversary with any amount
of background knowledge cannot reliably determine whether D1 or D2 was the input to
A. The parameter ϵ, known as the privacy budget, regulates the privacy level: smaller ϵ
values provide stronger privacy protection but add more noise to the result, whereas larger
ϵ values offer weaker privacy protection with less noise.

There have been several proposals to apply the concept of DP to the protection of
location data. In this paper, we use Geo-Ind, a concept based on the well-established DP
framework and recognized as the standard privacy definition for protecting location data
in location-based services [11,17,18]. In addition to location data, Geo-Ind is also used
to collect other types of data, such as text microdata, in a DP-compliant manner [31,32].
Geo-Ind is formally defined as follows:

Definition 2. (ϵ-Geo-Ind) Consider X as the set of possible user locations and Y as the set of
reported locations, which are typically assumed to be equal. Let K be a randomized mechanism that
generates a perturbed location from a user’s true location. A randomized mechanism K satisfies
ϵ-Geo-Ind if and only if the following condition holds for (1) all x1, x2 ∈ X and (2) any output
location y ∈ Y :

K(x1)(y) ≤ eϵ·d(x1,x2) × K(x2)(y), (2)

where d(x1, x2) corresponds to the distance between x1 and x2.

There are two primary methods for implementing Geo-Ind: the Laplace mechanism
and the matrix-based mechanism. It is well known that the matrix-based mechanism is more
effective than the Laplace method, given prior information about the distribution of users
which can be obtained from available historical data [11]. This increased effectiveness is due
to the fact that the matrix-based mechanism incorporates prior distribution information
when perturbing the true locations of users. As a result, the distribution of perturbed
locations collected using the matrix-based mechanism more closely approximates the true
distribution than the distribution collected using the Laplace mechanism.
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In the matrix-based mechanism, the space is first partitioned into a set of grids,
and then the data collection server computes an obfuscation matrix, M, over these grids
that satisfy ϵ-Geo-Ind. This matrix is then distributed to users. Subsequently, users
perturb their location data according to the probabilities embedded in M and report
the perturbed location to the server instead of their true data. Several approaches for
computing the obfuscation matrix that satisfies ϵ-Geo-Ind have been proposed in the
literature [11,13,14,32,33]. We, however, note that the method proposed in this paper is
general enough to be applied to any matrix-based mechanism.

3.2. Problem Statement

Let U = {u1, u2, · · · , uk} be a set of users who agree to provide their location in-
formation to the server. However, users do not fully trust the server and thus, instead
of providing true location information, each user provides perturbed (and thus privacy-
preserved) location information that satisfies ϵ-Geo-Ind. Let us assume that the entire area
is divided into disjoint grids, and let G be the set of these grids. Each user’s location is then
represented by the grid in G to which his/her true location belongs.

The problem addressed in this paper is to collect high-utility location data while
protecting users’ location privacy with ϵ-Geo-Ind. Existing methods either use static grid
partitioning that does not adapt to real-time changes in user distribution or rely on pre-
existing user distribution data, which may not be available or accurate in real-time scenarios.
In order to address these gaps, we propose a novel adaptive grid partitioning method that
dynamically adjusts the grid during the process of location data collection. In particular,
the proposed method directly captures user distribution during data collection, eliminating
the need for pre-existing distribution information.

4. Proposed Method

Figure 1 provides an overview of the proposed location data collection scheme
using ϵ-Geo-Ind.

• Collection of perturbed location data from sampled users: The server first computes
the obfuscation matrix, M, over uniformly partitioned grids and distributes it to the
sampled users, who then send their perturbed locations back to the server.

• Estimation of the distribution of users: The server estimates the distribution of users
based on the perturbed location data collected from the sampled users.

• Computation of adaptively partitioned grids: The server uses the estimated distribu-
tion of users to compute adaptively partitioned grids.

• Collection of perturbed location data from remaining users using adaptively parti-
tioned grids: A new obfuscation matrix is computed using the adaptively partitioned
grids. This new obfuscation matrix is then used to collect location data from the
remaining users.

Figure 1. An overview of the proposed privacy-preserving location data collection scheme.
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In next subsections, we provide a detailed explanation of each step.

4.1. Collecting Perturbed Location Data from Sampled Users

Let us assume that the entire area is uniformly partitioned into m grids, G = {g1, g2, · · · , gm}.
The data collection server computes an obfuscation matrix, M, over G. There are various ap-
proaches for computing M that satisfy ϵ-Geo-Ind. In this paper, we use the method proposed
in [13], where the obfuscation matrix is defined as an m×m matrix. Each element M[i, j], which
represents the probability that a perturbed location gj is randomly generated from the true
location gi, is defined as follows:

M[i, j] =
e−

ϵ
2 ·d(gi ,gj)

∑gk∈G e−
ϵ
2 ·d(gi ,gk)

(3)

Once computing the obfuscation matrix M, it is distributed to the sampled users, who
then perturb their true location according to the probabilities encoded in M and report the
perturbed location to the server.

4.2. Estimating Probability Distribution

After collecting perturbed location data from sampled users, the next step is to estimate
the distribution of users based on these data. For each grid gi ∈ G, let P(gi) be the
probability that a user is located at gi. Then, in this subsection, we estimate P(gi) for all
gi ∈ G from the sampled perturbed location data.

Let g′j ∈ G be the perturbed data that the server receives from a sampled user. For the
sake of explanation, we will use g′j to denote the perturbed location and gj to denote the
true location. The probability that this perturbed location is randomly generated from the
true location gi ∈ G can be computed as follows:

P(gi|g′j) =
P(gi)P(g′j|gi)

p(g′j)
=

P(gi)P(g′j|gi)

∑gk∈G P(gk)P(g′j|gk)
=

P(gi)M[i, j]
∑gk∈G P(gk)M[k, j]

(4)

Note, that P(g′j|gi) = M[i, j] by the definition of the obfuscation matrix. Since it is not
possible to compute the prior probability, P(gi), directly from the above equation, we need
to approximate it. There are several methods to approximate the prior probability, including
variational inference [34], Markov chain Monte Carlo [35] and expectation propagation [36].
In this paper, we use the Expectation-Maximization (EM) algorithm [37] to estimate P(gi).
The EM algorithm is particularly effective when the likelihood is well defined, which in
our case corresponds to the obfuscation matrix, M.

Let DB be a bag of perturbed location data from sampled users. The EM process for
estimating P(gi) for all gi ∈ G from DB is as follows.

• Initialization: The parameter (i.e., prior probability) is initialized as follows:

P(0)(g1) = P(0)(g2) = · · · = P(0)(gm) =
1
m

(5)

• E-step: The posterior probability is calculated based on the current parameters as follows:

P(gi|g′j) =
P(t)(gi)M[i, j]

∑gk∈G P(t)(gk)M[k, j]
(6)

• M-step: The parameter is updated using the current posterior probabilities calculated
in the previous E-step:

P(t+1)(gi) =
∑g′j∈DB P(gi|g′j)

|DB| (7)
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Here, |DB| represents the number of data in DB. After updating the prior probabilities,
we perform a normalization step to ensure that the sum of all prior probabilities
equals 1 as follows:

P(t+1)(gi) =
P(t+1)(gi)

∑gk∈G P(t+1)(gk)
(8)

The above E-step and M-step are iterated until the parameter converges to a stable
value or the number of iterations reaches a predefined threshold.

4.3. Computing Adaptively Partitioned Grids

In this subsection, we introduce a method that adaptively partitions grids based on the
probability distribution (i.e., P(gi) for all gi ∈ G) computed in the previous phase. Initially,
the proposed method treats all grids in G as a single grid cluster, and then iteratively
partitions this cluster in a top-down using a greedy algorithm.

Let GCv = {C1, C2, · · · , C|GCv |} represent a set of grid clusters after the v-th partition.
Assume that for each Ck ∈ GCv, grid(Ck) ⊂ G denotes the set of grids that belong to the
cluster Ck. Let n be the total number of users from whom the server collects location data.
Then, the expected number of users located in grid gi is computed as Cnt(gi) = n · P(gi).

Furthermore, let MGCv be an |GCv| × |GCv| obfuscation matrix, satisfying ϵ-Geo-Ind,
constructed over elements in GCv using Equation (3). The distance between any two clusters
necessary to compute MGCv is determined using the centroids of the grids belonging to
each cluster. Then, assuming that users perturb their location according to the probabilities
encoded in MGCv , the expected number of perturbed location data corresponding to grids
belonging to CK that the server receives from n users is computed as follows:

Cntpert(Ck) = ∑
Cj∈GCv

∑
gi∈grid(Cj)

Cnt(gi)× M[j, k] (9)

Let Clus() be a function that takes a grid as input and outputs the cluster to which
that grid belongs. Assuming that users are evenly distributed across the grids within each
cluster, the expected error due to Geo-Ind with GCv is computed as follows:

ErrGCv = ∑
gi∈G

∣∣∣Cnt(gi)−
Cntpert(Clus(gi))

size(Clus(gi))

∣∣∣ (10)

Here, size(Ck) denotes the number of grids that belong to the cluster Ck.
Let us assume that in the next (v + 1)-th partition, Ch ∈ GCv is selected to be divided

into subclusters. In this paper, we partition Ch into four equal-sized subclusters by dividing
the associated region horizontally and vertically. Let GCh

v+1 represent the set of grid clusters
newly obtained by subdividing Ch. Using the method described above, we can similarly
estimate the expected error, ErrGCh

v+1
, caused by Geo-Ind with GCh

v+1. The set of grid

clusters for the (v + 1)-th iteration is then determined as follows:

GCv+1 = argmax
1≤h≤|GCv |

(
ErrGCh

v+1
− ErrGCv

)
(11)

In other words, a grid cluster Ch that provides the maximum error reduction gain is
selected for partitioning in the next iteration.

Algorithm 1 presents pseudocode for adaptively partitioning grids using the proba-
bility distribution of users. The algorithm takes as input a set of grids, G, and probability
distributions, P(g1), · · · , P(gm), and outputs a set of grid clusters, GC. In line 1, GCcur is
initialized to contain a single cluster that includes all grids in G. Then, in line 3, ErrGCcur

is computed using GCcur. Between lines 4 and 12, the algorithm identifies the cluster
Ch ∈ GCcur that yields the maximum error reduction gain. This process is repeated until
the error reduction gain is greater than 0. Finally, the algorithm returns GCcur.
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Algorithm 1: Pseudo-code for adaptive grid partition
input : G = {g1, · · · , gm} and P(gi) for all gi ∈ G
output :a set of grid clusters GC

1 Initialize GCcur;
2 while true do
3 ErrGCcur = EstimateErr(GCcur, MGCcur ) ;
4 Idx = 0, Gainbest = −∞;
5 for h = 1 to |GCcur| do
6 GCh

cur = PartitionGrid(GCcur, h) ;
7 ErrGCh

cur
= EstimateErr(GCh

cur, MGCh
cur
) ;

8 if (ErrGCh
cur

− ErrGCcur ) > Gainbest then
9 Idx = h;

10 Gainbest = ErrGCh
cur

− ErrGCcur ;
11 end
12 end
13 if Gainbest > 0 then
14 GCcur = GCIdx

cur ;
15 else
16 break
17 end
18 end
19 return GCcur;

The proposed adaptive grid partitioning method in this subsection relies on the
probability distribution of users estimated from sampled data. Thus, as with other sampling-
based methods, there is a possibility that the sampled data may be biased. Such biases can
result in a non-representative user distribution being used for grid partitioning, which can
lead to ineffective partitioning. This, in turn, can adversely affect the overall utility of the
collected location data, because the adaptive grids may not accurately reflect the true user
density. In order to mitigate potential biases and inaccuracies in capturing real-time user
distribution, spatial variations can be considered in the sampling process. One effective
method is to use stratified sampling [38], which involves dividing the entire region into
disjoint subregions. By ensuring that each subregion is proportionally represented in the
sample, stratified sampling helps reduce sampling bias and provides a more accurate
estimate of the user distribution.

4.4. Collecting Perturbed Location Data from Remaining Users Using Adaptively Partitioned Grids

A new obfuscation matrix, M, is computed using the adaptively partitioned grid
set, GC, computed in the previous phase. The adaptively partitioned grids allow for a
more precise and relevant obfuscation process by capturing the dynamic nature of the
user distribution more effectively than static grids. Once the new obfuscation matrix is
computed, it is distributed to the remaining users. These users then use the updated matrix
to perturb their true location data, ensuring that their privacy is preserved according to the
principles of Geo-Ind. The obfuscated location data are then sent back to the server, where
it is integrated with the previously collected data from the sampled users.

5. Experiments

In this section, we first describe the experimental setup. Then, we discuss the
experimental results.

5.1. Experimental Setup

In this section, we describe the experiments we carried out to evaluate the proposed
approach. For our experiments, we used the Porto taxi trajectories dataset [39], which
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consists of taxi trajectories composed of a series of GPS coordinates recorded from 442 taxis
operating in the city of Porto, Portugal. We randomly extracted 50,000 location data
from these trajectories, of which 10,000 were considered as location data of the sampled
users. In the experiment, we varied the number of grids from 400 (i.e., 20-by-20 grids) to
10,000 (i.e., 100-by-100 grids). In the experiments, results are reported for the following
alternatives: the existing non-adaptive grid (NG) method in [13], and the adaptive grid
(AG) method introduced in this paper. We use the following metrics for evaluation:

• Data-level metric measures the similarity between the true location dataset and the
perturbed location dataset collected under ϵ-Geo-Ind. For the data-level evaluation,
we use both the average count error (ACE) and the density error. The average count
error quantifies the difference between the actual number of users, numtrue(gi), and
the number derived from the perturbed dataset, numpert(gi), for each grid. It is
calculated as

Average count error = ∑
1≤i≤m

|numtrue(gi)− numpert(gi)|
max(numtrue(gi), 1)

(12)

The density error measures the difference between the actual density distribution of
users and the perturbed version computed from the datasets collected under ϵ-Geo-
Ind. This error is measured as

Density error = JSD(D(OD), D(PD)) (13)

Here, JSD() represents the Jenson–Shannon divergence between two distributions
from the original location dataset, D(OD) and from the perturbed location dataset,
D(PD).

• Application-level metric evaluates the utility of collected data from the perspective of
applications that use it. We use range query error for this metric, a widely recognized
measure for evaluating the effectiveness of location data [14]. In the experiment, we
generate a range query, QR, with a random region R, and compare the number of
results from the original location dataset, QR(OD), with those from the perturbed
location datasets, QR(PD). It is calculated as

Range query error =
|QR(OD)− QR(PD)|

max(QR(OD), 1)
(14)

In the experiments, we generated 200 range queries and reported the average range
query error.

In the experiment, various privacy budgets (ϵ) ranging from 0.2 to 2.0 were used. A
privacy budget of less than 2 is typically considered acceptable in practical applications [14].
We implemented both NG and AG using Python 3.8, and all experiments were conducted
in an environment equipped with Intel Xeon 5220R CPUs and 64 MB of memory.

5.2. Results

In this subsection, we first present the results of evaluating the data level, and then
present the results of evaluating the application level.

5.2.1. Data-Level Evaluation

Figure 2 shows the effect of the privacy budget on both the average count error and the
density error. In this experiment, the privacy budget varies from 0.2 to 2.0, while the grid
size is fixed at 400. As ϵ decreases, both errors increase. This is because as ϵ decreases, the
degree of perturbation caused by Geo-Ind increases, leading to an increased error, which
is commonly observed with DP-based methods. As shown in the figures, the proposed
method (AG) consistently outperforms the existing method (NG) across all privacy budget
levels. Furthermore, the performance gap between the two methods increases as the privacy
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budget decreases, and thus the level of privacy increases. This shows that the proposed
method is more advantageous for applications that require a high level of privacy, which is
typical for most applications that handle location data.
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Figure 2. Effect of the privacy budget on (a) the average count error and (b) the density error for the
existing non-adaptive grid (NG) method and the proposed adaptive grid (AG) method.

Figure 3 shows the effect of the number of grids on the average count error and the
density error. In this experiment, the number of grids varies from 400 to 10,000, while the
privacy budget is fixed at 0.6. The figure shows that the proposed method consistently
outperforms the existing method across all grid sizes. More specifically, as can be seen in
the figure, the average count error decreases as the number of grids increases. Note that
as the number of grids increases, the number of users per grid decreases because the total
number of users is fixed. This, in turn, reduces the average count error, which is based on
the absolute difference between the users obtained from the actual location data and the
perturbed location data. On the other hand, as the number of grids increases, the density
error, which measures the Jenson–Shannon divergence between two distributions from the
original location data set and the perturbed location data sets, increases. This is because the
Jenson–Shannon divergence measures the relative difference between distributions, and
therefore, is not affected by the number of users per grid. As the grid size becomes finer,
the perturbations in the data have a more pronounced effect on the distribution, resulting
in a higher divergence between the original and perturbed datasets.
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Figure 3. Effect of the number of grids on (a) the average count error and (b) the density error for the
existing non-adaptive grid (NG) method and the proposed adaptive grid (AG) method.

The results shown in Figures 2 and 3 confirm that the proposed method enables the
collection of location data that are more similar to the original data under Geo-Ind than
the existing method. These results highlight the significant advantages of our approach
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in privacy-preserving location data collection. By dynamically adjusting grids based on
real-time user distribution under Geo-Ind, we achieve higher data accuracy and utility.

5.2.2. Application-Level Evaluation

Figure 4 illustrates the effect of the privacy budget and the number of grids on the
range query error. In Figure 4a, the grid size is fixed at 400, while in Figure 4b, the privacy
budget is fixed at 0.6. As shown in the figure, as ϵ decreases, the error associated with the
existing method increases dramatically, while the error for the proposed method increases
only marginally. This occurs because the proposed method is able to collect location
datasets that are closer to the original datasets, as verified by the data-level evaluation.
The robustness of our approach under varying privacy budgets highlights its effectiveness
in balancing privacy and accuracy. As ϵ becomes smaller, indicating stronger privacy
guarantees, the proposed method still manages to preserve the utility of the data, making
them more reliable for applications that require precise location information.

Moreover, the proposed method consistently outperforms the existing method across
all grid sizes. This verifies that our proposed method is robust regardless of the number
of grids. The ability to maintain low query error rates across different grid configurations
demonstrates the adaptability and effectiveness of our approach. This robustness is crucial
for practical applications that require different granularity in representing user location
(i.e., number of grids) depending on the application requirements.

These experimental results indicate that the proposed method can be used for a wide
range of location-based services and applications requiring different privacy levels and
granularity in representing user location.
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Figure 4. Effect of (a) the privacy budget and (b) the number of grids on the range query error for the
existing non-adaptive grid (NG) method and the proposed adaptive grid (AG) method.

5.2.3. Evaluation of Network Variability and Grid Adaptation Effects

All experiment results in the previous subsections were obtained under the assump-
tion that the network conditions are stable. However, in real-world scenarios, network
conditions can be highly variable and unpredictable. The proposed method adaptively
partitions the grid based on the sampled location data collected during the process of
location data collection. However, unstable network conditions, such as high network
latency, packet loss, and low bandwidth, can delay the timely collection of these sampled
data. As a result, some sampled data may not be available for the computation of adaptive
grid partitioning, which may lead to less accurate grid partitioning.

In this subsection, to address the challenges of unstable networks, we evaluate the
effectiveness of the proposed method in real network scenarios. The experiment shown in
Table 1 considers a scenario where some of the sampled location data needed to estimate
the user distribution in Section 4.2 (which is then used to adaptively compute the grid
partitions in Section 4.3) is either lost or not received in time due to unstable network
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conditions such as high latency, packet loss, and low bandwidth. In this experiment, the
loss rate of sampled location data varies from 1% to 20%, covering a range from typical
to severe network conditions. In the experiment, the number of grids is set to 400 and
the privacy budget is set to 0.6. As shown in Table 1, even as the loss rate of sampled
location data increases from 1% to 20%, both errors remain stable with only a very small
increase. In particular, even under severe network conditions with a 20% loss rate, the
proposed adaptive grid (AG) method significantly outperforms the non-adaptive grid (NG)
method. These results verify the robustness and effectiveness of the proposed method in
maintaining data utility under real network scenarios with varying levels of data loss due
to unstable network conditions.

Table 1. Effect of the loss rate of sampled location data on the average count error and the density error.

AG
NG

Loss Rate of Sampled Location Data 0% 1% 5% 10% 20%

Average Count Error 4.705 4.867 4.896 4.936 5.018 9.842

Density Error 0.319 0.321 0.328 0.336 0.341 0.440

The proposed method adaptively adjusts the grid during the location data collec-
tion process, which introduces additional latency due to the computational overhead of
computing the adaptive grid. Hence, we experimentally evaluate the latency introduced
by the proposed method. Table 2 shows the latency results caused by the adaptive grid
computation of the proposed method. In this experiment, the number of grids varies from
400 to 10,000, while the privacy budget is fixed at 0.6. As shown in the table, the latency
increases as the grid size increases. This is because as the number of grids increases, the
number of iterations required to adaptively partition the grids also increases. As a result,
larger grids require more computational resources, which leads to higher latency.

Table 2. Latency caused by computing the adaptive grid.

Grid size 20 × 20 40 × 40 60 × 60 80 × 80 100 × 100

Execution time (s) 4.10 17.41 43.12 139.56 439.56

We note that although the computation of the adaptive grid introduces additional la-
tency as shown in Table 2, it is a one-time process within the overall location data collection
procedure. Therefore, the impact of this overhead on the overall processing time of the
location data collection is limited. Furthermore, the additional latency caused by the com-
putational overhead of adaptively partitioning the grid can be mitigated by various parallel
processing techniques. In particular, techniques such as distributed computing frame-
works [40,41] and GPU acceleration can significantly reduce computation time, thereby
mitigating this latency. By distributing the workload across multiple processors, these
approaches can improve the efficiency of the adaptive grid partitioning process, ensuring
data analysis in real-time applications.

6. Conclusions and Future Work

Recently, there has been an increasing demand for the collection and sharing of
location data. Given the sensitive nature of user location information, considerable efforts
have been made to ensure privacy, with differential privacy-based schemes emerging as
the preferred approach. However, these schemes typically represent user locations on
uniformly partitioned grids, which often do not accurately reflect the true distribution of
users within a space. In this paper, we presented a novel approach that dynamically adjusts
the grid in real-time during location data collection using Geo-Ind to enhance the utility of
the collected data. The proposed method captures the user distribution directly during data
collection, eliminating the reliance on pre-existing distribution information. Experimental
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results on real data confirmed that the proposed scheme significantly improves the utility
of the collected location data at both the data and application levels. Specifically, the
results showed that compared to the existing solution, the proposed method can reduce
the error rate by up to 52% in data-level experiments and by up to 75% in application-
level experiments.

Despite the promising results, the proposed method has the following limitations.
Since the proposed method adaptively adjusts the grid in real-time during data collection,
there is an additional computational overhead associated with computing the adaptive
grid. This overhead is especially significant when using large grid sizes. Thus, future work
will focus on improving the efficiency of the adaptive grid computation, especially for large
grid sizes with large numbers of users. This can be achieved by parallelizing the adaptive
grid partitioning process to reduce the computational overhead. We will explore various
parallel processing techniques, such as implementing distributed computing frameworks
such as Apache Hadoop [40] or Apache Spark [41], which distribute data and computation
across a cluster of machines. In addition, multi-threading within a single machine and the
use of GPU acceleration can be considered to increase efficiency. Furthermore, integrating
cloud computing services will improve scalability by providing a dynamic and scalable
infrastructure for performing adaptive grid partitioning on large datasets.

Another future research direction is to theoretically analyze the impact of adaptive
grid partitioning on the data utility of collected location data. This analysis will elucidate
the underlying principles of adaptive grid partitioning and its impact on data utility, thus
providing more robust theoretical support for the proposed method. In addition, the
privacy-utility tradeoff can be further investigated to optimize the balance between privacy
and utility. This will include the development of models and metrics to quantitatively
assess this trade-off under various conditions.
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