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Abstract: Human action recognition has facilitated the development of artificial intelligence de-
vices focusing on human activities and services. This technology has progressed by introducing
3D point clouds derived from depth cameras or radars. However, human behavior is intricate, and
the involved point clouds are vast, disordered, and complicated, posing challenges to 3D action
recognition. To solve these problems, we propose a Symmetric Fine-coarse Neural Network (SFCNet)
that simultaneously analyzes human actions’ appearance and details. Firstly, the point cloud se-
quences are transformed and voxelized into structured 3D voxel sets. These sets are then augmented
with an interval-frequency descriptor to generate 6D features capturing spatiotemporal dynamic
information. By evaluating voxel space occupancy using thresholding, we can effectively identify the
essential parts. After that, all the voxels with the 6D feature are directed to the global coarse stream,
while the voxels within the key parts are routed to the local fine stream. These two streams extract
global appearance features and critical body parts by utilizing symmetric PointNet++. Subsequently,
attention feature fusion is employed to capture more discriminative motion patterns adaptively.
Experiments conducted on public benchmark datasets NTU RGB+D 60 and NTU RGB+D 120 validate
SFCNet’s effectiveness and superiority for 3D action recognition.

Keywords: point cloud analysis; 3D action recognition; pattern recognition; deep learning

1. Introduction

Human action recognition aims to help computers understand human behavior se-
mantics from various data recorded by the acquisition devices. Particularly, 3D action
recognition is dedicated to mining action patterns from 3D data involving human move-
ments. It has attracted increasing attention due to its widespread applications, such as
public safety monitoring, performance appraisal, military reconnaissance, and intelligent
transportation [1].

The current mainstream 3D action recognition methods can be classified into depth-
based methods (including depth maps and point cloud sequences) [2–4] and skeleton-
based methods [5,6] depending on the data type employed. Limited by the accuracy
pose estimation algorithm—the unavoidable upstream task—skeleton-based methods
face computational consumption and robustness challenges. By contrast, depth-based
methods are more task-independent and have attracted widespread attention. Existing
depth-based 3D action recognition approaches mainly fall into two main categories. The
first one is to encode 3D motions into one or more images [2,3,7,8] and utilize CNNs [9]
for action recognition. However, the 2D image plane cannot fully characterize the 3D
dynamics because human actions are concurrently spatiotemporal and conducted in the
3D space. The other is to transform the depth video into a point cloud sequence [10], which
records the 3D coordinates of points in space at multiple time instances. Thus, compared
with images, point cloud sequences have the advantage of retaining 3D appearance and
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geometry dynamics over time, enabling advanced analysis and understanding of human
actions. In addition, point clouds can be obtained using various devices such as laser
scanners, radars, depth sensors, and RGB+D cameras, which can be mounted on drones,
street lights, vehicles, and surveillance aircraft, expanding the application scope of action
recognition. However, due to the complex structure and massive volume of the point cloud,
the existing 3D action recognition methods based on it have the following challenges.

Firstly, point cloud sequences always have massive points proportional to the time
dimension, and the data processing schema is time-consuming. Therefore, developing an
efficient and lightweight point cloud sequence model is pivotal for 3D action recognition.
Secondly, the points in the sequences are irregular, exhibiting unordered intra-frame spatial
information and ordered inter-frame temporal details, making it challenging to analyze the
underlying movement patterns. However, existing point cloud processing methods usually
perform undifferentiated downsampling of the overall point clouds, resulting in uniform
loss of essential and subtle information. In addition, existing point cloud analysis schemes
ignore the critical body parts contributing to the actions, resulting in the lack of nuances of
the extracted action features, which finally limits the performance of action recognition.

To solve these problems, we propose a deep learning framework called the Symmetric
Fine-coarse Neural Network (SFCNet) that symmetrically combines the analysis of motion
features from local and global perspectives, as shown in Figure 1. Firstly, to save computa-
tional costs, we reduce the points by frame sampling and farthest point sampling. Next,
the sampled point clouds are transformed into 3D voxels to create a compact point cloud
representation. The original 3D positions are then attached with an interval-frequency
descriptor to depict the overall spatial configuration and facilitate the identification of es-
sential body parts, allowing us to divide the point cloud sequences into local fine space and
global coarse space. We treat the voxels involved in these two spaces as points and employ
PointNet++ [11] to extract features in an end-to-end manner. Finally, our feature fusion
module combines the global appearance and local details to obtain discriminative features
for 3D action recognition. The extensive experiments on the large-scale NTU RGB+D 60
and NTU RGB+D 120 datasets demonstrate the effectiveness and preponderance of SFCNet,
by which human intention can be judged and assisted in remote sensing applications.
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Figure 1. The pipeline of SFCNet. It converts depth frames into a point cloud and applies voxeliza-
tion operations. A symmetric structure encodes 3D voxels, with crucial parts and global dynamic
information processed separately. The attached interval-frequency descriptor initially characterizes
the motion information and then is processed by PointNet++ [11] for deeper features. Finally, the
classifier recognizes 3D actions using the aggregated feature.

In general, the main contributions of our work are as follows:

• We propose an interval-frequency descriptor to characterize the 3D voxels during
action execution, which fully preserves the motion details and provides critical clues
for key body parts’ perception. To the best of our knowledge, our work is the first to
handle point cloud sequences in this way.
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• We construct a deep learning framework named SFCNet, which first employs a
symmetric structure to process point cloud sequences. It encodes the local crucial
body parts’ dynamics via a fine stream and then supplements these intricate details
to the global appearance captured by a coarse stream. The SFCNet can emphasize
essential body parts and capture more discriminative motion patterns, addressing the
effective action representation problem based on point clouds.

• The presented SFCNet has demonstrated its superior accuracy on two publicly avail-
able datasets, NTU RGB+D 60 and NTU RGB+D 120, which proves that our method
has considerable potential in recognizing various types of actions such as daily actions,
medical-related actions, and two-person interaction actions.

2. Related Works
2.1. Skeleton-Based 3D Action Recognition

Existing 3D action recognition methods can be classified into skeleton-based meth-
ods [12–17] and depth-based methods [3,7,12,18,19]. There are generally four mainstream
approaches for skeleton-based action recognition. The first is to utilize CNN [12] to learn
the spatial–temporal patterns from pseudo-images [13,14]. Caetano et al. [20] introduced
the tree structure reference joints image (TSRJI) to represent skeleton sequences. The second
is considering the skeleton sequences as time series [15–17] and using backbones such
as RNN [21] for feature extraction. The third is to view the skeletal data as graphs [6,22]
with joints as vertices and bones as edges and turn to GCN [16] for action representation.
For example, ST-GCN [23] effectively represented the temporal dynamic information of
skeleton sequences using spatial–temporal graph convolution and partitioning strategies.
SkeleMotion [5] captured temporal dynamic information by computing the size and ori-
entation of skeleton joints at different time scales. The fourth is to encode the skeleton
as tokens via Transformer. Plizzari et al. [24] employed spatial–temporal attention in
Transformer and captured a dynamic inter-frame relation of joints. However, since there
are still significant challenges in accurate 3D human pose estimation [25,26], skeleton-based
action recognition methods suffer from performance cascading due to this unavoidable
upstream task.

2.2. Depth-Based 3D Action Recognition

For depth-based 3D action recognition, early approaches mainly represent depth videos
by manual descriptors [19]. Yang et al. [7] constructed depth motion maps (DMMs) by
stacking the inter-frame differences of the projected depth frames. Then, they calculated the
histogram of oriented gradients (HOGs) to represent the actions. Such methods have limited
expressive power and thus usually need help in capturing spatial–temporal information. In
recent years, deep learning methods have become mainstream with the development of neural
networks. Most researchers attempted to compress deep video into images and analyzed
motion patterns using CNNs [12]. Kamel et al. [27] input depth motion images (DMIs) and
moving joint descriptors (MJDs) to CNNs for action recognition. To encode spatial–temporal
information of depth sequences, Adrián et al. [28] proposed 3D-CNN to extract motion
features. Furthermore, they proposed ConvLSTM [29] to accumulate discriminative motion
patterns from long short-term units. Xiao et al. [3] rotated the virtual camera within the
3D space to densely project a raw depth video from different virtual imaging viewpoints
and thus constructed multi-view dynamic images. For perspective view invariants, Kumar
et al. [30] proposed an ActionNet based on CNNs and trained with a multi-view dataset
collected using five depth cameras. Ghosh et al. [31] computed multi-view depth descriptor
edge-detected-motion history image (ED-MHI) as the input of a multi-stream CNN model.
Wang et al. [2] utilized segmented depth video sequences to generate three types of dynamic
depth images. However, the 2D depth map still has difficulty in fully exploiting 3D motion
patterns due to its compact spatial structure [10].

Recently, the conversion of depth maps into point clouds for processing has achieved
better results in both recognition and segmentation fields. Numerous studies have shown
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that point clouds have significant advantages in representing 3D spatial information due
to their characteristics, such as disorder and rotation invariance. Deep learning for point
clouds has not only been widely used in classification and segmentation tasks but has
also demonstrated muscular strength in scene reconstruction [32] and target detection [33].
However, the above methods focus only on features within static point clouds. When using
point clouds for 3D action recognition, it is necessary to extract dynamic features according
to the time intervals and the appearance features of the whole action process. The key to an
efficient processing of point cloud sequences lies in selecting a suitable point cloud analysis
method. Thomas et al. [34] developed a method inspired by image-based convolution
and employed a set of kernel points to distribute each kernel weight. As an efficient tool
for analyzing and processing point sets, PointNet++ [11] is widely applied for 3D action
recognition based on point cloud sequences. The first method is 3DV [10], which executes
3D voxelization towards the point cloud sequences and describes the 3D appearance by
spatial occupancy, and temporal rank pooling is utilized for 3DV extraction. This method
primarily focuses on an action’s general motion and appearance changes. However, it
ignores the details of the action, such as a subtle hand movement, which limits its ability to
represent behavior accurately. Hence, we aim to capture the crucial parts of actions and
their delicate information to recognize them as more robust human actions.

3. Methodology
3.1. Pipeline

The pipeline of the proposed SFCNet is shown in Figure 1. First, each depth frame is
transformed into a point cloud to better preserve the dynamic and appearance features in the
3D space. To facilitate the analysis of spatial usage and delineate the local space, we perform
voxelization operations on the point clouds. Next, we build a symmetric framework to encode
3D voxels, where key parts and global dynamic information are processed separately in the
local fine stream and global coarse stream. Then, we attach the interval-frequency descriptor
to supplement motion information. We employ PointNet++ [11] to capture motion patterns
and send the aggregated feature to the classifier for 3D action recognition.

3.2. Three-Dimensional Voxel Generation

Depth video has the advantage of resisting external interference, such as background
and light, compared with RGB modal because it contains the depth information of the
action subject. Essentially, depth video is a kind of time series data composed of depth
maps arranged in chronological order. Mathematically, a depth video with t frames can
be defined as D = {d1, d2, . . . , dt}, where di is a depth map of t frame in which each pixel
represents a 3D coordinate (x, y, z) and z is the distance from the depth camera. Since it is
impossible to classify the importance of action in the time dimension by a single criterion,
uniform sampling can help us better grasp the overall motion process compared with
random sampling [10]. Therefore, we first sample the depth video uniformly to ease the
computational burden while maintaining the integrity of the action. The depth sequence
after sampling is denoted as D̂ = {d1, d2, . . . , dT}, where T is the number of frames and the
default is 64.

Some current action recognition methods [35,36] choose to map depth frames to 2D
spaces for direct processing. Although these approaches can sometimes achieve good per-
formance, it cannot overcome the problem of inadequate representation of 3D information.
Therefore, to better depict human motion in 3D space, we transform each frame di into a
point cloud P = {p1, p2, . . . , pn}, where n is the number of points, thus generating a point
cloud sequence S = {P1, P2, . . . , PT}. When generating point clouds, intrinsic parameters
of the camera are required because they define the imaging model of the camera, including
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focal length and principal point coordinates (cx, cy). For each pixel (x, y, z) in the depth
image, its corresponding point cloud p(x

′
, y

′
, z

′
) can be obtained by the following formula:

p(x
′
, y

′
, z

′
) = (

(x − cx)× z
fx

,
(y − cy)× z

fy
,

z
fz
) (1)

where fx and fy represent the focal length of the depth camera in the horizontal direction
and the vertical direction, which can be obtained from the device parameters. fz is set to 1
by default.

Unlike traditional images (regular structured data), the points in the point cloud are
unordered, so it is challenging to process. Many existing algorithms are designed for
regular grid data. However, the unordered point cloud is a group of randomly distributed
points in 3D space, so their structure is complex to process and analyze directly. To
solve this problem, we transform the point cloud into a regular 3D grid (voxel space)
by voxelization to regularize the point cloud representation. First, we define the size of
voxel grid Vgrid = (Vx, Vy, Vz) in three dimensional coordinates, which determines the
resolution of the voxelization process. Each cell in this grid is a potential voxel and the size
of each cell is denoted as Vvoxel(dx, dy, dz). Given a point p(x, y, z) in the point cloud, it is
mapped to the grid by finding the corresponding voxel index Vindex(x, y, z) according to
the following equation:

Vindex(x, y, z) = (⌊ x − xmin
dx

⌋, ⌊y − ymin
dy

⌋, ⌊ z − zmin
dz

⌋) (2)

where xmin, ymin, and zmin are the minimum coordinates of all the point clouds. dx, dy,
and dz are calculated as the total size divided by the number of cells in each dimension
(Vx, Vy, Vz). The floor function ⌊.⌋ rounds down to the nearest point. We define that a
voxel is occupied if it contains a point cloud. Then, the 3D appearance information can be
described by observing whether the voxels have been occupied or not, disregarding the
excluded point, as depicted in Equation (3):

Vt
voxel(x, y, z) =

{
1, if Vt

voxel(x, y, z) is occupied
0, otherwise

, (3)

where Vt
voxel(x, y, z) indicates a certain voxel at the tth frame. (x, y, z) is the regular 3D position

index, i.e., Vindex in Equation (2). This strategy holds two main profits. First, the yielded
binary 3D voxel sets are regular, as depicted in Figure 2. Thus, the complexity of point cloud
processing is reduced. In addition, voxelization can effectively compress point clouds because
neighboring voxels may have similar characteristics. This compression not only reduces the
amount of points but also helps to reduce the overhead of storage and computation.

3.3. Identification and Representation of Key Parts

The vital issue in 3D action recognition tasks is efficiently capturing and representing
dynamic features within point cloud sequences. For now, estimation methods based on
scene flow [37,38] can help to understand 3D motion, but it is very time-consuming. Some
studies use temporal rank pooling [3,39] to preserve motion processes in 3D space by
dividing time segments. These methods can capture more temporal information but often
only divide a small number of intervals, resulting in coarse-grained dynamic features. We
propose a crucial part identification and encoding module to better focus on the critical
dynamics during the motion. It can extract the major parts from the global 3D voxel space
according to the space occupancy times and encode the action details through fine-stream.
Specifically, we first analyze the space occupancy by constructing a 3D space U with the
exact boundaries as point cloud sequences for each spatial location, and the initial values
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of U are set to 0. We process the m uniform groups of sequence D̂ in order. Then, the 3D
space usage can be calculated according to Equation (4):

Uvoxel(x, y, z) =

{
Uvoxel(x, y, z) + 1, vi ̸= 0

Uvoxel(x, y, z), otherwise
(4)

The total space occupation u for each position can be obtained after counting all m
point sets. In addition, since the point sets are naturally ordered in time, we can easily
record the first and last time taken, f and l, respectively, for each spatial location. Then,
we define the threshold θ to partition the prominent local space. The locations occupied
less than θ are treated as incidental noise, and those that record more than and less than m
constitute the critical motion parts S as Equation (5):

Svoxel(x, y, z) =

{
0, Uvoxel(x, y, z) < θ

1, θ ≤ Uvoxel(x, y, z) ≤ m
(5)

If the value of Svoxel(x, y, z) equals 0, this denotes that the voxel belongs to the global
space G; otherwise, it belongs to the local space L. Compared with the point cloud
processing methods [10,40], which commonly adopt uniform downsampling operations,
the proposed method is more effective, especially for actions involving only a tiny number
of limb parts, because dividing the local space can not only also overcome the background
effects to a certain extent, but also effectively enhance the gold content of the sampled point
data. As shown in Figure 2, the local space L fully preserves the detailed information of the
main body parts, which provides critical cues for 3D action recognition while substantially
reducing redundancy.

x

z

0

(a) Drinking water

X

Y

Z

x

z

0 X

Y

Z

(b) Punching

x

z

0 X

Y

Z

x

z

0 X

Y

Z

x

z

0 X

Y

Z

x

z

0 X

Y

Z

Voxel occupancy 
quantification

, , ;U x y z （ ）

Binary filtering

, ,L x y z（ ）=0/1

Voxel occupancy 
quantification

, , ;U x y z （ ）

Binary filtering

, ,L x y z（ ）=0/1

(a) Drinking water (b) Punching

0.5

1.0

Focus more on the 
local key parts

0.5

1.0

Focus more on 
the global 

appearances

Figure 2. The process of local space division. We quantify the contribution of a voxel to an action by
its space occupancy count. By setting a threshold, the critical parts can be divided as a compressed
local space, which removes redundant information and reduces computational burden.

3.4. Symmetric Feature Extraction

For the processed 3D voxels, the most intuitive way is to employ 3DCNN [41,42], but
it is limited by the voxel size and is time-consuming. We opt to use PointNet++ [11] as the
feature extractor in this work, as shown in Figure 3. It is designed explicitly for hierarchical
feature learning on unordered point sets in metric space, which allows it to capture local
fine-grained patterns in point clouds. To achieve this, PointNet++ partitions the point
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cloud into overlapping local regions based on a distance metric in the underlying space. To
obtain detailed 3D visual cues, PointNet++ recursively employs PointNet [43] to extract
local features, which are then merged for global appearance analysis. PointNet++ is an
excellent alternative to 3DCNNs as it performs well in capturing local 3D patterns essential
for action recognition. Moreover, applying it is relatively straightforward and only requires
transforming 3D voxels into point sets.
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Figure 3. The network structure of SFCNet. It is a symmetric network structure comprising the
global coarse stream and a local fine stream. The global coarse stream takes the global appearance
information as input, while the local fine stream only adopts the compressed key part information.
The features of each stream are extracted by PointNet++ and fused by the learnable weights as the
final action features, which are sent to the classifier for 3D action recognition.

To fit PointNet++, each point p(x, y, z) is then abstracted as the voxel Vvoxel(x, y, z) with
the descriptive feature of (x, y, z, I), where I is the interval-frequency descriptor including
three variables (o, f , l) which denote start timestamps, end timestamps, and the overall
occupancy frequency of the voxels, respectively. We attach I to the original 3D positions of
voxels to obtain the 6D points p

′
(x, y, z, o, f , l), as shown in Figure 4. Mathematically, for

a voxel Vvoxel , we can determine the start and end time (o and f ) of its space occupancy
using Equation (3), which indicates the time index when the conditions Vt

voxel(x, y, z) = 1
and Vt

voxel(x, y, z) = 0 are first satisfied. Additionally, the total space occupation u can be
calculated by Equation (4). Consequently, the occupancy frequency l can be computed
as l = u/( f − o). The interval-frequency descriptor covers time interval and the overall
occupancy frequency of the spatial locations can not only help us to distinguish the reverse
actions that cover the same space, but also help to highlight the differences between actions
by retaining detailed information within action process. Finally, the obtained point sets are
utilized as the input of PointNet++ to extract action features.

In addition, we design a two-stream network to process the point cloud in the global
and local space, respectively (as shown in Figure 3). The global space contains all the
voxelized points, and the global coarse stream captures the overall motion patterns. Con-
sidering that vital body parts can provide more targeted and discriminative dynamic
information for action recognition, we divide the voxelized points of essential body parts
into local spaces and input the fine stream to extract features. After that, the feature fusion
module is settled for fine-coarse action representation. Considering the characteristics of
different actions, their dependence on global and local features is various. For actions that
only involve limb movements, such as waving and kicking, the model should emphasize
local fine-grained stream features. In contrast, for large whole-body motions such as falling
and jumping, the model should focus on the characteristics of the global stream. To achieve
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this action-specific perception, we employ the feature fusion module with attention mecha-
nism. First, we project the features X f ∈ Rn×1024 and Xc ∈ Rn×1024 extracted from the fine
and coarse streams, respectively, into the lower feature space to reduce the computational
burden and obtain X

′
f and X

′
c. Then, the intermediate features are extracted by multi-layer

perceptron (MLP). After that, the learnable weights W f and Wc of global coarse stream
and local fine stream are obtained through the activation function SoftMax, respectively.
Finally, the global and local features are fused as shown in Equation (6) to obtain the motion
feature X̂:

W f = SoftMax
(

MLP
(

X′
f

))
Wc = SoftMax

(
MLP

(
X′

c
))

X̂ = φ

(
K

∑
i=1

(
Wi

f X(i)
f + Wi

cX′(i)
c

)) (6)

where φ is the linear layer and K is the length of the features’ output by MLP. Finally,
the fully connected layer dimensionally restored the fused feature X̂, and the SoftMax
classifier obtained the final prediction scores. Unlike existing methods that directly analyze
the motion state of the whole point clouds, our work focuses on the critical body part
when performing actions, which helps to overcome the influence of redundant data such
as background on 3D action recognition. In addition, the details of the crucial parts and the
global appearance of human body complement each other, which stimulates discriminative
feature extraction for 3D action recognition.

V (x, y, z)

Z

X

Y

(x, y, z, o, f, l)V 

Attach interval-

frequency descriptor 

to each 3D voxel

0

V: voxel set

o:  start timestamps

f:   end timestamps

l:   occupy frequency

Figure 4. Illustration of the additional interval-frequency descriptor. It contains start timestamps,
end timestamps, and the overall occupancy frequency of the voxels and is denoted as (o, f , l) in
Section 3.4; thus, the 3D depth spatial information is transformed into features of six channels.

4. Experiments
4.1. Datasets

NTU RGB+D 60 dataset . The NTU RGB+D 60 [44] is a large-scale 3D action recogni-
tion dataset that contains around 56,880 RGB+D action samples. It uses Microsoft Kinect
V2 to capture 60 action categories performed by 40 subjects. The dataset follows two
evaluation principles. In the case of cross-view, the samples captured by camera 1 were
used as the testing set, and cameras 2 and 3 are regarded as the training set. That is, the
number of testing samples is 18,960, and 37,920 samples are used for training. In the case
of cross-subject, the data are divided into a testing set of 16,560 samples and a training set
of 40,320 samples based on the subject’s ID.

NTU RGB+D 120 dataset. NTU RGB+D 120 [45] is an extensive dataset for 3D
action recognition, consisting of 114,480 samples and 120 action categories completed by
106 subjects. This dataset contains daily actions, medical-related actions, and two-person
interaction actions. The samples are collected in various locations and backgrounds, which
are denoted as 32 setups. In addition to the general cross-subject settings, the cross-setup



Appl. Sci. 2024, 14, 6335 9 of 16

evaluation is introduced, where the training set comes from samples with odd setup IDs,
and the testing set comes from the rest.

4.2. Training Details

By default, the SFCNet and its variations are trained using the Adaptive Moment
Estimation (Adam) optimizer for 60 epochs under the PyTorch deep learning framework,
unless stated otherwise. We use the standard cross-entropy loss and apply data augmen-
tation techniques such as random rotation, dithering, and dropout to the training data.
The learning rate starts from 0.001 and decays at 0.5 every ten epochs. To ensure fair-
ness, we strictly follow the sample segmentation scheme of the two datasets according to
benchmarks.

4.3. Parameter Analysis

The size of 3D voxels. Point clouds typically consist of a large number of unordered
sets of points. Due to the complexity of these data, it can be very time-consuming to store
and process. To alleviate this issue, we embed the unordered points in 3D space into a
regular grid structure through rasterization. This converts the point cloud into 3D voxels
based on space occupancy, discretizing the continuous 3D space into a regular grid. This
process provides a regular and well-understood structure, which reduces computational
complexity and compresses the point cloud data, significantly reducing computational
burden. It is essential to voxelize the point cloud appropriately because the size of the
3D voxel determines the strength of the point cloud compression and the granularity of
the point cloud representation. To examine the impact of voxelization on the results, we
evaluated the performance of SFCNet on the NTU RGB+D 60 dataset for different-sized
voxels. The results are presented in Table 1, indicating that the model performs best for a
35 mm cube size. Setting the size too large or too small can lead to a decrease in accuracy.

Table 1. Performance on the NTU RGB+D 60 dataset with different-sized voxelization.

Voxel Size (mm) Cross-Subject Cross-View

25 × 25 × 25 87.1% 94.9%
35 × 35 × 35 89.9% 96.7%
45 × 45 × 45 88.1% 95.5%
55 × 55 × 55 86.5% 93.6%

The setting of threshold θ. Human behavior usually involves only the movement of
specific body parts, such as arm waving, leg walking, head rotation, etc. This locality means
that behavioral analysis should be more focused on essential body parts rather than the
whole body. With the help of the occupancy frequency variable l in the interval-frequency
descriptor, we can describe the engagement of each voxel, which is positively related to
the contribution of the body part in the action execution process. Since we sample the
depth action sequence into groups of equal duration, the occupancy frequency l positively
correlates with the number of occupancy u in Section 3.3. Then, a threshold θ is employed to
evaluate the attention given to the body part. To investigate the influence of threshold, we
compare the performance of the SFCNet on the NTU RGB+D 60 dataset with various values.
The findings are presented in Table 2. The optimal outcome can be obtained when θ equals
30. Our research discovered that slight modifications in θ, by no more than 5, resulted
in fluctuations in accuracy, underscoring the significance of investigating thresholds and
breaking down significant body parts.
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Table 2. Performance on the NTU RGB+D 60 dataset with various values of θ.

The Value of the Threshold θ Cross-Subject Cross-View

15 79.5% 85.1%
20 83.5% 93.2%
25 86.5% 94.4%
30 89.9% 96.7%
35 87.3% 94.9%
40 86.9% 93.7%

4.4. Ablation Study

Effectiveness of interval-frequency descriptor. The original 3D point cloud data only
contain the location information of the points in the 3D space. Even if the time dimension
is introduced into the point cloud sequences, it is still challenging to describe the overall
spatiotemporal dynamics of the point by relying only on these clues. We have designed
an interval-frequency descriptor that captures the onset time and the number of voxel
occupancy. This additional information helps us to comprehensively describe human
behavior by capturing additional motion features. We conducted ablation studies on the
NTU RGB+D 60 dataset where we removed motion feature information in two streams, and
the point sets input to SFCNet only had 3D coordinates (x, y, z). The comparison results
are presented in Table 3. We observed that without additional three-dimensional features,
there was a significant performance degradation of SFCNet by more than 10%.

Table 3. Effectiveness of interval-frequency descriptor on the NTU RGB+D 60.

Point Feature Cross-Subject Cross-View

(x, y, z) 78.0% 82.3%
(x, y, z, o, f, l) 89.9% 96.7%

This indicates that the interval-frequency descriptor effectively represents the dynamic
features within the whole action process, which plays a vital role in 3D action recognition.

Effectiveness of two-stream feature fusion. Different human actions contain different
global and local dynamics, we describe the overall motion pattern of the whole human
body during the action through the global coarse stream. In contrast, the local fine stream
describes the dynamics of crucial body parts, which pays more attention to the details and
local features of actions and helps capture the subtle changes and complex action patterns.
The results in Table 4 show that our proposed SFCNet fusing the fine-coarse features of the
two streams can understand and recognize human actions more comprehensively. First, we
discuss the recognition performance in the single-stream state. It can be seen that the local
stream has a higher ability to represent the action than the global stream, indicating that it
is essential to pay attention to the main parts involved to remove redundancy. In addition,
we compare three different feature fusion strategies to demonstrate the superiority of
attention-based feature fusion proposed in SFCNet (see Equation (6)). As shown in Table
4, SFCNet (fusion) has apparent advantages over the native cascade or additive fusion
strategies. The main reason is that the attention-based feature fusion can adaptively allocate
the model’s attention to the features from the global coarse stream and the local fine stream.
As shown in Figure 5, drinking water only involves hand and head interaction, and the
movement amplitude is small, so the model emphasizes the characteristics of the local
stream to capture fine-grained movement patterns. On the other hand, punching involves
the interaction of two people, and the punching movement is large and powerful, so
more attention is paid to the global body appearance while emphasizing some details of
the hands and the head. This action-specific feature extraction mechanism improves the
generalization ability of SFCNet and accuracy for 3D action recognition.
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Table 4. Effectiveness of two-stream feature fusion on the NTU RGB+D 60 dataset.

Input Stream Cross-Subject Cross-View

1s-SFCNet (L) 85.0% 94.6%
1s-SFCNet (G) 81.8% 86.6%

SFCNet (concat) 88.9% 94.8%
SFCNet (add) 86.7% 93.9%

SFCNet (fusion) 89.9% 96.7%
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Figure 5. Feature attention visualization. We visualize the heat map of drinking water and punching.

4.5. Comparison with Existing Methods

To evaluate the performance of the proposed SFCNet, we compare it with existing methods
on two large benchmark datasets as shown in Tables 5 and 6. We divide existing 3D action
recognition methods into skeleton-based and depth-based methods. In skeleton-based meth-
ods, we compare different backbone-based methods, including CNN [5], LSTM [15,46], and
GCN [6,23,47]. For depth-based methods, we compare 2D image-based methods [19,35,48],
3D CNN-based methods [28], and 3D voxel-based methods [10]. The comparison results are
reported in Tables 5 and 6. For the NTU RGB+D 60 dataset, the proposed SFCNet achieves
89.9% and 96.7% accuracy in the case of cross-subject and cross-view settings. In addition, we
compare SFCNet with two methods based on multimodal data. Compared with ED-MHI [31],
which combined depth and skeleton data, our method improves the accuracy by 4.3% in the
cross-subject setting. TS-CNN-LSTM [49] fused data from three modalities, namely RGB, depth,
and skeleton, but it is 2.6% and 4.9% lower than SFCNet in the cross-subject setting and cross-
view settings, respectively. For the NTU RGB+D 120 dataset, SFCNet also achieves competitive
results, achieving accuracies of 83.6% and 93.8% under cross-subject and cross-view settings,
respectively. In general, SFCNet is effective and excellent, which outperforms traditional meth-
ods using manual feature extraction [19,35,50] and deep learning methods that compress depth
video into images for processing [2,3,36] or point cloud sequences [10]. The experimental results
prove that the SFCNet is superior for capturing discriminative human behavior patterns and
thus is beneficial to 3D action recognition.
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Table 5. Comparison of different methods for action recognition accuracy (%) on the NTU RGB+D
60 dataset.

Method Cross-Subject Cross-View Year

Input: 3D Skeleton
GCA-LSTM [15] 74.4 82.8 2017

Two-stream attention LSTM [46] 77.1 85.1 2018
ST-GCN [23] 81.5 88.3 2018

SkeleMotion [5] 69.6 80.1 2019
AS-GCN [6] 86.8 94.2 2019

2s-AGCN [47] 88.5 95.1 2019
ST-TR (new) [24] 89.9 96.1 2021

DSwarm-Net (new) [51] 85.5 90.0 2022
ActionNet [30] 73.2 76.1 2023

SGMSN (new) [52] 90.1 95.8 2023
Input: Depth maps

HON4D[19] 30.6 7.3 2013
HOG2 [35] 32.2 22.3 2013
SNV [50] 31.8 13.6 2014
Li. [36] 68.1 83.4 2018

Wang. [2] 87.1 84.2 2018
MVDI [3] 84.6 87.3 2019

3DV-PointNet++ [10] 88.8 96.3 2020
DOGV (new) [53] 90.6 94.7 2021

3DFCNN [28] 78.1 80.4 2022
3D-Pruning [54] 83.6 92.4 2022

ConvLSTM (new) [29] 80.4 79.9 2022
CBBMC (new) [48] 83.3 87.7 2023

PointMapNet (new) [55] 89.4 96.7 2023
SFCNet (ours) 89.9 96.7 -

Input: Multimodalities
ED-MHI [31] 85.6 - 2022

TS-CNN-LSTM [49] 87.3 91.8 2023

Table 6. Comparison of different methods for action recognition accuracy (%) on the NTU RGB+D
120 dataset.

Method Cross-Subject Cross-Set Year

Input: 3D Skeleton
GCA-LSTM [15] 58.3 59.3 2017

Body pose evolution map [56] 64.6 66.9 2018
Two-stream attention LSTM [46] 61.2 63.3 2018

ST-GCN [23] 70.7 73.2 2018
NTU RGB+D 120 baseline [45] 55.7 57.9 2019

FSNet [57] 59.9 62.4 2019
SkeleMotion [5] 67.7 66.9 2019

TSRJI [20] 67.9 62.8 2019
AS-GCN [6] 77.9 78.5 2019

2s-AGCN [47] 82.9 84.9 2019
ST-TR (new) [24] 82.7 84.7 2021

SGMSN (new) [52] 84.8 85.9 2023
Input: Depth maps

APSR [45] 48.7 40.1 2019
3DV-PointNet++ [10] 82.4 93.5 2020

DOGV (new) [53] 82.2 85.0 2021
3D-Pruning [54] 76.6 88.8 2022
SFCNet (ours) 83.6 93.8 -
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5. Discussion

In order to analyze the advantages and disadvantages of the proposed method, we
have presented the recognition accuracy of SFCNet on the NTU RGB+60 dataset on the
cross-subject settings for each category. The results are shown in the form of a confusion
matrix in Figure 6(left). We have selected some confusing actions for a clearer display and
magnified them locally, as shown in Figure 6(right). The results show that SFCNet has a
robust human action analysis ability, with a recognition accuracy higher than 90% in most
categories. For instance, it has achieved 100% accuracy for hopping and 99% for jumping
up. However, SFCNet is confused about the recognition of some similar actions. For
example, reading and writing, wearing shoes and taking off shoes are the most confusing
sample pairs. Additionally, 25% of those playing with their phones were misclassified as
reading (9%), writing (8%), and typing on the keyboard (8%). The accuracy of typing on
the keyboard is only 66%, and 12% of the samples are misclassified as writing. From the
analysis, we have found that these actions have only subtle differences, and the motion
amplitude is small. This is the main reason why such actions are difficult to distinguish.

L(x, y, z)

Z

X

Y

(x, y, z, o, f, l)L’

Attach interval-
frequency descriptor 

to each 3D voxel
0

Figure 6. Confusion matrix for class-specific recognition accuracy. The image on the (left) contains
all the action categories. To emphasize some of the obfuscation actions, a local zoom-in is shown on
the (right).

6. Conclusions

In this paper, we propose a symmetric neural network, SFCNet, to recognize 3D actions
from point cloud sequences. It contains a global coarse stream and a local fine stream that
employs PointNet++ as a feature extractor. The point cloud sequences are regularized as
structured voxel sets appended by the proposed interval-frequency descriptor to generate
6D features that capture spatiotemporal dynamic information. The global coarse stream
captures the coarse-grained action patterns by human body appearance, and the local
delicate stream extracts action-specific fine-grained features from critical parts. After
feature fusion, SFCNet can mine discriminative motion patterns that involve overall spatial
changes and emphasize crucial details end-to-end. According to the experimental results
on two large benchmark datasets, NTU RGB+D 60 and NTU RGB+D 120, the SFCNet is
effective for 3D action recognition and has the potential for remote sensing applications.
However, the proposed SFCNet still has limitations in distinguishing similar actions. Our
future work will focus on recognizing similar actions and capturing subtle patterns to
improve accuracy.
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