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5. Introduction to Robot Geometry and Kinematics 

 

The goal of this chapter is to introduce the basic terminology and notation used in robot geometry 

and kinematics, and to discuss the methods used for the analysis and control of robot 

manipulators. The scope of this discussion will be limited, for the most part, to robots with 

planar geometry. The analysis of manipulators with three-dimensional geometry can be found in 

any robotics text1. 

 

5.1 Some definitions and examples 

  

We will use the term mechanical system to describe a system or a collection of rigid or flexible 

bodies that may be connected together by joints.  A mechanism is a mechanical system that has 

the main purpose of transferring motion and/or forces from one or more sources to one or more 

outputs. A linkage is a mechanical system consisting of rigid bodies called links  that are 

connected by either pin joints or sliding joints.  In this section, we will consider mechanical 

systems consisting of rigid bodies, but we will also consider other types of joints.  

 

Degrees of freedom of a system 

The number of independent variables (or coordinates) required to completely specify 

the configuration of the mechanical system. 

 

While the above definition of the number of degrees of freedom is motivated by the need to 

describe or analyze a mechanical system, it also is very important for controlling or driving a 

mechanical system.  It is also the number of independent inputs required to drive all the rigid 

bodies in the mechanical system.  

  

Examples: 

(a) A point on a plane has two degrees of freedom. A point in space has three degrees of 

freedom.  

(b) A pendulum restricted to swing in a plane has one degree of freedom.  

                                                 
1In particular, two books offer an excellent treatment while keeping the mathematics at a very simple level: (a) Craig, 
J. J. Introduction to Robotics, Addison-Wesley, 1989; and (b) Paul, R., Robot Manipulators, Mathematics, 
Programming and Control, The MIT Press, Cambridge, 1981. 
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(c) A planar rigid body (or a lamina) has three degrees of freedom. There are two if you consider 

translations and an additional one when you include rotations.  

(d) The mechanical system consisting of two planar rigid bodies connected by a pin joint has 

four degrees of freedom. Specifying the position and orientation of the first rigid body 

requires three variables. Since the second one rotates relative to the first one, we need an 

additional variable to describe its motion. Thus, the total number of independent variables or 

the number of degrees of freedom is four.  

(e) A rigid body in three dimensions has six degrees of freedom. There are three translatory 

degrees of freedom. In addition, there are three different ways you can rotate a rigid body.  

For example, consider rotations about the x, y, and z axes. It turns out that any rigid body 

rotation can be accomplished by successive rotations about the x, y, and z axes. If the three 

angles of rotation are considered to be the variables that describe the rotation of the rigid 

body, it is evident there are three rotational degrees of freedom.  

(f) Two rigid bodies in three dimensions connected by a pin joint have seven degrees of 

freedom. Specifying the position and orientation of the first rigid body requires six variables. 

Since the second one rotates relative to the first one, we need an additional variable to 

describe its motion. Thus, the total number of independent variables or the number of degrees 

of freedom is seven.  

 

Kinematic chain 

A system of rigid bodies connected together by joints. A chain is called closed if it 

forms a closed loop. A chain that is not closed is called an open chain.  

 

Serial chain 

If each link of an open chain except the first and the last link is connected to two other 

links it is called a serial chain. 

 

 An example of a serial chain can be seen in the schematic of the PUMA 560 series robot2, an 

industrial robot manufactured by Unimation Inc., shown in Figure 1.  The trunk is bolted to a 

fixed table or the floor. The shoulder rotates about a vertical axis with respect to the trunk. The 

upper arm rotates about a horizontal axis with respect to the shoulder. This rotation is the 

shoulder joint rotation. The forearm rotates about a horizontal axis (the elbow) with respect to 

the upper arm. Finally, the wrist consists of an assembly of three rigid bodies with three 

                                                 
2The Programmable Universal Machine for Assembly (PUMA) was developed in 1978 by Unimation Inc. using a set 
of specifications provided by General Motors.  
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additional rotations.  Thus the robot arm consists of seven rigid bodies (the first one is fixed) and 

six joints connecting the rigid bodies.  

 

 

Figure 1 The six degree-of-freedom PUMA 560 robot manipulator. 

 

 

Figure 2 The six degree-of-freedom T3 robot manipulator. 
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 Another schematic of an industrial robot arm, the T3 made by Cincinnati Milacron, is shown 

in Figure 2.  Once again, it is possible to model it as a collection of seven rigid bodies (the first 

being fixed) connected by six joints3.  

 

Types of joints 

 There are mainly four types of joints that are found in robot manipulators:  

 � Revolute, rotary or pin joint  (R) 

 � Prismatic or sliding joint  (P) 

 � Spherical or ball joint  (S) 

 � Helical or screw joint  (H) 

The revolute joint allows a rotation between the two connecting links. The best example of this is 

the hinge used to attach a door to the frame. The prismatic joint allows a pure translation between 

the two connecting links. The connection between a piston and a cylinder in an internal 

combustion engine or a compressor is via a prismatic joint. The spherical joint between two links 

allows the first link to rotate in all possible ways with respect to the second. The best example of 

this is seen in the human body. The shoulder and hip joints, called ball and socket joints, are 

spherical joints. The helical joint allows a helical motion between the two connecting bodies. A 

good example of this is the relative motion between a bolt and a nut.  

 

Planar chain 

All the links of a  planar chain are constrained to move in or parallel to the same plane. 

A planar chain can only allow prismatic and revolute joints. In fact, the axes of the revolute joints 

must be perpendicular to the plane of the chain while the axes of the prismatic joints must be 

parallel to or lie in the plane of the chain.  

 An example of a planar chain is shown in Figure 3.  Almost all internal combustion engines 

use a slider crank mechanism.  The high pressure of the expanding gases in the combustion 

chamber is used to translate the piston and the mechanism converts this translatory movement 

into the rotary movement of the crank. This mechanical system consists of three revolute joints 

and one prismatic joint.  

 The example in Figure 3 is a planar, closed, kinematic chain. Examples of planar, serial 

chains are shown in Figure 4 and 5.  

 

                                                 
3This is a convenient model. A more accurate kinematic model is required to model the coupling between the 
actuator that drives the elbow joint and the elbow joint.  
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Connectivity of a joint 

The number of degrees of freedom of a rigid body connected to a fixed rigid body 

through the joint. 

The revolute, prismatic and helical joint have a connectivity 1. The spherical joint has a 

connectivity of 3. Sometimes one uses the term “degree of freedom of a joint” instead of the 

connectivity of a joint.  
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Figure 3  A schematic of a slider crank mechanism 
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Figure 4  A schematic of a planar manipulator with three revolute joints 
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Figure 5  A schematic of a planar manipulator with two revolute and one prismatic joints 

 

Mobility 

The mobility of a chain is the number of degrees of freedom of the chain. 

Most books will use the term “number of degrees of freedom” for the mobility.  In a serial chain, 

the mobility of the chain is easily calculated. If there are n  joints and joint i  has a connectivity fi,  

 ∑
=

=
n

i

ifM
1

 

Most industrial robots have either revolute or prismatic joints (fi = 1) and therefore the mobility 

or the number of degrees of freedom of the robot arm is also equal to the number of joints. 

Sometimes, an n  degree of freedom robot or a robot with mobility n  is also called an n  axis 

robot. 

 Since a rigid body in space has six degrees of freedom, the most general robots are designed 

to have six joints. This way, the end effector or the link that is furthest away from the base can be 

made to assume any position or orientation (within some range). However, if the end effector 

needs to moved around in a plane, the  robot need only have three degrees of freedom. Two 

examples4 of planar, three degree of freedom robots (technically, mobility three robots) are 

shown in Figures 4 and 5. 

                                                 
4Note that we do not count the opening and closing of the gripper as a degree of freedom. The gripper is usually 
completely open or completely shut and it is not continuously controlled as the other joints are. Also, the gripper 
freedom does not participate in the positioning and orienting of a part held by the gripper.  
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 When closed loops are present in the kinematic chain (that is, the chain is no longer serial, or 

even open), it is more difficult to determine the number of degrees of freedom or the mobility of 

the robot. But there is a simple formula that one can derive for this purpose.  

 Let n be the number of moving links and let g be the number of joints, with fi being the 

connectivity of joint i. Each rigid body has six degrees if we consider spatial motions. If there 

were no joints, since there are n moving rigid bodies, the system would have 6n  degrees of 

freedom. The effect of each joint is to constrain the relative motion of the two connecting bodies. 

If the joint has a connectivity fi, it imposes (6-fi) constraints on the relative motion. In other 

words, since there are fi  different ways for one body to move relative to another, there (6-fi) 

different ways in which the body is constrained from moving relative to another. Therefore, the 

number of degrees of freedom or the mobility of a chain (including the special case of a serial 

chain) is given by: 

 ( )∑
=

−−=
g

i

ifnM
1

66   

or, 

 ( ) ∑
=

+−=
g

i

ifgnM
1

6  (2) 
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Figure 6   A planar parallel manipulator.  
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In the special case of planar motion, since each unconstrained rigid body has 3 degrees of 

freedom, this equation is modified to: 

 ( ) ∑
=

+−=
g

i

ifgnM
1

3  (3) 

Example 1 

In Figures 4 and Figure 5, since n=g=3, Equation (3) reduces to the special case of Equation 

(1). And since f1 = f2 = f3 = 1, and M=g.  

Example 2 

In the slider crank mechanism shown in Figure 3, n=3 andg=4. Since it is a planar mechanism 

we use Equation (2). All four joints have connectivity one: f1 = f2 = f3 = f4 = 1, and M=1. 

Example 3 

Consider the parallel manipulator shown in Figure 6. Here, n = 7, g=9, and fi=1. According to 

Equation (3), M =3. There are correspondingly three actuators in the manipulator. Contrast 

this arrangement with the arrangement shown in Figures 4 and 5. The three actuators are 

mounted in parallel in Figure 6. In Figures 4 and 5, they are mounted “sequentially” in a 

serial fashion.   

 

The Stewart Platform 

 The Stewart-Gough or the Stewart Platform5 device is a six degree of freedom (mobility six) 

kinematic chain with closed loops. The kinematic chain consists of a base and a moving platform 

each of which is a spatial hexagon. See Figure 7. Every vertex of the base hexagon is connected 

to one vertex of the moving platform hexagon by one leg. Similarly, every vertex of the moving 

hexagon is connected to a vertex of the base hexagon by a leg. There are six such legs. Each leg 

has is a serial chain consisting of two revolute joints with intersecting axes, a prismatic joint and 

a spherical joint. Typically the prismatic joints are actuated.   

 The mobility of a Stewart Platform can be easily verified to be six. Each leg has three links 

and four joints. If we include the moving platform,   

  n = 6 × 3+1 = 19. 

 

                                                 
5D. Stewart, “A Platform with Six Degrees of Freedom,” The Institution of Mechanical Engineers, Proceedings 
1965-66, Vol. 180 Part 1, No. 15, pages 371-386. 



   

Robot Geometry and Kinematics -9- V. Kumar 

  

 

(a)  A machine tool based on the Stewart Platform  (Ingersoll Rand)6  
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(b) A schematic showing the six legs (left) and the RRPS chain (right). 

Figure 7     The Stewart Platform 

                                                 
6M. Valenti, “Machine Tools Get Smarter,”  Mechanical Engineering, Vol.117, No.11, November 1995. 
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The connectivity of the revolute and the prismatic joint is one. The connectivity of the spherical 

joint is three. Since there are 6×2 revolute joints, 6 prismatic joints and 6 spherical joints,  

   3636612
1

=×++=∑
=

g

i

if  

According to Equation (3), 

  M = 6 19 − 24( )+ 36 = 6 

The Stewart Platform has actuators for all its six prismatic joints and it is therefore possible to 

control all six degrees of freedom.  

 

 
 

(a) The Adept 1850 Palletizer (b) side view (axes 2-4 are numbered) 

 

 

(c)  top view (axes 2-4 are numbered) 

Figure 8  The Adept 1850 Palletizer 

There are four degrees of freedom in this SCARA manipulator. Joint 1 is a sliding 

joint that carries the manipulator arm up or down. Joints 2-4 are rotary joints with 

vertical axes.  
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5.2 Geometry of planar robot manipulators 

 The mathematical modeling of spatial linkages is quite involved. It is useful to start with 

planar robots because the kinematics of planar mechanisms is generally much simpler to analyze. 

Also, planar examples illustrate the basic problems encountered in robot design, analysis and 

control without having to get too deeply involved in the mathematics. However, while the 

examples we will discuss will involve kinematic chains that are planar, all the definitions and 

ideas presented in this section are general and extend to the most general spatial mechanisms.   

 We will start with the example of the planar manipulator with three revolute joints. The 

manipulator is called a planar 3R manipulator.  While there may not be any three degree of 

freedom (d.o.f.) industrial robots with this geometry, the planar 3R geometry can be found in 

many robot manipulators. For example, the shoulder swivel, elbow extension, and pitch of the 

Cincinnati Milacron T3 robot (Figure 2) can be described as a planar 3R chain. Similarly, in a 

four d.o.f. SCARA manipulator (Figure 8), if we ignore the prismatic joint for lowering or raising 

the gripper, the other three joints form a planar 3R  chain. Thus, it is instructive to study the 

planar 3R manipulator as an example.  

 In order to specify the geometry of the planar 3R  robot, we require three parameters, l1, l2, 

and l3.  These are the three link lengths.  In Figure 9, the three joint angles are labeled θ1, θ2, and 

θ3. These are obviously variable. The precise definitions for the link lengths and joint angles are 

as follows. For each pair of adjacent axes we can define a common normal or the perpendicular 

between the axes.  

� The ith  common normal is the perpendicular between the axes for joint i  and joint i+1. 

� The ith  link length is the length of the ith  common normal, or the distance between the axes 

for joint i  and joint i+1. 

� The ith  joint angle is the angle between the  (i-1)th  common normal and ith  common 

normal measured counter clockwise going from the  (i-1)th  common normal to the ith  

common normal. 

 Note that there is some ambiguity as far as the link length of the most distal link and the joint 

angle of the most proximal link are concerned. We define the link length of the most distal link 

from the most distal joint axis to a reference point or a tool point on the end effector7. Generally, 

this is the center of the gripper or the end point of the tool. Since there is no zeroth common 

normal, we measure the first joint angle from a convenient reference line. Here, we have chosen 

this to be the x axis of a conveniently defined fixed coordinate system.  

                                                 
7The reference point is often called the tool center point (TCP).  
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 Another set of variables that is useful to define is the set of coordinates for the end effector. 

These coordinates define the position and orientation of the end effector. With a convenient 

choice of a reference point on the end effector, we can describe the position of the end effector 

using the coordinates of the reference point (x, y) and the orientation using the angle φ. The three 

end effector coordinates (x, y, φ) completely specify the position and orientation of the end 

effector8. 
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Figure 9 The joint variables and link lengths for a 3R  planar manipulator 

 

 As another example, consider the three d.o.f. cylindrical robot in Figure 10. If we ignore the 

lift freedom, the rotation of the base and the extension of the arm give us the two d.o.f. robot 

shown in Figure 11 that we can call the R-P manipulator. It consists of a revolute joint and 

prismatic joint as shown in the figure. θ1, the base rotation, and d2, the arm extension, are the two 

joint variables.  Note that there are no constant parameters such as the three link lengths in the 3R  

manipulator. The joint variable θ1 is defined as before. Since there is no zeroth common normal, 

                                                 
8The description of the position and orientation of a three dimensional rigid body is significantly more complicated. 
For a spatial manipulator, a typical set of end effector coordinates would include three variables (x, y, z) for the 

position, and three Euler angles (θ, φ, ψ) for the orientation.  
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we measure the joint angle from the x  axis which we have chosen to be horizontal. d2 is defined 

as the distance from joint axis 1 to the reference point on the end effector.  As in the previous 

example, the end effector coordinates are variables that completely specify the position and 

orientation of the end effector. In the figure, they are  (x, y, φ). 

 Finally, we consider a  Cartesian robot consisting of two prismatic joints at right angles. The 

P-P chain is found in x-y tables, plotters and milling machines. A schematic is shown in Figure 

12. The simplest spatial manipulator is based on the P-P-P chain, which has a third prismatic 

joint. The three joint axes are mutually orthogonal. The Gantry robot in Figure 13 has this 

geometry. If you ignore the vertical up/down degree of freedom it is a P-P manipulator.  

 

 

 

 

Figure 10  The RT3300 cylindrical robot (Seiko) 
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Figure 11  The joint variables and link lengths for a R-P planar manipulator 
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d2
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Figure 12  The joint variables for a P-P planar manipulator 

 

    

Figure 13   The G365 Gantry robot manipulator  (CRS Robotics) on the left, and the Biomek 

2000 Laboratory Automation Workstation (Beckman Coulter) on the right both have tooling 

mounted at the end of a P-P-P chain. 

 

 The end effector of a manipulator that has only prismatic joints is constrained to remain in 

the same orientation. Thus, the end effector coordinates for the P-P manipulator only include the 

coordinates of the reference point on the end effector (x, y).  

 In summary, in each case, we defined a set of constant parameters called link lengths (li) and 

set of joint variables or joint coordinates consisting of either joint angles (θi) or displacements 
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(di). We also defined a set of variables called end effector coordinates. The link lengths are 

constant parameters that define the geometry of the manipulator. The joint variables define the 

configuration of the manipulator by specifying the position of each joint. The end effector 

coordinates define the position and orientation of the end effector. If the joint coordinates specify 

the configuration of the manipulator, they should also specify the position and orientation of the 

end effector. Thus one should expect to find an explicit dependence of the end effector 

coordinates on the joint coordinates. Although it may not be obvious, there is also a dependence 

of the joint coordinates on the end effector coordinates. The next subsection will address this 

dependence and analyse the kinematics of robot manipulators.  

 

5.3 Kinematic analysis of planar serial chains 

 Kinematics is the study of motion. In this subsection, we will explore the relationship 

between joint movements and end effector movements. More precisely, we will try to develop 

equations that will make explicit the dependence of end effector coordinates on joint coordinates 

and vice versa.  

 We will start with the example of the planar 3R manipulator. From basic trigonometry, the 

position and orientation of the end effector can be written in terms of the joint coordinates in the 

following way: 

 

( ) ( )
( ) ( )

( )321

321321211

321321211

sinsinsin

coscoscos

θ+θ+θ=φ

θ+θ+θ+θ+θ+θ=

θ+θ+θ+θ+θ+θ=

llly

lllx

 (4) 

Note that all the angles have been measured counter clockwise and the link lengths are assumed 

to be positive going from one joint axis to the immediately distal joint axis.   

 Equation (4) is a set of three nonlinear equations9 that describe the relationship between end 

effector coordinates and joint coordinates. Notice that we have explicit equations for the end 

effector coordinates in terms of joint coordinates. However, to find the joint coordinates for a 

given set of end effector coordinates (x, y, φ), one needs to solve the nonlinear equations for θ1, 

θ2, and θ3.  

 The kinematics of the planar R-P manipulator is easier to formulate. The equations are: 

                                                 
9The third equation is linear but the system of equations is nonlinear.  
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1

12

12

sin

cos

θ=φ

θ=

θ=

dy

dx

 (5) 

Again the end effector coordinates are explicitly given in terms of the joint coordinates. 

However, since the equations are simpler (than in (4)), you would expect the algebra involved in 

solving for the joint coordinates in terms of the end effector coordinates to be easier. Notice that 

in contrast to (4), now there are three equations in only two joint coordinates, θ1, and d2. Thus, in 

general, we cannot solve for the joint coordinates for an arbitrary set of end effector coordinates. 

Said another way, the robot cannot, by moving its two joints, reach an arbitrary end effector 

position and orientation.  

 Let us instead consider only the position of the end effector described by (x, y), the 

coordinates of the end effector tool point or reference point . We have only two equations: 

 
12

12

sin

cos

θ=

θ=

dy

dx
 (6) 

Given the end effector coordinates (x, y), the joint variables can be computed to be: 

 



=θ

++=

−

x

y

yxd

1
1

22
2

tan
 (7) 

Notice that we restricted d2 to positive values. A negative d2 may be physically achieved by 

allowing the end effector reference point to pass through the origin of the x-y coordinate system 

over to another quadrant. In this case, we obtain another solution: 

 



=θ

+−=

−

x

y

yxd

1
1

22
2

tan
 (8) 

In both cases (7-8), the inverse tangent function is multivalued10. In particular,  

 tan(x) = tan(x + kπ),    k=…-2, -1, 0, 1, 2, … (9) 

However, if we limit θ1 to the range 0<θ1<2π, there is a unique value of θ1 that is consistent with 

the given (x, y) and the computed d2 (for which there are two choices). 

                                                 
10In Appendix 1, we define another inverse tangent function called atan2  that takes two arguments, the sine and the 

cosine of an angle, and returns a unique angle in the range [0, 2π).  
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 The existence of multiple solutions is typical when we solve nonlinear equations. As we will 

see later, this poses some interesting questions when we consider the control of robot 

manipulators.  

 The planar Cartesian manipulator is trivial to analyze. The equations for kinematic analysis 

are: 

 x = d2,           y = d1 (10) 

The simplicity of the kinematic equations makes the conversion from joint to end effector 

coordinates and back trivial. This is the reason why P-P  chains are so popular in such 

automation equipment as robots, overhead cranes, and milling machines.  

 

Direct kinematics 

 As seen earlier, there are two types of coordinates that are useful for describing the 

configuration of the system. If we focus our attention on the task and the end effector, we would 

prefer to use Cartesian coordinates or end effector coordinates. The set of all such coordinates is 

generally referred to as the Cartesian space or end effector space11. The other set of coordinates 

is the so called joint coordinates that is useful for describing the configuration of the mechanical 

lnkage. The set of all such coordinates is generally called the joint  space.  

 In robotics, it is often necessary to be able to “map” joint coordinates to end effector 

coordinates. This map or the procedure used to obtain end effector coordinates from joint 

coordinates is called direct kinematics.  

 For example, for the 3-R manipulator, the procedure reduces to simply substituting the values 

for the joint angles in the equations 

 

( ) ( )
( ) ( )

( )321

321321211

321321211

sinsinsin

coscoscos

θ+θ+θ=φ

θ+θ+θ+θ+θ+θ=

θ+θ+θ+θ+θ+θ=

llly

lllx

 

and determining the Cartesian coordinates, x, y, and φ. For the other examples of open chains 

discussed so far (R-P, P-P) the process is even simpler (since the equations are simpler). In fact, 

for all serial chains (spatial chains included), the direct kinematics procedure is fairly straight 

forward.  

 On the other hand, the same procedure becomes more complicated if the mechanism contains 

one or more closed loops. In addition, the direct kinematics may yield more than one solution or 

                                                 
11Since each member of this set is an n-tuple, we can think of it as a vector and the space is really a vector space. But 
we shall not need this abstraction here.  
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no solution in such cases. For example, in the planar parallel manipulator in Figure 3, the joint 

positions or coordinates are the lengths of the three telescoping links (q1, q2, q3) and the end 

effector coordinates (x, y, φ) are the position and orientation of the floating triangle. It can be 

shown that depending on the value of (q1, q2, q3), the number of (real) solutions for  (x, y, φ) can 

be anywhere from zero to six. For the Stewart Platform in Figure 4, this number has been shown 

to be anywhere from zero to forty. 

 

5.4 Inverse kinematics 

 The analysis or procedure that is used to compute the joint coordinates for a given set of end 

effector coordinates is called inverse kinematics.  Basically, this procedure involves solving a set 

of equations. However the equations are, in general, nonlinear and complex, and therefore, the 

inverse kinematics analysis can become quite involved.  Also, as mentioned earlier, even if it is 

possible to solve the nonlinear equations, uniqueness is not guaranteed. There may not (and in 

general, will not) be a unique12 set of joint coordinates for the given end effector coordinates.     

 We saw that for the R-P manipulator, the direct kinematics equations are: 

 
12

12

sin

cos

θ=

θ=

dy

dx
 (6) 

 

If we restrict the revolute joint to have a joint angle in the interval [0, 2π), there are two solutions 

for the inverse kinematics: 

 1,,2atan,
22

1
22

2 ±=σ



=θ+σ=

d

x

d

y
yxd  

Here we have used the atan2  function in Appendix 1 to uniquely specify the joint angle θ1. 

However, depending on the choice of σ, there are two solutions for d2, and therefore for  θ1. 

 The inverse kinematics analysis for a planar 3-R  manipulator appears to be complicated but 

we can derive analytical solutions. Recall that the direct kinematics equations (4) are: 

 ( ) ( )321321211 coscoscos θ+θ+θ+θ+θ+θ= lllx  (4a) 

   ( ) ( )321321211 sinsinsin θ+θ+θ+θ+θ+θ= llly  (4b) 

   ( )321 θ+θ+θ=φ  (4c) 

                                                 
12The only case in which the analysis is trivial is the P-P  manipulator. In this case, there is a unique solution for the 
inverse kinematics.  
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We assume that we are given the Cartesian coordinates, x, y, and φ and we want to find analytical 

expressions for the joint angles θ1, θ2, and θ3 in terms of the Cartesian coordinates.  

 Substituting (4c) into (4a) and (4b) we can eliminate θ3 so that we have two equations in θ1 

and θ2: 

 ( )212113 coscoscos θ+θ+θ=φ− lllx  (d) 

   ( )212113 sinsinsin θ+θ+θ=φ− llly  (e) 

where the unknowns have been grouped on the right hand side; the left hand side depends only 

on the end effector or Cartesian coordinates and are therefore known.  

 Rename the left hand sides, ′ x  = x  - l3 cos φ, ′ y  = y  - l3 sin φ, for convenience. We regroup 

terms in (d) and (e), square both sides in each equation and add them: 

( ) ( )( )

( ) ( )( )2
212

2
11

2
212

2
11

sinsin

coscos

θ+θ=θ−′

+

θ+θ=θ−′

lly

llx

 

After rearranging the terms we get a single nonlinear equation in θ1: 

 ( ) ( ) ( ) 0sin2cos2 2
2

2
1

22
1111 =−+′+′+θ′−+θ′− llyxylxl  (f) 

Notice that we started with three nonlinear equations in three unknowns in (a-c). We reduced the 

problem to solving two nonlinear equations in two unknowns (d-e). And now we have simplified 

it further to solving a single nonlinear equation in one unknown (f).  

 Equation (f) is of the type  

 P cosα + Q sinα +R = 0 (g) 

Equations of this type can be solved using a simple substitution as shown in Appendix 2. There 

are two solutions for θ1 given by: 

 
( )




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σ+γ=θ −

22
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2
2

2
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22
1

1

2
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yxl

llyx
 (h) 

where, 

 





′+′

′

′+′

′−
=γ

2222
,2tana

yx

x

yx

y
, 

and 1±=σ .  
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Note that there are two solutions for θ1, one corresponding to σ=+1, the other corresponding to 

σ=-1. Substituting any one of these solutions back into Equations (d) and (e) gives us: 

 ( )
2

11
21

cos
cos

l

lx θ−′
=θ+θ  

   ( )
2

11
21

sin
sin

l

ly θ−′
=θ+θ  

This allows us to solve for θ2 using the atan2 function in Appendix 1: 

 1
2

11

2

11
2

cos
,

sin
2atan θ−


 θ−′θ−′

=θ
l

lx

l

ly
 (i) 

Thus, for each solution for θ1, there is one (unique) solution for θ2.  

 Finally, θ3 can be easily determined from (c): 

 θ3 = φ - θ1 - θ2 (j) 

 Equations (h-j) are the inverse kinematics solution for the 3-R  manipulator. For a given end 

effector position and orientation, there are two different ways of reaching it, each corresponding 

to a different value of σ. These different configurations are shown in Figure 14.  

 

REFER ENC E 
P OINT

φ(x,y)

σ =-1

σ =+1

 

Figure 14 The two inverse kinematics solutions for the 3R  manipulator: “elbow-up” 

configuration (σ=+1) and the “elbow-down” configuration (σ= -1) 

 Commanding a robot to move the end effector to a certain position and orientation is 

ambiguous because there are two configurations that the robot must choose from. From a 
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practical point of view, if the joint limits are such that one configuration cannot be reached this 

ambiguity is automatically resolved13.  

 

5.5 Velocity analysis 

 When controlling a robot to go from one position to another, it is not just enough to 

determine the joint and end effector coordinates of the target position. It may be necessary to 

continuously control the trajectory or the path taken by the robot as it moves toward the target 

position. This is essential to avoid obstacles in the workspace. More importantly, there are tasks 

where the trajectory of the end effector is critical. For example, when welding, it is necessary to 

maintain the tool at a desired orientation and a fixed distance away from the workpiece while 

moving uniformly14 along a desired path. Thus one needs to control the velocity of the end 

effector or the tool during the motion. Since the control action occurs at the joints, it is only 

possible to control the joint velocities. Therefore, there is a need to be able to take the desired 

end effector velocities and calculate from them the joint velocities. All this requires a more 

detailed kinematic analysis, one that addresses velocities or the rate of change of coordinates in 

contrast to the previous section where we only looked at positions or coordinates.  

 Consider the 3R  manipulator as an example. By differentiating Equation (4) with respect to 

time, it is possible to obtain equations that relate the the different velocities.  

 

( ) ( )
( ) ( )

( )321

123321312212111

123321312212111

θ+θ+θ=φ

θ+θ+θ+θ+θ+θ=

θ+θ+θ−θ+θ−θ−=

&&&&

&&&&&&&

&&&&&&&

clclcly

slslslx

 

where we have used the short hand notation: 

s1 = sin θ1,    s12 = sin (θ1 + θ2),   s123 = sin (θ1 + θ2 + θ3) 

c1 = cos θ1,    c12 = cos (θ1 + θ2),   c123 = cos (θ1 + θ2 + θ3) 

iθ& denotes the joint speed for the ith  joint or the time derivative of the ith  joint angles, and x& , 

y& , and φ&  are the time derivatives of the end effector coordinates. Rearranging the terms, we can 

write this equation in matrix form:   

                                                 
13This is true of the human arm. If you consider planar movements, because the human elbow cannot be hyper 
extended, there is a unique solution for the inverse kinematics. Thus the central nervous system does not have to 
worry about which configuration to adopt for a reaching task.  
14In some cases, a weaving motion is required and the trajectory of the tool is more complicated.  
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 (11) 

The 3×3 matrix is called the Jacobian matrix15 and we will denote it by the symbol J. If you look 

at the elements of the matrix they express the rate of change of the end effector coordinates with 

respect to the joint coordinates: 
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 Given the rate at which the joints are changing, or the vector of joint velocities, 
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using Equation (11), we can obtain expressions for the end effector velocities, 
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&
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p . 

If the Jacobian matrix is non singular (its determinant is non zero and the matrix is invertible), 

then we can get the following expression for the joint velocities in terms of the end effector 

velocities: 

 pJqqJp &&&& 1, −==  (12) 

Thus if the task (for example, welding) is specified in terms of a desired end effector velocity, 

Equation (12) can be used to compute the desired joint velocity provided the Jacobian is non 

singular: 

                                                 
15The name Jacobian comes from the terminology used in multi-dimensional calculus.  
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 Naturally we want to determine the conditions under which the Jacobian becomes singular. 

This can be done by computing the determinant of J and setting it to zero. Fortunately, the 

expression for the determinant of the Jacobian, in this example, can be simplified using 

trigonometric identities to: 

 |J| = l1 l2 sin θ2 (13) 

This means that the Jacobian is singular only when θ2 is either 0 or 180 degrees. Physically, this 

corresponds to the elbow being completely extended or completely flexed. Thus, as long we 

avoid going through this configuration, the robot will be able to follow any desired end effector 

velocity.  

 

5.6 Appendix 

 

5.6.1 The ambiguity in inverse trigonometric functions 

 Inverse trigonometric functions have multiple values. Even within a 360 degree range they 

have two values.  For example, if  

 y  = sin x 

the inverse sin function gives two values in a 360 degree interval: 

 sin-1y  = x, π-x 

Of course we can add or subtract 2π from either of these solutions and obtain another solution.  

 This is true of the inverse cosine and inverse tangent functions as well. If  

 y  = cos x, 

the inverse cosine function yields: 

 cos-1y  = x, -x 

Similarly, for the tangent function 

 y  = tan x, 
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the inverse tangent function yields: 

 tan-1y  = x, π +x 

 This multiplicity is particularly troublesome in robot control where an ambiguity may mean 

that there is more than one way of reaching a desired position (see discussion on inverse 

kinematics). This problem is circumvented by defining the atan2  function which requires two 

arguments and returns a unique answer in a 360฀ range.  

 The atan2 function takes as arguments the sine and cosine of a number and returns the 

number. Thus if , 

 s = sin x;     c  = cos x 

the atan2 function takes s  and c  as the argument and returns x: 

 atan2 (s, c)  = x 

The main idea is that the additional information provided by the second argument eliminates the 

ambiguity in solving for x. To see this consider the simple problem where we are given: 

 s = 
1

2
 ;     c  = 

3

2
  

and we are required to solve for x. If we use the inverse sine function and restrict the answer to 

be in the interval [0, 2π), we get the result: 

 x = sin-1 
1

2
   =  

π
6

 ,  
5π
6

  

Since we know the cosine to be  
3

2
 , we can quickly verify by taking cosines of both candidate 

solutions that the first solution is correct and the second one is incorrect.  

 cos 
π
6

  = 
3

2
 ;   cos 

5π
6

  = - 
3

2
   

The atan2 function goes through a similar algorithm to figure out a unique solution in the range 

[0,2π).  

  atan2 ( 
1

2
 , 

3

2
 )  =  

π
6

  

The atan2 function is a standard function in most C, Pascal and Fortran compilers. 
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5.6.2 Solution of the nonlinear equation in (g) 

 P cosα + Q sinα +R = 0 (g) 

  

 Define γ so that  

  cos γ = 
P

P2+Q2
      and      sin γ = 

Q

P2+Q2
   

Note that this is always possible. γ can be determined by using the atan2 function: 
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Now (g) can be rewritten as: 

 0sinsincoscos
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or 

   ( )
22

cos

QP

R

+

−
=γ−α  

This gives us two solutions for α in terms of the known angle γ: 

 1,cos
22
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