

Article

Influence du substrat sur l'activité enzymatique du Cordyceps militaris pour les applications en santé

Nguyên Quang Trung ¹, Nguyen Tien Dat ², Ho Ngoc Anh 3, Quach Ngoc ³, Vu Thi Hanh Nguyen ³, Ho Ngoc Bich Van ⁴, Nguyen Minh Nhat Van Tung 5 et Truong Ngoc Minh 2,6,*

- Institut des sciences de l'environnement et de la santé publique, Académie vietnamienne des sciences et technologies, 18 rue Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam; nqtrung79@gmail.com Centre de recherche et de
- développement de haute technologie, Académie vietnamienne des sciences et technologies, 18 rue Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam; ntdat@cretech.vast.vn Institut de biotechnologie, Académie vietnamienne des
- 3 sciences et technologies, 18 rue Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam; hongocanh1612@gmail.com (HNA); qn.tung@ibt.ac.vn (QNT); vhnguyen@ibt.ac.vn (VTHN)
- ⁴ École Archimède, zone urbaine 23B, Dong Anh, Hanoi 100000, Vietnam ; samikiki1194@gmail.com Université nationale
- d'éducation de Hanoï, 136 rue Xuan Thuy, Cau Giay, Hanoï 100000, Vietnam; vannguyen18012008@gmail.com Vicomi Tam An Investment and Commercial
- Company Limited, 140 rue Nghia Dung, quartier Phuc Xa, district de Ba Dinh, Hanoi 111000, Vietnam * Correspondance : minhtn689@gmail.com

Résumé : Le Cordyceps militaris, bien connu pour son potentiel thérapeutique dans la gestion du diabète de type 2 grâce à l'inhibition des enzymes α -amylase et α -glucosidase, était au centre de cette recherche , qui étudiait l'influence de divers substrats de culture sur son propriétés inhibitrices enzymatiques et teneur en composés bioactifs. Des études antérieures se sont principalement concentrées sur les avantages pharmacologiques généraux de C. militaris, mais n'ont pas exploré de manière approfondie la manière dont différents substrats affectent son profil bioactif et ses activités inhibitrices enzymatiques. Cette étude visait à évaluer l'impact de la sélection du substrat sur les activités d'inhibition des enzymes et les niveaux de composés bioactifs tels que la cordycépine et l'adénosine chez C. militaris, démontrant que la sélection du substrat affecte de manière marquée à la fois les activités d'inhibition de ces enzymes et les niveaux de composés bioactifs. En particulier, les fructifications de C. militaris cultivées sur Brihaspa atrostigmella présentaient les concentrations les plus élevées de cordycépine (2,932 mg/g) et d'adénosine (1,062 mg/g). Ce substrat présentait également l' inhibition de l'α-glucosidase la plus puissante avec une valeur IC50 de 336,4 ± 16,0 μg/mL et l' inhibition de l'αamylase la plus efficace avec une valeur IC50 de 504,6 ± 4,2 μg/mL. À l'inverse, C. militaris cultivé sur les résidus solides de Gryllus bimaculatus a présenté la plus forte inhibition de la xanthine oxydase (XOD), avec la valeur IC50 la plus basse de 415,7 ± 11,2 µg/mL. Ces résultats mettent en évidence le rôle essentiel du choix du substrat dans l'amélioration des propriétés médicinales de C. militaris, ce qui suggère qu'une culture optimisée peut améliorer les propriétés bioactives pour des thérapies naturelles plus efficaces contre le diabète et d'autres troubles métaboliques. Cette étude élargit non seulement la compréhension du potentiel pharmacologique de C. militaris, mais illustre également son applicabilité au développement d'options de traitement person

Mots clés : adénosine ; la cordycépine; Cordyceps militaire ; diabète; sélection du substrat

Référence: Trung, NQ; Date, NT; Ah, HN; Toung, QN; Nguyen, VTH; Van, HNB; Van, NMN; Minh, Tennessee Influence du substrat sur l'activité enzymatique du Cordyceps militaris pour les applications de santé. Chimie 2024, 6, 517-530. https://doi.org/10.3390/ chemistry6040030

Rédacteur académique : George Grant

Reçu: 11 juin 2024 Révisé: 23 juin 2024 Accepté: 24 juin 2024 Publié: 28 juin 2024

Copyright: © 2024 par les auteurs.
Licencié MDPI, Bâle, Suisse.
Cet article est un article en libre accès distribué selon les termes et conditions des Creative Commons
Licence d'attribution (CC BY) (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Le genre Cordyceps est estimé pour sa valeur thérapeutique et nutritionnelle considérable et joue un rôle important à la fois dans la médecine traditionnelle asiatique et dans les pratiques de santé occidentales [1]. Parmi ses espèces, C. militaris se distingue par ses puissants effets pharmacologiques, tels que ses propriétés immunomodulatrices et anticancéreuses [2-4]. L'utilisation du Cordy-ceps pour traiter des maladies comme le cancer, les déficits immunitaires et les maladies liées à l'âge est soutenue par des recherches approfondies démontrant ses propriétés antioxydantes, anti-inflammatoires et

propriétés immunomodulatrices [5–7]. Ces caractéristiques soulignent la capacité du champignon à réguler les fonctions corporelles et à lutter efficacement contre les états pathologiques [8]. C. militaris parasite divers insectes pour produire des fructifications riches en phytochimiques essentiels, notamment la cordycépine, les polysaccharides et les composés phénoliques qui améliorent ses attributs bénéfiques pour la santé [9]. Avec une demande croissante de produits de santé naturels, le marché des extraits de Cordyceps s'est considérablement développé, évalué à plus de 473 millions de dollars en 2018, avec des prévisions de croissance continue [10]. Cette demande croissante a conduit à des innovations dans la culture artificielle de C. militaris, adaptées pour améliorer le rendement et la production de composés bioactifs. Les méthodes de culture actuelles utilisent divers substrats comme les céréales et les corps d'insectes, qui non seulement imitent les conditions naturelles de croissance du champignon, mais stimulent également des constituants bioactifs spécifiques connus pour leurs effets antitumoraux et immunomodulateurs notables [4].

Malgré ces avantages, la culture du Cordyceps est confrontée à des défis, notamment en ce qui concerne la durabilité et les impacts environnementaux [11]. La biomasse restante issue de la culture du Cordyceps présente des défis importants en matière de gestion des déchets, nécessitant des solutions innovantes telles que des techniques d'extraction par chromatographie sur colonne pour récupérer les composés précieux des substrats résiduels [12]. Le choix des hôtes de culture est crucial, car il affecte non seulement le rendement et la qualité des composés bioactifs, mais également la durabilité des pratiques de production. Chaque hôte offre un environnement physiologique unique qui influence les voies métaboliques de C. militaris, affectant la synthèse de composés essentiels tels que la cordycépine et les polysaccharides (13). Par exemple, des recherches ont montré que les larves du ver à soie produisent des niveaux de cordycépine plus élevés que les autres hôtes, soulignant l'importance d'une sélection minutieuse de l'hôte pour améliorer les propriétés médicinales du champignon [14,15]. L'adaptation d'un large éventail d'hôtes, des arthropodes naturels aux milieux synthétiques, contribue à réduire les impacts écologiques et offre des opportunités économiques pour une production durable à grande échelle [16-18]. La diversité génétique parmi les souches de C. militaris joue également un rôle essentiel, influençant la compatibilité avec divers hôtes et l'efficacité de la synthèse de composés bioactifs (19). Les progrès de la biologie moléculaire ont approfondi notre compréhension de la manière dont C, militaris aiuste ses voies métaboliques pour maximiser l'utilisation des ressources, optimisant ainsi l'efficacité de la culture (20).

Cette étude exploite ces vastes connaissances pour explorer l'impact de divers insectes comestibles en tant que substrats sur la production de cordycépine et d'autres composants bioactifs. En utilisant cing insectes différents approuvés pour la consommation au Vietnam – Bombyx mori Pupae (pupes de vers à soie), Brihaspa atrostigmella (ver chit), Halyomorpha halys (punaise brune), Oxya chinensis (sauterelles) et Gryllus bimaculatus (grillon) - nous visons à élucider l'influence du choix du substrat sur les propriétés médicinales de C. militaris. Le riz brun a été fourni à tous les milieux comme substrat basal pour fournir les nutriments essentiels nécessaires à la croissance et au développement initiaux de C. militaris (21-23). Chaque mélange d'insectes a servi de substrat supplémentaire pour améliorer la production de composés bioactifs tels que l'adénosine, la cordycépine, les phénols et les flavonoïdes (24). Cette approche à double substrat a été conçue pour étudier les effets synergiques sur la croissance fongique et ses propriétés pharmacologiques. L'inclusion de mélanges d'insectes est particulièrement importante car ils fournissent des nutriments spécifiques et des composés bioactifs, tels que des protéines, des graisses, des vitamines et des minéraux, essentiels à l'optimisation des processus métaboliques chez C. militaris (25-27). Ces nutriments améliorent potentiellement les activités biologiques du champignon, conduisant à une production accrue de composés bioactifs dotés de fortes activités antioxydantes et inhibitrices d'enzymes. Cette approche offre non seulement un aperçu de l'optimisation des pratiques de culture, mais met également en évidence le potentiel de développement de thérapies naturelles pour les troubles métaboliques, contribuant ainsi aux applications pharmacologiques plus larges de C. militaris. Cette enquête comprend une analyse des activités d'inhibition des antioxydants et de la xanthine oxydase, ainsi que des activités d'inhibition de l'α-amylase et de l'α-glucosidase des corps fructifères et des résidus solides.

Grâce à cette recherche, nous espérons contribuer à la compréhension pharmacologique du Cordyceps et fournir des informations sur les pratiques de culture durables qui pourraient améliorer l' efficacité thérapeutique de ce précieux champignon médicinal. Ainsi, nous nous sommes lancés dans une démarche

l'efficacité thérapeutique de ce précieux champignon médicinal. Ainsi, nous nous sommes lancés dans une exploration détaillée des effets de ces cinq insectes comestibles sur la production de cordycépine, visant à optimiser les bienfaits pour la santé dérivés de C. militaris cultivé sur ces sous-espèces.

exploration approfondie des effets de ces cinq insectes comestibles sur la production de cordycépine, visant

- 2. Motérie stientisset l'edes infaits pour la santé dérivés de C. militaris cultivé sur ces substrats.
- 2.1 Matriels 2 méthodes
- 2.1211 Statementongique et insectes comestibles

2.1Lla Saucher dongique en Illuseisters Courrestitalesété fournie par la Collection de cultures de micro-organismes (VCCM) de d'Aragémie vietremoienne par la Collection de cultures de micro-organismes (VCCM) de d'Aragémie vietremoienne par la Collection de cultures de micro-organismes (VCCM) de d'Aragémie vietremoienne de culture de cultu

Halyomorpha halys (punaise brune)

(un

(b)

Gryllus bimaculatus (criquet)

Oxya Chinensis (sauterelles)

(c)

(d)
Bombyx mori Pupes
(pupes de vers à soie)

Brihaspa atrostigmelle (ver chit)

Figure 1. Insectes comestibles utilisés dans l'étude.

2.12.19.110.011de@de@diarinit@is/W@@M734117

C. militaris VCCM 34,117 a été initialement cultivé sur des plaques PDA en utilisant une inclinaison active. pour peridejoulté jo22s 6 22 ரீ petbe peroceboustécifisatériéséraiteabsaitidesetisatargéldegétigeétigegéti

Tous les insectes comestibles ont été séchés à 60 °C et transformés en un mélange pour une fermentation à l'étatisquis nis Dass écimientales ora suis us antistacropro de dans barrier de primi (Alinga sativa) millangle a haque insecte mesotione (Desmiétei priétei priétei priétei priet i priet prophas l'Aquel. Quek tété de propriet de 200 re, de grîz ; breuto (Or 928/Lsativar)e, 10 g de methanguethassette2,gdL40cantiplexentleu/(santiplexentleu extagille: invise autoriaxés alemina italiace Après refroidissement à température ambiante, les réginients 6.in ollé auto la ve cultur de gring se la mainte perfor socilient a comparative a moi note. I humidité les refaitivem perondaété 1 Ocjaulés à 122 «On plader da kronisée (grainais sat maein viégé tastiones. Pomo a poro votaque pla s'aunabifica; tion colorina de la la colorida de la colorida del colorida del la colorid indana y a co 12 and d'obscurpisé ruent main tenant unne hu midité exlatives de 1851 mais accompande de 1960 y le des pefdantilleseverfeltellerafte avecefored obstyrede finalieram sone entimite familieram sone entimite for the store of the °C. à 22 °C. ont été obtenus : C. militaris cultivé sur Halvomorpha halvs. (Figure 2a) «C. militaris cultivé consequent, cinq types de C. militaris cor sur la consequent, cinq types de C. militaris cor sur G. militaris cor sur la consequent c répondant a cinq notes 3ht été militaris cutivé situr. Q vanchine psis (Figure 2) halys (Figure militaris cultivé sur des pupes 2a), C. militaris cultivé sur Gryllus bimaculatus (Figure 2b), C. militaris cultivé sur Oxya atrostigmella (Figure 2e). Nous chinensis (Figure 2c), C. militaris cultive sur des pupes de Bombyx mori (Figure 2d) et C. milimilitaris , qui a été méticuleusement détaillé et exécuté en collaboration sous le code du projet taris cultive sur Brihaspa atrostigmella (Figure 2e). Nous reconnaissons la méthodologie UDSPTM.01/22-23. adopté pour l'extraction de C. militaris, qui a été méticuleusement détaillé et exécuté en collaboration sous le code de projet UDSPTM.01/22-23.

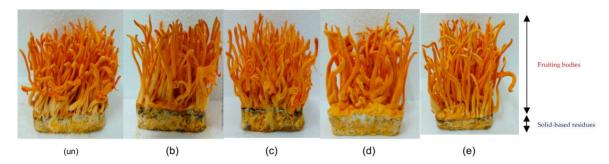


Figure 2. Fructifications et résidus solides de C. militaris cultivés sur divers insectes : Figure 2. Fructifications et résidus solides de C. militaris cultivés sur divers insectes : (a) Halyomorpha halys, (b) Gryllus bimaculatus, (c) Oxya chinensis, (d) Bombyx mori Pupes, (a) Halyomorpha halys, (b) Gryllus bimaculatus, (c) Oxya chinensis, (d) Bombyx mori Pupes, et et (e) Brihaspa atrostigmella. (e) Brihaspa atrostigmelle.

Les fructifications et les résidus solides ont été méticuleusement séparés, puis les sous-fructifications et les résidus solides ont été méticuleusement séparés, puis soumis projeté à la lyophilisation et au broyage fin Les matériaux résultants ont été filtrés sous vide pour être lyophilisés et broyes finement. Les matériaux résultants ont été filtres sous vide wm en utilisant un filtre Whatman No. 1 après quoi le filtrat a été concentré à travers un filtre Whatman No. 1 (Whatman pic, Maidstone, UK), après quoi le filtrat a été évaporation temporaire. Les échantillors conceptés ont été conservés dans du méthanol à 20 ° C pour une sous-concentres ont été conservés dans du méthanol à 20 ° C pour une angalyse séquentielle. Pour garantis la reproductibilité et la fiabilité proutes les procédures nex périmentales legt été réalisées en triple. Bour plus de clarté, les abtéviations utilisées tout au long de catte étude sont toutes détaillés dans le tableau 1. tout au long de cette étude sont détaillés dans le tableau 1.

Tableau 1. Caractéristiques nutritionnelles et contributions de certains insectes comestibles au Cordyceps militaris cultivation.

Insecte _{Insecte}	Caractéristiques nutritionnelles Caracteristiques nutritionnelles	Contribution à Contribution à Cultucultor வக்கம். militaris	_{Partie} Partie	Poids (g) C	ode _{Code}
	Pr Prioté îñ les 5(84) à 55 %) Graisses (25 à 30 %)	Fournit des nutriments robustes pour	Corps fruiffeructification	1,32 ± 0,08 1,32 ± 0,08	FBMP FBMP
Bombyx mori Pupes Bரோந்த ல் Pup es	Acides a ଡାଇଣ୍:ses ୍ 2ୀତାର 30 %) Acides ଜଣ୍ମ ମଧ୍ୟ ଓଡ଼େ essentiels	Fournit des nutriments robustes pour Fournit des nutriments robust croissance fongque et bioactif croissance fongque et bynth	Residu solide	4,28 ± 0,12	SBMP
(Pupes de vers à soie)	Minéraux (K, Ca, Mg, Fe) Vitamines (B) Riche en protéines	composés bioactifs	A base solide	4,28 ± 0,12	SBMP
Brihaspa atrostigmelle (Ver Chit)	Minéraux (K. Ca, Mg, Fe)	Prend en charge la production de cordycépine et adénosine	Corps frui Résidu Résidu solide Fructification	4,50 ± 0,15	SBA
Brihaspa atrostigmelle	Composés antioxydants bioactifs Graisses Protéines (jusqu'à 70%)	Prend en charge la production	Corps	1,50 ± 0,10 Exp	édié par Amazon FHH
Hal yong Phalipi ys (Pune punaise brune)	Saines essentielles saines essentielles Vitamines (Materineurhärjents Minéraux (Fe, Mg, Zn)	Contribue à l'antioxydant et activités enzymatiques de la cordycepine et de l'adenosine	À base solide Résidu solide Résidu	4 , \$0,5 , 00, ± 50,15	
	Composés antipxydants bioactifs Protéines	(60	Corps fruitier	1,15 ± 0,05	FOC
Oxya Chinensis Halyomorpha halys	Prof icines (rúsqu'à 70%) Vitamines (B12, E) Minéra ଏକ (ମି ଣ୍ଡେ ଅନ ୍ନାମ୍ପ୍ର	Favorise la synthèse des phénols Contino de Prantioxydant	Fructification Résidu solide	1.24 ± 0,06	S FHH soc
(Pune punaise brune)	Vitamines (riboflavine, niacine)	Activités corporelles et en	zymatiques base solide	149,5 1 09, <u>9</u> 70F,91 8	SHH
Gryllus bimaculatus (Criquet)	Graisses insalurées Mg, Zn) Min eraux (Fe, Mg, Zn) Vitamines (B12, riboflavine) fruc िककं (स्टब्स, (टिब्स) क्षेत्रि)り%)	Améliore la xanthine oxydase activité inhibitrice	Résidu Résidu solide Minéraux	4,25 ± 0,13 1,15 ± 0,05	SGB
Oxya Chinensis	Graisses insaturées Favori	se la synthèse des phé-Corps Vita	mines (B12, E), nols	1,10 ± 0,00	,,,,,,

(Sauterelles)

(Criquet)

Gryllus bimaculatus

et flavonoïdes Base solide 4,50 ± 0,15 SOC Après la préparation de l'échantillon, y broyage, le Cordy-Minéraux lyophilisés (Fe, Zn, Mg) compris le séchage et le échantillons de résidus de Ceps militaris ont été soumis à une procédure d'extraction. Les échantillons au sol ont été Extráines (65 à 70 n°e) solution méthanol-eau (80:20, v/v) dans un rapport de ruits (p/v). Le 100 an 0,007 FGB Graisses insaturées Améliore la xanthine oxydase Le corps a été sonique pendant 30 min à 25 °C, suivi d'une centrifugation à 5 000 tr/min pendant 4 5 min.

Activité in héritaice des vitextimes les la la collecté 4,25 ± 0,13 SGB Midéræsid(Fise, Cas Mg) aits combinés ont été filtrés sur papier filtre Whatman Gonditions

concentré sous pression réduite à l'aide d'un évaporateur rotatif à 40 °C jusqu'à séchage. Le

les extr**Ai្រេសទំណំទុំសាស្ត្រសំព័រសេបទំទំ**ទំនាំងជីវាប្រើបាលប្រប**្រកាលប្រទេស មន្ត្រស្ថាសទំ** et le broyage, les échantillons lyophilisés de Cordyceps militaris ont été soumis à une procédure d'extraction. Les échantillons broyés ont été extraits à l'aide d'une solution méthanol-eau (80 :20, v/v) dans un rapport de 1 :20 (p/v). Le mélange a été soniqué pendant 30 minutes à 25 °C, suivi d'une centrifugation à 5 000 tr/min pendant 15 minutes.

2.2. Réactifs

Les réactifs utilisés pour toutes les expériences provenaient de Sigma-Aldrich Pte Ltd., Singapour, et comprenaient le 1,1-diphényl-2-picrylhydrazyl (DPPH), le 2,2'- azinobis-(acide 3-éthylbenzothiazoline-6-sulfonique) (ABTS), diméthylsulfoxyde (DMSO), phosphate monopotassique, phosphate dipotassique, hydroxyde de sodium, acide chlorhydrique, xanthine, xanthine oxydase microbienne et allopurinol. De plus, tampon acétate (250 mM, pH 5,0), tampon phosphate (50 mM, pH 7,4), tampon phosphate de sodium (0,02 M, pH 6,9 avec NaCl 6 mM), amidon de blé, α -amylase, enzymes α -glucosidase, acarbose. , le réactif Folin – Ciocalteu, le carbonate de sodium, le chlorure d'aluminium, le nitrite de sodium, l'hydroxyde de sodium et la catéchine ont également été utilisés. Tous les réactifs sont de qualité analytique.

2.3. Teneur en adénosine et en cordycépine chez C. militaris

La quantification de l'adénosine et de la cordycépine a été réalisée à l'aide d'un système HPLC, en suivant la méthode décrite par Li et al. [21]. Initialement, 5 ml d'extrait de résidu solide (SBR) (dans MeOH) ont été filtrés à travers un filtre hydrophile (0,2 μm) avant injection dans le système HPLC (Thermo Ulti-Mate 3000, colonne Hypersil Gold 250 × 4,6 mm − 5 μm, Thermo Fisher Scientific Inc., Waltham, MA, États-Unis). La séparation a été réalisée en utilisant deux systèmes de solvants : (A) de l'eau avec 10 mM d'acétate d'ammonium et 0,1 % d'acide acétique, et (B) 90 % de MeOH avec 10 mM d'acétate d'ammonium et 0,1 % d'acide acétique, dans un programme de gradient. Le programme a commencé par une phase de 20 minutes au cours de laquelle la concentration du solvant B a augmenté de 5 % à 95 %, puis a augmenté jusqu'à 100 % au cours des 5 minutes suivantes, pour finalement être ramenée à 5 % au cours des 5 minutes finales. Les paramètres HPLC comprenaient une longueur d'onde de détection de 260 nm, un débit de 1,6 ml/min, une température de colonne de 40 ∘C et une température d'échantillon de 15 ∘C.

2.4. Contenu phénolique total et évaluation de la teneur totale en flavonoïdes La

teneur phénolique de tous les échantillons a été déterminée à l'aide de la méthode Folin – Ciocalteu [22]. Les résultats ont été exprimés en milligrammes d'équivalent acide gallique (GAE) par gramme de poids sec (DW) après avoir établi une courbe d'étalonnage. Pour la quantification des flavonoïdes, la méthode colorimétrique au chlorure d'aluminium (AlCl3) a été utilisée et la teneur totale en flavonoïdes a été mesurée à l'aide d'une courbe d'étalonnage, les résultats étant exprimés en milligrammes d'équivalent rutine par gramme de poids sec (DW) [23].

2.5. Activités antioxydantes et d'inhibition de la xanthine oxydase (XOD)

L'activité antioxydante a été déterminée en utilisant le piégeage des radicaux DPPH (2,2-diphényl-1-picrylhydrazyl) et l'ABTS (2,2'- azinobis-(acide 3-éthylbenzothiazoline-6-sulfonique)) essais de décoloration radicale des cations [24]. Des modifications ont été apportées aux techniques spectrophotométriques établies pour mesurer l'effet inhibiteur sur la xanthine oxydase (XO) pour tous les échantillons [25].

2.6. Test d'inhibition de l' α -amylase (AAI) et test d'inhibition de l' α -glucosidase (AGI)

L'effet inhibiteur de tous les échantillons sur l'α-amylase a été évalué à l'aide d'une méthode amidon-iode, avec des mesures spectrophotométriques basées sur une méthode précédemment rapportée, incorporant des modifications mineures (25). L'acarbose, un inhibiteur commercial du diabète, a été utilisé comme référence positive. Des solutions d' α-amylase et d'amidon soluble ont été préparées et utilisées le jour de l'expérience. De plus, l' activité anti-α-glucosidase de tous les échantillons a été évaluée à l'aide d'une méthode décrite précédemment [25], également avec quelques modifi

2.7. Les résultats de

l'analyse statistique sont exprimés en moyenne ± écart type (SD). La signification statistique a été évaluée à l'aide du test de Duncan avec un niveau de signification de 5 %. De plus, les différences dues au système de solvant ont été analysées par analyse de variance unidirectionnelle (ANOVA) à l'aide du logiciel statistique Minitab, Minitab® 21.2, basé à Philadelphie, Pennsylvanie, États-Unis.

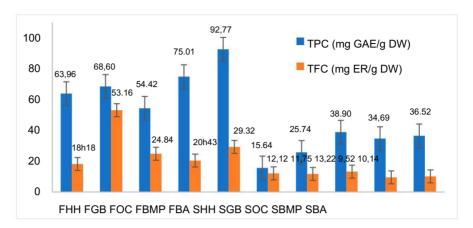
3. Résultats

3.1. Analyse des concentrations d'adénosine et de cordycépine dans les cultivars de C. militaris

L'analyse de la teneur en adénosine et en cordycépine de différents cultivars de C. militaris cultivé sur divers insectes fournit des informations significatives sur l'influence des substrats sur la biosynthèse de ces composés (Tableau 2, Figures S1 – S13 et Tableau S1 (Supplémentaire Matériaux)).

Code	Adénosine (mg/g)		Cordycépine (mg/g)	
Code				
FHH	0,984 ± 0,015	b	1,818 ± 0,012	b
FGB	0,810 ± 0,009	С	2,658 ± 0,006 b	un
FOC	$0,774 \pm 0,007$	С	1,242 ± 0,004	
FBMP	0,572 ± 0,011	d	2,554 ± 0,010	un
Expédis per Amezon	une 1,062 ± 0,014		2,932 ± 0,011	un
CHUT	0,164 ± 0,015	е	$0,303 \pm 0,012$	С
SGB	0,135 ± 0,006	е	$0,443 \pm 0,007$	С
SOC	0,129 ± 0,008	е	$0,207 \pm 0,005$	С
SBMP	f 0,053 ± 0,004		$0,238 \pm 0,006$	С
SBA	0,130 ± 0,010	е	$0,338 \pm 0,011$	С
HPLC		Normes		
Temps de rétention (min)	10,828 ± 0,108		11,236 ± 0,122	
LD (µg/mL)	0,274		0,366	
LOQ (µg/mL)	0,831		1.11	

Les valeurs sont exprimées en moyenne ± écart type. Les regroupements statistiques sont indiqués par les lettres (a à f) suivantes à chaque valeur moyenne, représentant des groupes qui ne sont pas significativement différents les uns des autres au niveau 0,05, comme déterminé par un test post hoc.


La concentration d'adénosine varie de 0,053 mg/g dans le SBMP à 1,062 mg/g dans FBA, démontrant une variabilité substantielle en fonction du matériau hôte. Notamment, le L'échantillon FBA, qui implique une culture sur B. atrostigmella, présente la concentration la plus élevée d'adénosine, indiquant une optimisation potentielle des conditions de croissance ou du métabolisme inhérent capacités du champignon lorsqu'il est cultivé sur cet hôte particulier. En revanche, le plus bas des concentrations d'adénosine se trouvent dans les résidus solides de C, militaris provenant des pupes de B, mori et B. atrostigmella (SBMP et SBA), ce qui suggère que la composition ou la structure des éléments nutritifs de ces résidus pourraient être moins propices à la production d'adénosine. Le contenu en cordycépine affiche une tendance de variabilité similaire, avec des concentrations allant de 0,207 mg/g dans le SOC à 2,932 mg/g en FBA. Ce large éventail met en évidence l'impact significatif du choix de l'hôte sur accumulation de cordycépine, le FBA affichant à nouveau les niveaux les plus élevés. L'augmentation marquée dans la cordycépine dans des échantillons associés à B. atrostigmella (à la fois les fructifications et les résidus) par rapport à d'autres substrats suggère que des composants spécifiques ou la nature physique de le substrat hôte pourrait améliorer la biosynthèse de la cordycépine. Le regroupement statistique indiqué par le test post hoc souligne ces observations, car des échantillons provenant de sources similaires les types d'hôtes ne présentent pas de différences significatives dans les concentrations de composés, ce qui souligne réponses métaboliques cohérentes à des conditions de culture similaires.

3.2. Variations des teneurs phénoliques et flavonoïdes selon les différents hôtes de C. militaris

L'analyse quantitative de la teneur totale en phénoliques (TPC) et de la teneur totale en flavonoïdes (TFC) chez différents hôtes de C. militaris est présenté à la figure 3. Les résultats démontrent un variation substantielle des concentrations de ces composés bioactifs, critiques pour leur activités antioxydantes, qui contribuent aux propriétés médicinales du champignon. Le la teneur phénolique la plus élevée a été observée dans le FBA, atteignant 92,77 mg GAE/g DW, ce qui a également montré une teneur en flavonoïdes relativement élevée à 29,32 mg RE/g DW. A l'inverse, le SHH présentait la teneur phénolique la plus faible à 15,63 mg GAE/g DW et une teneur faible en conséquence teneur en flavonoïdes de 12,12 mg RE/g DW. Le FGB s'est notamment démarqué par une action particulièrement

une variation substantielle des concentrations de ces composés bioactifs, essentiels à leurs activités antioxydantes, qui contribuent aux propriétés médicinales du champignon. La teneur phénolique la plus élevée a été observée dans le FBA, atteignant 92,77 mg de GAE/g de DW, qui présentait également une teneur en flavonoïdes relativement élevée à 29,32 mg de RE/g de DW. À l'inverse, le SHH présentait la teneur phénolique la plus faible, à 15,63 mg de GAE/g de DW, et une teneur en flavonoïdes, correspondante, faible, de 12,12 mg de RE/g de DW. Le FGB se

distingue notamment par une teneur en flavonoïdes particulièrement élevée de 53,16 mg RE/g DW, malgré une teneur phénolique élevée en flavonoïdes modérée de 53,16 mg RE/g DW, malgré une teneur phénolique modérée. teneur de 68,59 mg GAE/g DW. Ces données suggèrent que les substrats spécifiques de l'hôte peuvent différer de 68,59 mg GAE/g DW. Ces données suggèrent que les substrats spécifiques de l'hôte peuvent différer de 68,59 mg GAE/g DW. Ces données suggèrent que les substrats spécifiques peuvent différer et influencent les voies de l'hôte peuvent différer et l'avonoïdes et l'hôte peuvent différer et l'avonoïdes et l'avonoïdes et l'hôte peuvent de l'hôte

Ffigure 3. Contenu total en phénois et flavono iden de Chimilitaris cultivé sur divers hôtes.

3.3. Activités antioxydantes et inhibitrices de la xanthine oxydase des cultures de Cordyceps militaris

des canaarités d'in bibitien ខាងការម៉ាលេង da Zymailique de dui váintur di vernivé sur divers substrats, souligne leur potentificie នេះ បាន de la contra de la co

€xdee	C150 (µ	gynal)	C1500 (424/mAL)
600GE	DPPH	ARESTSS:	XOD
FAITH .	128;1 ± 9;2 sur de	1218,9 [±] ,20 ₂ 8,½, 12190	<i>75</i> 55,0±±1,23,9f г
#GBB	119,4 ± 8,5 sur	21,6 b 1264. ± 21,6	4115,7 ± 111,2g
FWC	150,6 ± 10,8 jours	44211,77 ± 310,38	7/27,99 ± 1/2,44f
FPBMP	de 109,2 ± 7,8 109,2 ± 7,8 de e 88,34 ± 6,3 88,34 ± 6,3 e	305,9 ± 22,0 g 305,9 ± 22,0	932,1 ± 15,9e e
Equito par America CHUT CHUT CHUT	513,9 ± 20,2 513,9 [™] ± 20,2 a b 318,3 ± 22,9 318,3 ± 22,9	g 247,3 ± 17,7 g 1429,8 ± 40,5 1429,8 ± 40,5 a 961,7 ± 27,3 ^{un} 961,7 ± 27,2 1,526,6 ±c 37,8 d ± 2,3 526,6 ±c	$\begin{array}{c} 427.0 \pm 7.3g \\ 427.0 \pm 7.3g \\ 1522.9 \pm 26.1 \\ 1703.8 \pm 26.1 \\ \end{array}$
\$€B	b 210,6 ± 15,1 C	\$\$\$₹,\$\$ £ \$16,\$\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	197093,18±±1269,52 a ^e
S B100 12	236,8 ± 16,9c C	j o u0r s 6 612,3 ± 17,4 0,4	19 09, 0 ±19555e ^c
S B MP	£246,45		1/0/84%, 80 ± 1/89,65c d
BHT* SBA Allopwipol* *	224,4 ± 16,1 c - 18 78 + 1 3f	- 40.4 + 0.6 h	1084,8 ± 18,6 jours 21,0 ± 0,3

Les lettres (a – h) à côté de chaque valeur moyenne indiquent des regroupements statistiques. Les valeurs suivies de la même lettre sont pas signified la comment de la même lettre sont pas signified la comment de la comment de

l'hydrotytetu(and), et l'allapfugnol) sònotté des espannemel eur mey el mété dique modes les gest per intribit istalistés que to ke dante et saivieux years les mêmes lettres ne sont pas significativement différentes les unes des autres au niveau de 0,05, comme

déterminé par les valeurs IC50 , qui indiquent la concentration nécessaire pour inhiber 50 % du radical ou activité enzymatique, servent de référence pour comparer la puissance de différents échantillons. Des valeurs IC50 inférieures indiquent une puissance plus élevée. Pour le test DPPH, FBA (C. militaris fruiting corps cultivés sur Brihaspa atrostigmella) présente l'activité la plus puissante avec une CI50 de $88,34\pm6,3~\mu\text{g/mL}$, suggérant de fortes capacités antioxydantes. Ceci est suivi de près par FBMP et FGB, indiquant que ces souches ou conditions de culture favorisent également des production d'antioxydants.

Dans le test ABTS, FBA montre à nouveau un résultat solide avec une CI50 de $247.3 \pm 17.7 \,\mu g/mL$, soulignant son potentiel dans l'élimination de différents types de radicaux libres. Cette puissante activité dans

les tests DPPH et ABTS mettent en évidence la robustesse du FBA dans la neutralisation des molécules oxydantes, ce qui est bénéfique pour prévenir les maladies liées au stress oxydatif.

Les résultats du test d'inhibition XOD sont cruciaux pour les applications dans le traitement de l'hyperuricémie et la goutte, où l'inhibition de la xanthine oxydase est bénéfique. L'échantillon FGB montre l'inhibition la plus puissante avec une CI50 de 415,7 ± 11,2 µg/mL. Ce résultat est significatif car cela suggère que le substrat ou les conditions dans lesquelles le FGB est cultivé sont particulièrement efficace pour améliorer la production de composés bioactifs qui inhibent xanthine oxydase.

3.4. Analyse de l'inhibition enzymatique par les cultures de C. militaris dans la gestion du diabète de type 2

Les résultats des tests d'inhibition de l' α -amylase et de l' α -glucosidase révèlent une variation notable dans les capacités inhibitrices de différentes cultures de C. militaris, qui peuvent potentiellement être exploité pour des applications thérapeutiques, notamment dans la gestion du diabète de type 2. Ces tests sont essentiels pour comprendre comment les différents substrats utilisés dans la culture de C. militaris peut influencer la production de composés bioactifs avec inhibition enzymatique propriétés. Pour l'inhibition de l' α -amylase, les valeurs IC50 indiquent que la fructification de C. militaris les corps et les résidus solides cultivés sur divers substrats présentent un large éventail de activités d'inhibition enzymatique (Tableau 4). Les résultats les plus notables ont été observés chez le Cordyceps cultivé sur B. atrostigmella et B. mori Pupae, montrant des valeurs IC50 significativement élevées (3924,3 \pm 11,3 μ g/mL et 3867,4 \pm 15,2 μ g/mL, respectivement), indiquant une diminution du taux d'enzymes efficacité d'inhibition. En revanche, la culture sur les fructifications d'O. chinensis a montré inhibition plus puissante (504,6 \pm 4,2 μ g/mL).

Tableau 4. Activités inhibitrices des hôtes de C. militaris contre l'α-Amylase et l'α-Glucosidase.
--

Code	CI50 (µg/mL)		
5545	Inhibition de l'α-amylase	Inhibition de l'α-glucosidase	
FHH	631,1 ± 6,1 b	450,7 ± 18,4 °	
FGB	895,4 ± 5,7 b	746,2 ± 21,0 °	
FOC	887,9 ± 7,2	591,9 ± 14,5 °	
FBMP	979,1 ± 5,2 b	815,9 ± 28,9 °	
Eupédié par Amazon	504,6 ± 4,2 °	336,4 ± 16,0 d	
CHUT	3538,7 ± 25,1 un	2722,1 ± 27,8 b ^b	
SGB	3867,4 ± 15,2 un	2578,3 ± 34,3 b	
SOC	3808,8 ± 10,0 un	2539,2 ± 29,1	
SBMP	un 3924,3 ± 11,3	3018,7 ± 11,6b ^{un}	
SBA	3614,8 ± 10,7 j 90,7 un	$2780,6 \pm 44,9$	
Acarbose*	0,6 ±	143,2 ± 2,1 ^e	

Les lettres (a – e) à côté de chaque valeur moyenne indiquent des regroupements statistiques. Les valeurs suivies de la même lettre ne sont pas significativement différents les uns des autres au niveau de 0,05, comme déterminé par un test post hoc. *Acarbose comme référence standard pour les tests d'inhibition de l'α-amylase et de l'α-glucosidase.

De même, dans le test d'inhibition de l' α -glucosidase, les variations sont tout aussi significatives. La plus forte inhibition a été observée à nouveau chez les Cordyceps cultivés sur B. atrostigmella. fructifications (3018,7 ± 11,6 µg/mL), ce qui suggère que le substrat pourrait enrichir des composés favorables à l'inhibition de cette enzyme spécifique. À l'inverse, les fructifications de C. militaris cultivé sur B. atrostigmella (FBA) a montré la valeur IC50 la plus basse (336,4 ± 16,0 µg/mL), soulignant son potentiel en tant qu'inhibiteur naturel efficace de l' α -glucosidase. Ces découvertes suggèrent une corrélation directe entre le type de substrat utilisé pour la culture et le propriétés d'inhibition enzymatique du C. militaris résultant, indiquant la possibilité de adapter les processus de culture pour améliorer les propriétés bioactives spécifiques.

4. Discussion

Dans le domaine de la recherche mycologique, la sélection du substrat a été soulignée à plusieurs reprises comme facteur critique influençant la biosynthèse de composés bioactifs chez les champignons, en particulier dans des espèces comme C. militaris, connue pour ses propriétés médicinales [26-28]. Cette étude corrobore

découvertes antérieures en démontrant que différents substrats de culture affectent de manière significative à la fois les capacités d'inhibition des enzymes et les niveaux de composés bioactifs tels que la cordycépine et l'adénosine chez C. militaris. En particulier, les fructifications de C. militaris cultivées sur B. atrostigmella présentaient les concentrations les plus élevées de cordycépine à 2,932 mg/g et d'adénosine à 1,062 mg/g, tout en présentant une puissante inhibition de l'α-glucosidase et de l'α-amylase. Cela concorde avec les conclusions de Li et al. (2019) qui ont noté que les propriétés physiques et chimiques des substrats influencent le métabolisme fongique en affectant des conditions telles que l'oxygénation et la teneur en humidité [29]. De plus, les travaux de Yu et al. (2023) met en évidence des variations similaires dans la production de composés bioactifs entre différentes souches de Cordyceps, confirmant ainsi nos observations concernant l'impact du choix du substrat (30). En revanche, C. militaris cultivé sur un support solide sans ajout d'insectes comestibles produirait de très faibles quantités de cordycépine et d'adénosine (31). Il est donc important d'utiliser des insectes comestibles pour la production commerciale de C. militaris et de ses métabolites bioactifs. Cette étude élargit non seulement la compréhension du potentiel pharmacologique de C. militaris, mais illustre également le rôle essentiel de la sélection optimisée du substrat dans l'amélioration de l'efficacité thérapeutique des composés bioactifs fongiques, offrant ainsi des informations précieuses pour le développement de thérapies naturelles plus efficaces contre le diabète et d'autres Troubles métaboliques.

L'inclusion de divers insectes comme substrats supplémentaires dans la culture de C. militaris exploite leurs riches profils nutritionnels pour améliorer la production de composés bioactifs (32). Chaque insecte fournit un mélange unique de protéines, de graisses, de vitamines et de minéraux qui influencent de manière significative les voies métaboliques de C. militaris, conduisant potentiellement à une production accrue d'adénosine, de cordycépine, de phénols et de flavonoïdes (24). Cette approche à double substrat explore les effets synergiques sur la croissance fongique et les propriétés pharmacologiques, optimisant les pratiques de culture pour des bienfaits médicinaux accrus. Par exemple, les pupes de B. mori sont riches en protéines, en acides aminés essentiels, en graisses, en vitamines et en minéraux [14]. B. atrostigmella, bien que moins documentée, fournit des protéines, des graisses et des composés bioactifs antioxydants (27). H. halys offre une teneur élevée en protéines, des graisses saines et des vitamines et minéraux essentiels [33]. O. chinensis contient des niveaux élevés de protéines, de graisses insaturées et de vitamines et minéraux essentiels [33]. G. bimaculatus, riche en protéines et en graisses, fournit également des vitamines et des minéraux essentiels [34]. Ces profils soutiennent la production accrue de composés bioactifs chez C. militaris, contribuant à son potentiel médic

Nos résultats montrent que C. militaris cultivé à partir de différents insectes présente des propriétés pharmacologiques variables [35,36]. Par exemple, les résidus solides de B. mori Pu-pae et G. bimaculatus ont montré des valeurs IC50 significativement élevées , indiquant une efficacité d'inhibition enzymatique plus faible. En revanche, les fructifications cultivées sur B. atrostigmella (FBA) présentaient la valeur IC50 la plus basse de $336,4\pm16,0~\mu g/m L$, reflétant l' activité inhibitrice enzymatique la plus élevée. Ceci suggère que le substrat fourni par B. atrostigmella améliore considérablement la production de composés bioactifs dotés de puissantes propriétés inhibitrices enzymatiques.

Le riche profil nutritionnel de B. atrostigmella fournit probablement un environnement optimal pour la biosynthèse de ces composés, maximisant ainsi le potentiel médicinal de C. militaris. Les teneurs plus faibles en adénosine et en cordycépine dans les résidus solides par rapport aux corps fructifères pourraient être attribuées aux différentes voies métaboliques activées lors de la croissance fongique sur les résidus solides par rapport aux corps fructifères [9,37]. Les résidus solides peuvent manquer de certains nutriments ou conditions cruciaux pour la synthèse optimale de ces composés bioactifs [38].

Les teneurs en phénols et en flavonoïdes variaient également de manière significative selon les différents substrats. La teneur élevée en phénols et en flavonoïdes du FBA suggère que les conditions de culture de cet insecte pourraient optimiser la synthèse de ces composés, probablement en raison d' un profil nutritif riche ou de facteurs de stress environnementaux spécifiques qui induisent une activité métabolique plus élevée. Les phénols et les flavonoïdes, connus pour leurs propriétés antioxydantes, sont révélateurs des bienfaits potentiels de C. militaris pour la santé [39]. Plus précisément, les composés phénoliques tels que l'acide gallique, la catéchine et l'épicatéchine contribuent à ses puissantes activités antioxydantes, tandis que les flavonoïdes comme la quercétine, le kaempférol et la rutine améliorent son profil thérapeutique (38). En revanche, les valeurs plus faibles enregistrées pour les SHH (résidus solides) indiquent un niveau sous-optim

conditions de synthèse de ces molécules bioactives. Le cas unique du FGB, où la production de flavonoïdes est significativement améliorée par rapport au contenu phénolique, ce qui indique que des voies métaboliques spécifiques sont préférentiellement activées en réponse aux propriétés uniques des insectes utilisés. Cette activation préférentielle pourrait être influencée par le nutriment spécifique la disponibilité et les facteurs environnementaux fournis par le substrat hôte, conduisant à une expression différentielle des enzymes métaboliques impliquées dans la biosynthèse de ces composés. Comprendre la variabilité des teneurs phénoliques et flavonoïdes en fonction du substrat peut fournir des informations plus approfondies sur l'optimisation des conditions de culture pour améliorer les propriétés médicinales propriétés de C. militaris. Les études futures devraient se concentrer sur l'identification et la quantification de composés phénoliques et flavonoïdes individuels à l'aide de techniques analytiques avancées telles que comme la chromatographie liquide à haute performance (HPLC) et la spectrométrie de masse (MS) pour élucider davantage les profils bioactifs spécifiques de C. militaris cultivés sur différents substrats. Une telle caractérisation détaillée aidera à développer des stratégies de culture ciblées qui maximiser le potentiel thérapeutique de C. militaris. De plus, explorer la molécule mécanismes sous-jacents à la biosynthèse différentielle de ces composés en réponse à divers substrats fourniront des informations précieuses pour optimiser la culture fongique pour applications pharmaceutiques.

Ces résultats font non seulement progresser notre compréhension du métabolisme fongique, mais également mettre en évidence le potentiel de la manipulation des conditions de culture pour améliorer le rendement de composés bioactifs précieux. Cette approche pourrait avoir un impact significatif sur la culture commerciale stratégies, offrant une voie pour maximiser les propriétés bénéfiques pour la santé des produits de C. militaris . La comparaison avec des études antérieures révèle que nos résultats sont cohérents avec ceux connaissances établies concernant l'influence des substrats sur la production de composés bioactifs . Par exemple, des études antérieures ont démontré que les substrats riches en complexes les glucides et les protéines, comme B. atrostigmella, constituent une riche source de précurseurs pour la synthèse d'analogues nucléosidiques et d'autres métabolites secondaires, conduisant à une rendements de ces composés [30,40]. De plus, la structure physique et la composition du substrat peut affecter la disponibilité de l'oxygène et des nutriments, ce qui influence la voies métaboliques fongiques et activités enzymatiques impliquées dans la dégradation du substrat matériaux sous des formes plus simples que le champignon peut facilement assimiler [41].

Recherche sur les profils d'expression génétique de C. militaris lorsqu'il est cultivé sur différents substrats révèle la régulation positive des gènes impliqués dans le métabolisme secondaire, qui sont crucial pour la synthèse de composés bioactifs [20]. Par exemple, la production accrue de cordycépine sur des substrats spécifiques est en corrélation avec l'activité accrue des enzymes. comme le phosphoramidate de cordycépine, qui joue un rôle direct dans la voie de biosynthèse de ce composé [42]. De plus, les facteurs de stress environnementaux associés à différents les substrats, tels que des niveaux de pH variables ou des carences en nutriments, peuvent induire des réponses au stress chez les champignons, conduisant à l'activation de voies de survie qui incluent la régulation positive de production de métabolites secondaires comme mécanisme de protection (43). Les substrats qui peuvent induire un léger stress oxydatif, comme ceux contenant des types spécifiques de composés phénoliques, peuvent améliorer la production fongique d'antioxydants comme contre-mesure, ce qui à son tour augmente le rendement global en molécules bioactives aux propriétés antioxydantes [44]. Cet adaptatif La réponse au stress induit par le substrat est un facteur clé dans les niveaux élevés de bioactifs composés observés dans certaines cultures, comme le montrent nos expériences avec O. chinensis substrats qui ont conduit à de puissantes activités d'inhibition de l'α-glucosidase et de l'α-amylase [42,45]. L'interaction entre C. militaris et son substrat de culture incarne une interaction complexe de disponibilité des nutriments, de régulation génétique et de stress environnemental, qui tous convergent pour influencer le profil métabolique fongique. Cette compréhension globale permet la manipulation stratégique des conditions de culture pour maximiser la production souhaitée composés bioactifs, révolutionnant potentiellement l'utilisation de C. militaris en pharmacie et applications thérapeutiques. Les recherches futures devraient viser à approfondir les connaissances moléculaires. mécanismes en jeu, utilisant des technologies génomiques, protéomiques et métabolomiques avancées démêler la dynamique complexe qui régit l'interaction entre le métabolisme fongique et les caractéristiques du substrat [44].

Les implications de la culture de C. militaris sur divers substrats pour la gestion du diabète de type 2 sont profondes, offrant une nouvelle approche pour améliorer l'efficacité thérapeutique des interventions naturelles. Les propriétés d'inhibition enzymatique du Cordyceps, en particulier ses effets sur l'α-amylase et l'α-glucosidase, des enzymes essentielles dans le métabolisme des glucides, suggèrent son potentiel en tant que traitement complémentaire pour contrôler la glycémie (42).

Nos recherches démontrent que la sélection du substrat affecte de manière significative la capacité du champignon à produire des composés bioactifs comme la cordycépine et l'adénosine, qui jouent un rôle essentiel dans la modulation de l'activité enzymatique. Plus précisément, la puissante inhibition observée avec des substrats tels que B. atrostigmella, qui a produit les niveaux les plus élevés de ces composés, indique une approche ciblée pour améliorer ces bioactivités. Ces résultats concordent avec des études récentes soulignant l'importance des produits naturels dans la gestion du diabète, où des composés présentant une action inhibitrice contre les enzymes hydrolysant les glucides peuvent réduire considérablement les pics de glycémie postprandiale, un facteur clé dans la gestion des symptômes et des complications du diabète [45,46]. De plus, la variabilité de l'inhibition enzymatique et de la production de composés bioactifs selon différents substrats suggère la possibilité de personnaliser les techniques de culture de C. militaris pour produire des composés spécifiques pouvant être exploités à des fins thérapeutiques (47). De plus, les avantages pharmacologiques du Cordyceps vont au-delà de la simple inhibition enzymatique. Les propriétés anti-inflammatoires et antioxydantes de ses composants bioactifs contribuent à atténuer l'inflammation chronique et le stress oxydatif, qui font partie intégrante de la physiopathologie du diabète (48). En modulant ces processus sous-jacents, C. militaris peut proposer une approche multiforme des soins du diabète, abordant à la fois le contrôle glycémique et les perturbations systémiques plus larges qui accomp L'effet holistique du Cordyceps sur la santé métabolique, comme en témoignent nos recherches, souligne son intégration potentielle dans les protocoles de traitement du diabète, offrant une stratégie complémentaire aux produits pharmaceutiques conventionnels. Cette approche est particulièrement intéressante compte tenu de l'intérêt croissant et de la nécessité de traitements avant moins d'effets secondaires et dérivés de sources naturelles. À cette fin, d'autres études et essais cliniques sont nécessaires pour quantifier l'impact exact de ces résultats en milieu clinique, confirmant ainsi l'efficacité de C. militaris en tant que traitement de soutien pour le diabète et potentiellement d'autres troubles métaboliques.

Les résultats de cette étude représentent une avancée significative dans notre compréhension de la manière dont la sélection du substrat peut optimiser la production de composés bioactifs chez C. militaris. L'inclusion de divers insectes comme substrats fournit une riche source de nutriments qui améliorent les propriétés médicinales de ce champignon. En reliant les disciplines de la mycologie, de la chimie nutritionnelle et de la pharmacologie, cette recherche offre de nouvelles perspectives sur les pratiques de culture durables et efficaces susceptibles de maximiser le potentiel thérapeutique de C. militaris.

Ces découvertes contribuent non seulement au domaine plus large de la chimie médicinale, mais mettent également en évidence les applications pratiques de cette recherche dans le développement de thérapies naturelles pour les troubles métaboliques tels que le diabète de type 2.

5. Conclusions

Cette étude élucide le rôle important des substrats de culture dans la modulation de l' efficacité inhibitrice enzymatique et de la synthèse de composés bioactifs de C. militaris, qui ont des applications potentielles dans la gestion du diabète de type 2 et d'autres troubles métaboliques. Nos résultats révèlent que la sélection du substrat influence de manière cruciale les niveaux de composés essentiels tels que la cordycépine et l'adénosine, les concentrations les plus élevées étant observées dans le Cordyceps cultivé sur B. atrostigmella. Ce substrat a non seulement produit les plus grandes quantités de composés bioactifs, mais a également présenté la plus forte activité inhibitrice contre l'α-glucosidase et l'α-amylase, mettant en évidence la composition du substrat comme facteur clé dans l'amélioration des propriétés médicinales. À l'inverse, les Cordyceps cultivés sur des résidus solides de G. bimaculatus ont montré une inhibition remarquable de la xanthine oxydase, suggérant que différents substrats peuvent être optimisés pour cibler des résultats thérapeutiques spécifiques. Ces connaissances font progresser notre compréhension du potentiel pharmacologique de C. militaris et suggèrent un cadre pour de futures applications biotechnologiques visant à développer des thérapies naturelles efficaces. Cette reche

des stratégies de culture adaptées pour maximiser les bienfaits de C. militaris sur la santé, promettant des options thérapeutiques améliorées pour la gestion des maladies chroniques.

Documents supplémentaires : Les informations complémentaires suivantes peuvent être téléchargées sur https:// www.mdpi.com/article/10.3390/chemistry6040030/s1, Figure S1 (Courbe d'étalonnage pour la quantification de l'adénosine) ; Figure S2 (Courbe d'étalonnage pour la quantification de la cordycépine) ; Figure S3 (chromatogramme HPLC de l'adénosine et de la cordycépine dans les résidus solides de C. militaris de Halyomorpha halys) ; Figure S4 (chromatogramme HPLC de l'adénosine et de la cordycépine dans les résidus solides de C. militaris d'Oxya chinensis); Figure S5 (chromatogramme HPLC de l'adénosine et de la cordycépine dans les résidus solides de C. militaris de Gryllus bimaculatus); Figure S6 (chromatogramme HPLC de l'adénosine et de la cordycépine dans les résidus solides de C. militaris provenant de pupes de Bombyx mori) ; Figure S7 (chromatogramme HPLC de l'adénosine et de la cordycépine dans les résidus solides de C. militaris de Brihaspa atrostigmella); Figure S8 (chromatogramme HPLC de l'adénosine et de la cordycépine dans les fructifications de C. militaris cultivées sur Halyomorpha halys) ; Figure S9 (chromatogramme HPLC de l'adénosine et de la cordycépine dans les organes fruitiers de C. militaris cultivés sur Oxya chinensis) ; Figure S10 (chromatogramme HPLC de l'adénosine et de la cordycépine dans les fructifications de C. militaris cultivées sur Gryllus bimaculatus); Figure S11 (chromatogramme HPLC de l'adénosine et de la cordycépine dans les fructifications de C. militaris cultivées sur des pupes de Bombyx mori) ; Figure S12 (chromatogramme HPLC de l'adénosine et de la cordycépine dans les fructifications de C. militaris cultivées sur Brihaspa atrostigmella); Figure S13 (spectroscopie UV-Vis et chromatogramme HPLC de C. militaris) et tableau S1 (temps de rétention et zones de pic d'adénosine et de cordycépine chez C. militaris).

Contributions des auteurs : Conceptualisation, NQT et TNM ; méthodologie, TNM, VTHN, QNT, HNBV, NMNV et HNA ; validation, VTHN, NTD, HNA et QNT ; analyse formelle, TNM ; enquête, QNT et HNA ; ressources, QNT; conservation des données, HNBV, NMNV et TNM ; rédaction : préparation du projet original, TNM et HNBV ; rédaction – révision et édition, TNM, NMNV, NTD et NQT ; supervision, NQT; acquisition de financement, TNM Tous les auteurs ont lu et accepté la version publiée du manuscrit.

Financement : Cette recherche a été financée par l'Académie vietnamienne des sciences et technologies sous le numéro de subvention THTEXS.02/21-24.

Déclaration du comité d'examen institutionnel : sans objet.

Déclaration de consentement éclairé : sans objet.

Déclaration de disponibilité des données : les données sont contenues dans l'article et les documents supplémentaires.

Remerciements: La souche fongique C. militaris VCCM 34117, fournie par la VAST Culture Collection of Microorganisms (VCCM), Vietnam Academy of Science and Technology (VAST), a été utilisée dans cette étude. En outre, le Centre de recherche et de développement de haute technologie, également sous VAST, est reconnu pour son soutien partiel en fournissant l'équipement nécessaire à cette recherche.

Conflits d'intérêts : L'auteur Truong Ngoc Minh était employé par la société Vicomi Tam An Investment and Commercial Company Limited. Les auteurs ne déclarent aucun conflit d'intérêt.

Les références

- 1. Shrestha, S.; Shrestha, B.; Parc, JH; Lee, DY; Cho, JG; Baek, NI Constituants chimiques du Yarsagumba (Ophiocordyceps sinensis Berk.), une médecine traditionnelle himalayenne appréciée. Nép. J. Sci. Technologie. 2012, 13, 43-58. [Référence croisée]
- 2. Jeong, MH; Lee, CM; Lee, SW; SEO, SY; SEO, MJ; Kang, PC; Jo, WS Cordyceps militaris enrichi en cordycépine induit un retard d'immunomodulation et de croissance tumorale dans le cancer du sein dérivé de la souris. Oncol. Rapport 2013, 30, 1996-2002. [Référence croisée]
- Liu, JY; Feng, CP; Li, X.; Chang, MC; Meng, JL; Xu, LJ Activité immunomodulatrice et antioxydante des polysaccharides de Cordyceps militaris chez la souris. Int. J. Biol. Macromol. 2016, 86, 594-598. [Référence croisée] [Pub Med]
- 4. Lee, CT; Huang, KS; Shaw, JF; Chen, JR; Kuo, WS; Shen, G.; Yang, CH Tendances des effets immunomodulateurs du Cordyceps militaris: extraits totaux, polysaccharides et cordycépine. Devant. Pharmacol. 2020, 11, 575704. [Réf. croisée] [Pub Med]
- 5. Wolfe, D. Superaliments : l'alimentation et la médecine du futur ; Livres de l'Atlantique Nord : Berkeley, Californie, États-Unis, 2009.
- 6. Hanser, M.; Hudson, SL Thérapies alternatives: options croissantes dans la pratique infirmière; Centre national de formation continue, Inc.: Lakeway, Texas, États-Unis, 2006.
- 7. Munch, Mécanismes neuroprotecteurs AHABG: le stress oxydatif comme cible des thérapies neuroprotectrices dans la maladie d'Alzheimer et Parkinson. Handb. Neurochimie. Mol. Neurobiol. Dégénérateur. Dis. Nerveux. Système. 2007, 84, 77-102.

- 8. Bains, A.; Chawla, P.; Kaur, S.; Najda, A.; Fogarasi, M.; Fogarasi, S. Bioactifs des champignons: attributs de santé et alimentation applications industrielles. Matériaux 2021, 14, 7640. [CrossRef] [Pub Med]
- 9. Jedrejko, K.; Kala, K.; Sułkowska-Ziaja, K.; Cracovie, A.; Zieba, P.; Marzec, K.; Sekara, A.; Muszynska, B. Cordyceps militaris Organes fruitiers, mycélium et suppléments: élément précieux de l'alimentation quotidienne. Antioxydants 2022, 11, 1861. [CrossRef]
- 10. Niego, AG; Rapier, S.; Thongklang, N.; Raspé, O.; Jaidee, W.; Lumyong, S.; Hyde, KD Les macrochampignons comme source nutraceutique: composés bioactifs prometteurs et valeur marchande. J. Champignons. 2021. 7. 397. [CrossRef] [Pub Med]
- 11. Chang, ST; Wasser, SP Tendances actuelles et futures de la recherche sur les applications agricoles et biomédicales des champignons médicinaux et des produits à base de champignons. Int. J.Méd. Champignons 2018, 20, 12. [CrossRef] [Pub Med]
- 12. Phoungthong, K.; Aiphuk, W.; Maneerat, T.; Suwunwong, T.; Choto, P.; Chomnunti, P. Utilisation du biocharbon d'épis de maïs en culture milieux pour la production de cordycépine et la biomasse de C. militaris. Durabilité 2022, 14, 9362.
- 13. Zeng, Z.; Mou, D.; Luo, L.; Zhong, W.; Duan, L.; Zou, X. Différents environnements de culture affectent le rendement, la communauté bactérienne et les métabolites des cigales Cordyceps. Devant. Microbiol. 2021, 12, 669785. [CrossRef]
- 14. Aramwit, P.; Bang, N.; Ratanavaraporn, J.; Nakpheng, T.; Srichana, T. Une cordycépine anticancéreuse produite par Cordyceps militaris poussant sur la larve morte du ver à soie Bombyx mori. J. Agric. Sci. 2014, 6, 41.
- 15. Li, YT; Yao, HT; Huang, ZL; Gong, LC; Herman, RA; Wu, FA; Wang, J. La globuline des pupes de vers à soie favorise la fermentation du Cordyceps militaris : la régulation des voies métaboliques améliore la synthèse de la cordycépine et prolonge la phase de synthèse. Bioscies alimentaires . 2024, 59, 103971. [Réf. croisée]
- 16. Kaewkam, A.; Sornchai, P.; Chanpramé, S.; lamtham, S. Utilisation de Spirulina maxima pour améliorer le rendement et la teneur en cordycépine en culture artificielle de Cordyceps militaris. Antioxydants 2021, 11, 1861.
- 17. Li, X.; Liu, Q.; Li, W.; Li, Q.; Qian, Z.; Liu, X.; Dong, C. Une percée dans la culture artificielle du cordyceps chinois à grande échelle et son impact sur la science, l'économie et l'industrie. Critique. Révérend Biotechnologie. 2019, 39, 181-191. [Référence croisée] [Pub Med]
- 18. Dong, C.; Guo, S.; Wang, W.; Liu, X. Industrie du cordyceps en Chine. Mycologie 2015, 6, 121-129. [Référence croisée] [Pub Med]
- 19. Liang, HH; Cheng, Z.; Yang, XL; Li, S.; Ding, ZQ; Zhou, TS; Chen, JK Diversité génétique et structure des populations de Cordyceps sinensis provenant de vastes régions géographiques de Chine, révélées par des marqueurs de répétition de séquence inter-simples. J. Microbiol. 2008, 46, 549-556. [Référence croisée] [Pub Med]
- 20. Thananusak, R.; Laoteng, K.; Raethong, N.; Koffas, M.; Vongsangnak, W. Disséquer la régulation métabolique dans la croissance mycélienne et les stades de développement de la fructification du Cordyceps militaris grâce à l'analyse intégrative du transcriptome. Biotechnologie. Ing. bioprocédés. 2023, 28, 406-418. [Référence croisée]
- 21. Li, SP; Lèvre.; Dong, TT; Tsim, KW Détermination des nucléosides dans les mycéliums naturels de Cordyceps sinensis et de Cordyceps cultivés par électrophorèse capillaire. Électrophorèse 2001, 22, 144-150. [Référence croisée] [Pub Med]
- 22. Blainski, A.; Lopes, GC; De Mello, JCP Application et analyse de la méthode Folin Ciocalteu pour la détermination de la teneur phénolique totale de Limonium brasiliense L. Molecules 2013, 18, 6852-6865. [Référence croisée] [Pub Med]
- 23. Matic, P.; Sablji'c, M.; Jakobek, L. Validation des méthodes spectrophotométriques pour la détermination des polyphénols totaux et du total Teneur en flavonoïdes. J. AOAC Int. 2017, 100, 1795-1803. [Référence croisée] [Pub Med]
- 24. Fukuta, M.; Xuan, TD; Déba, F.; Tawata, S.; Khanh, TD; Chung, IM Efficacité comparative in vitro des activités antibactériennes, fongicides, antioxydantes et herbicides des momilatones A et BJ Plant Interact. 2007, 2, 245-251. [Référence croisée]
- 25. Minh, Tennessee ; Van, TM; Andriana, Y. ; Hau, DV; Duyen, DH; Guzman-Gelani, CD Antioxydant, Xanthine oxydase, α-Amylase et α-Glucosidase Activités inhibitrices des composés bioactifs de Rumex crispus L. Root. Molécules 2019, 24, 3899. [CrossRef]
- 26. Liang, ZC; Liang, CH; Wu, CY Divers substrats céréaliers pour la production de fructifications et de composés bioactifs du champignon chenille médicinal, Cordyceps militaris (Ascomycètes). Int. J.Méd. Champignons 2014, 16, 6. [CrossRef] [Pub Med]
- 27. Tao, SX; Xue, D.; Lu, ZH; Huang, HL Effets des substrats sur la production de fructifications et de composants bioactifs par différentes souches de Cordyceps militaris (ascomycètes). Int. J.Méd. Champignons 2020, 22, 1. [CrossRef] [Pub Med]
- 28. Couperet, PD; Loomis-Powers, M.; Patel, D. Analyse de la qualité et techniques d'hybridation du champignon médicinal Cordyceps sinensis (Berk.) Sacc. (Ascomycètes). Int. J.Méd. Champignons 2004, 6, 2.
- 29. Li, Y.; Yang, H.; Yang, H.; Wang, J.; Chen, H. Évaluation des méthodes de séchage sur la propriété physicochimique et l'activité antioxydante du Cordyceps militaris. J. Mesures alimentaires. Caractère. 2019, 13, 513-520. [Référence croisée]
- 30. Yu, J.; Soleil, M.; Wang, X.; Qi, D.; Han, C. Métabolomique des voies poly pour la cordycépine à haut rendement de Cordyceps militaris. Bioméde. Chromatogr. 2023, 37, e5551. [Référence croisée] [Pub Med]
- 31. Turc, A.; Abdelhamid, MA; Yeon, SW; Ryu, SH; Lee, S.; Ko, SM; Kim, BS; Pack, SP; Hwang, PAR; Lee, MK Champignon Cordyceps avec une teneur accrue en cordycépine grâce à la culture sur des insectes comestibles. Devant. Microbiol. 2022, 13, 1017576. [CrossRef] [Pub Med]
- 32. Krishna, KV; Balasubramanien, B.; Parc, S.; Bhattacharya, S.; Kadanthottu Sebastian, J.; Liu, WC; Malaviya, A. Conservation du Cordyceps sinensis en voie de disparition grâce à des stratégies de culture artificielle de Cordyceps militaris, une alternative. Mol. Biotechnologie. 2024. [Référence croisée] [Pub Med]
- 33. Néphale, LE; Moyo, Caroline du Nord; Rapatsa, MM Stinkbug diététique (Encosternum delegorguei) Effets des repas sur les performances de croissance, la chimie du sang, l'histologie hépatique et intestinale du tilapia juvénile du Mozambique (Oreochromis mossambicus). Agriculture alimentaire convaincante.

 2023, 9, 2253717. [Réf. croisée]

34. Murugu, Danemark; Onyango, AN; Ndiritu, AK; Osuga, IM; Xavier, C.; Nakimbugwe, D.; Tanga, CM De la ferme à l'assiette: les grillons comme source alternative de protéines, de minéraux et de vitamines. Devant. Nutr. 2021, 8, 704002. [Réf. croisée] [Pub Med]

- 35. Woolley, Virginie-Occidentale; Teakle, GR; Prince, G.; de Moor, CH; Chandler, D. Cordycepin, un métabolite du Cordyceps militaris, réduit expression des gènes liés au système immunitaire chez les insectes. J. Invertébr. Pathol. 2020, 177, 107480. [Réf. croisée] [Pub Med]
- 36. Phull, AR; Ahmed, M.; Park, HJ Cordyceps militaris comme source alimentaire biofonctionnelle: potentiel pharmacologique, actions anti-inflammatoires et mécanismes moléculaires associés. Microorganismes 2022, 10, 405. [CrossRef] [Pub Med]
- 37. Minh, Tennessee ; Ah, LV ; Trung, NQ; Minh, BQ; Xuan, TD Efficacité des solvants d'extraction verts sur les potentiels antioxydants, xanthine oxydase et inhibiteurs végétaux des résidus solides (SBR) de Cordyceps militaris. Souligne 2023, 3, 11-21. [Référence croisée]
- 38. Osemwegie, OO; Adetunji, Colorado ; Ayeni, EA; Adejobi, OI; Lève-toi, RO ; Nwonuma, Colorado ; Oghenekaro, AO Exopolysaccharides issus de bactéries et de champignons : état actuel et perspectives en Afrique. Héliyon 2020, 6, 6. [CrossRef] [Pub Med]
- 39. Wen, TC; Kang, C.; Meng, ZB; Qi, YB; Hyde, KD; Kang, JC Production améliorée de cordycépine par fermentation à l'état solide de Cordyceps militaris en utilisant des additifs. Chiang Mai J. Sci. 2016, 43, 972-984.
- 40. Sripilai, K.; Chaicharoenaudomrung, N.; Phonchai, R.; Chueaphromsri, P.; Kunhorm, P.; Noisa, P. Développement d'une source d'azote sans animaux pour la culture en surface liquide de Cordyceps militaris. Lett. Appl. Microbiol. 2023, 76, ovad053. [Référence croisée] [Pub Med]
- 41. Zu, Z.; Wang, S.; Zhao, Y.; Fan, W.; Li, T. L'activité des enzymes intégrées et le transcriptome révèlent l'effet de la mélatonine exogène sur la dégénérescence de la souche de Cordyceps militaris. Devant. Microbiol. 2023, 14, 1112035. [CrossRef] [Pub Med]
- 42. Qu, S.; Wang, Q.; Wang, Y.; P'tit.; Zhu, L.; Kuang, X.; Dai, H. Conception, synthèse, activité antibactérienne/antitumorale et stabilité in vitro de nouveaux dérivés de cordycépine avec chaîne d'acides gras insaturés. EUR. J.Pharm. Sci. 2023, 187, 106466. [Réf. croisée]
- 43. Hoang, CQ; Duong, GH; Tran, MH; Vu, Texas; Tran, tuberculose; Pham, HT Mécanismes moléculaires sous-jacents à la dégénérescence phénotypique Cordyceps militaris: aperçus de la réanalyse du transcriptome et des études sur le stress osmotique. Sci. Rep.2024, 14, 2231. [CrossRef] [Pub Med]
- 44. Soraksa, N.; Heebkaew, N.; Promjantuek, W.; Kunhorm, P.; Kaokéan, P.; Chaicharoenaudomung, N.; Noisa, P. Cordycepin, un composé bioactif de Cordyceps spp., modère la pathologie associée à la maladie d'Alzheimer via le stress anti-oxydatif et l'activation de l'autophagie. J. Asiatique Nat. Prod. Rés. 2024, 26, 583-603. [Référence croisée] [Pub Med]
- 45. Qiao, L.; Liu, J.; Zhou, Z.; Li, Z.; Zhou, Y.; Xu, S.; Zou, X. Effets positifs de la colonisation de Cordyceps cateniannulata sur le tabac : promotion de la croissance et résistance au stress abiotique. Devant. Microbiol. 2023, 14, 1131184. [CrossRef] [Pub Med]
- 46. Liu, JS; Huang, RY; Wei, YJ; Tsai, GJ; Huang, CH Influence des extraits de substrat de grains fermentés de C. militaris sur le soulagement des allergies alimentaires chez la souris. Héliyon 2023, 9, 12. [CrossRef] [Pub Med]
- 47. Pereira, L.; Valado, A. Produits naturels dérivés des algues dans le diabète et ses complications : progrès actuels et futurs Perspectives. Vie 2023, 13, 1831. [CrossRef] [Pub Med]
- 48. Soltani, M.; Malek, RA; Elmarzugi, NA; Mahomoodally, MF; Oui, D.; Leng, OM; El-Enshasy, HA Cordycépine: Une molécule biothérapeutique issue d'un champignon médicinal. En biologie des macrochampignons; Springer: Berlin/Heidelberg, Allemagne, 2018; pp. 319-349.
- 49. Zhang, Y.; Liu, SJ Cordyceps comme agents thérapeutiques potentiels pour l'athérosclérose. J. Intégré. Méd. 2024, 22, 102-114. [Référence croisée]

Avis de non-responsabilité/Note de l'éditeur : Les déclarations, opinions et données contenues dans toutes les publications sont uniquement celles du ou des auteurs et contributeurs individuels et non de MDPI et/ou du ou des éditeurs. MDPI et/ou le(s) éditeur(s) déclinent toute responsabilité pour tout préjudice corporel ou matériel résultant des idées, méthodes, instructions ou produits mentionnés dans le contenu.