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Abstract: At present, the optimization of public transportation networks and vehicle scheduling are
carried out independently in stages. However, through analysis, it has been found that scheduling
information such as route schedules is an important factor related to passenger route selection.
Therefore, in order to further improve the optimization effect, this article proposes an innovative
idea of simultaneously optimizing the line network and scheduling. Based on the construction of a
real–virtual public transportation network, this article constructs a synchronous optimization model
for the line network and scheduling by considering both passenger waiting and on-board time. To
achieve the consideration of passengers for different route choices, a shortest path traversal algorithm
based on Yen was proposed to analyze the number and weight of the shortest paths between the same
OD, and a genetic algorithm was used to solve the model. Finally, the effectiveness of the model was
verified through numerical examples, and the results showed that synchronous optimization was
superior to phased optimization: the passenger time cost was reduced by 21.5%, the bus operation
cost was reduced by 13.7%, and the total bus system cost was reduced by 18.0%.

Keywords: route selection; departure interval; scheduling; relevance; synchronous optimization

1. Introduction

With the acceleration of urbanization and rapid economic development in our coun-
try, the number of motor vehicles and the travel demands of residents are also rapidly
increasing. Traffic congestion has become common and is becoming increasingly severe.

To alleviate the current pressure on transportation, our country is vigorously pro-
moting the development of public transportation, especially in large cities where public
transportation is developing rapidly. For example, in Shenzhen, the length of operational
rail transit lines exceeded 400 km in 2020, reaching 422.6 km, a year-on-year increase of
33.9%. The length of bus operating routes reached 21,310.53 km, a year-on-year decrease
of 1.4%. Currently, in major cities across the country, transportation modes such as buses,
subways, taxis, and trams together form a public transportation network, with overall
passenger flow continually increasing. In 2019, the average daily passenger flow of public
transportation in Shenzhen was 11.06 million passengers per day, an increase of 2.65 million
passengers per day compared to 2011. In 2020, due to the impact of the COVID-19 pan-
demic, the average daily passenger volume for the entire year was 8.226 million passengers,
a year-on-year decrease of 25.6%. As the pandemic situation improved and new subway
lines opened, public transportation passenger flow in December rose to the highest level of
the year, with an average daily passenger volume of 10.603 million passengers, recovering
to 94.1% of the same period in 2019.

To improve the transportation efficiency of buses and balance the supply and demand
of the bus system, it is necessary to replan and redesign the bus network. This will help
avoid significant overlap with rail transit lines, preventing redundant routes and resource
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waste. At the same time, it is crucial to ensure seamless connections and transfers between
buses and rail transit, thereby meeting passengers’ travel needs and reducing travel costs.

After conducting domestic and international research and analysis on bus networks,
it was found that existing studies overlook the impact of scheduling on bus network
optimization. They also fail to consider passengers’ waiting costs when calculating the total
travel costs for passengers. Analysis of passenger card swiping data revealed a moderate
correlation between passengers’ route choices and the frequency of bus services. Therefore,
this paper includes scheduling considerations in the optimization of bus networks.

Scholars both domestically and internationally have conducted relatively mature research
on the optimization of urban bus networks. The majority of research on network optimization
focuses on three aspects: theory, model construction, and algorithm development.

Theoretical Methods: Pu Han et al. proposed a bus network optimization method
based on multilayer complex networks [1]. Mitra Subhro et al. presented a multi-objective
bus network optimization method [2]. Petit Antoine et al. introduced a bus network
design method based on aggregate networks and continuous approximation models [3].
Szeto et al. proposed a network optimization method for urban transportation networks
and road networks [4]. Zhang L developed a public transportation route network (PTRN)
auxiliary optimization method based on link prediction [5]. Klier MJ introduced a novel
optimization method for designing public transportation networks, maximizing the ex-
pected total number of public transportation passengers under budget constraints [6].
Yin J studied the coordinated train timetable optimization of urban rail transit networks
and proposed a mathematical formula to generate the best-coordinated train timetable
synchronously [7]. Liang M established a multi-objective model based on two conflicting
objectives, and developed two populations to simultaneously optimize the network and
frequency [8]. Wang C introduced a multi-level multi-mode network design method [9].
Huang A studied a demand-responsive public transit (DRT) service that adjusts paths
continuously based on dynamic passenger demands, maximizing system efficiency while
considering passengers’ preferred time windows [10]. Gong M proposed designing a modu-
larized fleet-based CB network based on transfers, optimizing passenger route assignments
simultaneously [11]. Yang J proposed a novel initial route set generation algorithm and
a route set size alternating heuristic algorithm embedded in a solution framework based
on non-dominated sorting genetic algorithm-II (NSGA-II) to generate approximate Pareto
frontiers [12]. Yao E presented a new method (MVT-E-VSP) for scheduling electric vehicles
of multiple types [13]. Guo R optimized the operational performance of a bilateral BRT with
elastic demand, minimizing the generalized time costs per passenger [14]. Li Wenyong et al.
proposed a microcirculation bus network planning method based on hierarchical cluster-
ing [15]. Shi Xiaowei et al. proposed a rail transit feeder bus network optimization method
based on the shortest route labeling model [16]. Huang Min et al. proposed a method for
constructing different levels of bus routes and optimizing them separately according to
different levels and functions [17]. Yight F et al. provided a hybrid approach to optimize
the theoretical method for sequence-dependent pipeline scheduling problems [18].

Model Construction: Ren Hualing et al. proposed a new bus allocation model based
on line and node strategies [19]. Shi Qingshuai et al. proposed a public transportation route
optimization evaluation model based on multi-source bus data [20]. Fan W introduced
a heuristic method based on Tabu Search (TS) and applied it to public transportation
network design with variable demand [21]. Huang D developed a new optimization model
for demand-responsive customized bus (CB) network design, including dynamic and
static phases [22]. Li X proposed a joint optimization model for conventional charging
electric bus network scheduling and fixed charger deployment considering partial charging
policies and time-of-use electricity prices [23]. Steiner K developed a strategic network
planning optimization model for bus routes [24]. Chai S established a multi-objective bus
network design model that not only considers transfer impacts but also takes into account
delays in passenger travel time due to congestion [25]. Wei M presented a mathematical
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model for designing feeder bus services to improve the service quality and accessibility of
transportation hubs [26].

Algorithm Development: Z. Tang et al. proposed coupling local deterministic search
and global evolutionary algorithms for bus network optimization [27]. Kuan et al. con-
ducted research on bus network optimization using a combination of genetic algorithms
and ant colony algorithms [28]. Ngamchai et al. introduced a method that combines various
genetic operation mechanisms for bus network optimization design [29]. Bourbonnais PL
used precise local road network data and representative public transportation demand data
for genetic algorithm optimization to generate reasonable solutions [30]. Ding Jianxun et al.
proposed using an improved K-shortest path algorithm for bus network optimization re-
search [31]. Luo Xiaoling et al. proposed using the K-means clustering algorithm to perform
cluster analysis on bus stations for network optimization research [32]. Gao Mingyao et al.
proposed using an improved Particle Swarm Optimization (PSO) algorithm to solve the bus
network optimization model [33]. Xin Yi et al. proposed using the NSGA-II algorithm to
solve the multi-objective bus network optimization model [34]. Wang Ning et al. proposed
using a cellular genetic algorithm to solve the feeder bus network model [35]. Yu Lijun et al.
designed an improved simulated annealing algorithm to optimize and solve the network
optimization model [36]. Wu Kexin et al. used an improved ant colony algorithm for
network optimization of bus networks [37].

Overall, the optimization research of bus networks has achieved numerous excellent
research results in both theoretical methods and model construction as well as algorithm
development, providing a theoretical research basis for the optimization design work of
this paper’s network. However, these achievements still have some shortcomings in their
practical application:

(1) Ignored Passenger Route Selection: Both domestic and international scholars often
assume that passengers choose the shortest time or the fewest transfers when optimizing
bus networks. However, when multiple paths between the same origin–destination (OD)
stations meet the passengers’ criteria, passengers may selectively choose different routes
to travel.

(2) Did Not Consider the Impact of Scheduling on Bus Network Optimization: Previ-
ous research has often overlooked the influence of route scheduling on passenger route
selection during the network layout phase. When calculating the total travel cost for passen-
gers, waiting costs at bus stops were not taken into account. This incomplete consideration
in calculating the total time cost for passengers is directly related to vehicle scheduling
because passengers’ waiting costs are directly correlated with scheduling.

To help readers better understand the structure and content of this paper, the technical
roadmap of chapter contents is illustrated in Figure 1. A brief overview of each chapter is
provided below:

Section 2 introduces the construction and solution of the integrated optimization
model for the bus network and scheduling. It first defines the research scope of the bus
network problem in this paper, presents the assumptions for model construction, and
then describes the objective function and constraints of the integrated optimization model.
Based on the construction of an actual–virtual bus network, which balances the interests of
both passengers and operators, the chapter establishes the integrated optimization model.

Section 3 applies Yen’s algorithm to analyze reachable paths between the same origin–
destination (OD) pairs. The paths are sorted based on their weights, and the parameter
K is flexibly set to accommodate different ODs. Since such problems are typically NP-
Hard and involve high computational difficulty and complexity, intelligent optimization
algorithms are usually employed. Given the computational complexity of large-scale bus
network construction, we chose the efficient genetic algorithm to solve the integrated
optimization model.
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Section 4 validates the effectiveness of the integrated optimization model for a bus
network and scheduling based on the genetic algorithm through specific case studies.
By setting weights between stations, the algorithm’s effectiveness in the optimization
process was verified. The cases were optimized in stages and synchronously, with results
compared between them. Finally, sensitivity analysis was conducted focusing on different
stakeholders, confirming the conclusion that cost reduction effects are more significant.

2. Synchronized Optimization Model for Network and Scheduling
2.1. Model Assumptions

Due to the multifaceted nature of factors influencing the bus system, the following as-
sumptions are made to accurately define the bus network optimization problem addressed
in this study:

(1) Passengers choose the shortest travel time route to ride; when multiple routes can
satisfy the shortest travel time, passengers choose based on the proportion of the total
number of trips taken by the vehicles on that OD route. (Shortest Time)

(2) The waiting cost for passengers is assumed to be half of the average waiting time
for the selected route, which is equal to half of the departure interval of the vehicles on the
chosen route.

(3) The vehicles on each route are assumed to be identical except for the number of
trips. Differences in factors such as road traffic, passenger load, and driving speed that may
affect passenger route selection are ignored.

(4) The total travel time for passengers includes waiting time, time spent on the
vehicle, walking time from the origin to the bus stop, and walking time from the bus stop
to the destination.

(5) Passenger transfers are limited to the same bus stop. If there is no direct route
between the origin and destination, passengers need to get off at a stop on the initial route
and board another bus passing through that stop to reach the destination, only considering
transfers at the same stop.

(6) It is assumed that passengers can board the next available vehicle on the desired
route after arriving at the stop, without any capacity restrictions on the vehicles.

2.2. Parameter Definitions

Tij(X): Under the X bus network, the shortest travel time required for passengers to
travel from Station i to Station j (s);
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Twij : The waiting time for passengers traveling from site i to site j along their chosen
shortest path (s);

TSij : The bus’s stopping time during its journey from site i to site j (s);
Tdij

: Passenger’s on-board time from site i to site j (s);
TSij : The stopping time of a bus during its journey from station i to station j (s);
Ts: The average dwell time of a bus at a bus stop (s);
Tr: The operational time of route r (s);
F: Operating costs (s);
M: The cost of purchasing a bus (s);
N: The operating costs of each bus route (s);
N: Cost per unit distance for a bus (s);
M: The daily purchase cost per bus (s);
X: Bus network;
Qij: Traffic demand from station i to station j;
n: The number of stops between stations i and j on the selected route;
Lr

ij: The length of the segment between stations i and j on route r (km);
S: The number of total stations represented;
sr

ij: The number of stations between stations i and j on route r;
lmin: The minimum length of a bus route (km);
lmax: The maximum length of a bus route (km);
fmin: The minimum departure interval for buses on a bus route;
fr: Route r‘s bus departure interval;
fmax: The maximum departure interval for buses on a bus route;
Lr: The length of route r (km);
dr: The straight-line distance between the starting and ending points of route r (km);
λ: The weighting coefficient between time cost and operating cost;
ω: The conversion coefficient between time cost and operating cost;
δw: The passenger waiting coefficient is due to passengers arriving evenly, and vehicle

arrivals follow a Poisson distribution, δw = 0.5;
xr

ij: The value is 1 if the shortest path from site i to site j passes through route r, and 0
if it does not;

V: The average speed of a bus (m/s);
yr

ij: The segment lij between adjacent stations i and j on route r has a value of 1 when
it is on the route r, and a value of 0 when it is not;

Or
i : The station i in route r.

2.3. Model Construction

Consideration of optimizing the design of city bus networks with scheduling aims to
minimize passenger time cost and bus operation cost. Constraints include the route length,
headway, non-repeating route stations, and non-linear route coefficients. A synchronous
optimization model is developed for both the network and scheduling.

2.3.1. The Objective Function

The optimization objective of the bus network should comprehensively consider the
interests of both passengers and bus operators. Passengers seek short travel times, while
operators aim for efficient resource utilization and minimized investment costs. Therefore,
in the optimization design of the bus network and scheduling model in this paper, the
interests of both passengers and bus operators are simultaneously considered. The goal is
to reduce passenger travel time and lower bus operation costs, aiming to minimize costs
for both passengers and bus operators in the bus network.

Passenger Travel Cost

Passenger travel cost mainly refers to the total travel time for passengers within the
network, which includes waiting time and in-vehicle time.



Appl. Sci. 2024, 14, 6337 6 of 18

(1) Waiting time
In the model assumptions mentioned earlier, it is assumed that passengers, upon

arriving at the station, can board the first bus of the target route for travel, meaning
passengers can all catch the next scheduled bus of the target route. Therefore, the waiting
time for passengers mainly depends on the headway of the route they are waiting for, with
passenger waiting time being half of the headway of the selected route. The passenger
waiting time is expressed as:

Twij = δw

R

∑
r=1

xr
ij

1
fr

∑R
r=1 xr

ij
1
fr

fr = δw

R

∑
r=1

xr
ij

∑R
r=1 xr

ij
1
fr

(1)

(2) In-vehicle time
In-vehicle time mainly consists of two parts: inter-stop travel time and dwell time at

stops. Ignoring the influence of road and other external factors, travel time is related to
distance and travel speed, while dwell time is related to the number of intermediate stops.
Therefore, travel time and dwell time are represented as follows:

Tdij
=

1
V

R

∑
r=1

xr
ij

1
fr

∑R
r=1 xr

ij
1
fr

Lr
ij (2)

TSij = Ts

R

∑
r=1

xr
ij

1
fr

∑R
r=1 xr

ij
1
fr

sr
ij (3)

Based on the above, the total time cost for passengers can be expressed as follows:

T =
S

∑
i=1

S

∑
j=1

Qijλ(δw

R

∑
r=1

xr
ij

∑R
r=1 xr

ij
1
fr

+
1
V

R

∑
r=1

xr
ij

1
fr

∑R
r=1 xr

ij
1
fr

Lr
ij + Ts

R

∑
r=1

xr
ij

1
fr

∑R
r=1 xr

ij
1
fr

sr
ij) (4)

Bus Operation Cost

The expenses of bus operators mainly include the procurement of buses, construction
of stations, wages and salaries of staff, management fees, vehicle insurance, fuel costs,
vehicle depreciation expenses, and taxes, among others. In this paper, when considering
costs, only the operational costs of buses are taken into account, which are mainly reflected
in economic costs. This specifically refers to the vehicle procurement costs and operational
costs of each route within the bus network.

(1) Vehicle procurement cost
To minimize vehicle procurement costs and maximize vehicle utilization, it is necessary

to reduce the number of vehicles as much as possible. However, it is also important to
ensure that there is a bus available at the departure station to meet the next scheduled
departure for each route. This requires ensuring that the cumulative headway is greater
than the duration of each route, meaning that the minimum number of vehicles required
for each route should satisfy the following condition:

nr
min ≥ 2

Lr

V
· 1

fr
(5)

Therefore, the minimum vehicle procurement cost is:

M =
R

∑
r=1

nr
min M (6)

(2) Route operation cost
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The operational cost of a bus route mainly includes the vehicle’s operating cost, which
is primarily related to the frequency of trips and the cost per trip. Therefore, the minimum
operational cost of a route is represented as follows:

N =
R

∑
r=1

2Tr

fr
N (7)

Therefore, the bus operation cost is represented as follows:

F = 2(
R

∑
r=1

(
Lr

V
· 1

fr
M +

Tr

fr
N) (8)

2.3.2. Constraint Conditions

To provide a detailed definition of the conditions set in the model, the following
constraints are imposed to further restrict the model:

(1) Route length
In bus network optimization, if bus routes are too short, operational costs increase,

while excessively long routes reduce passenger comfort. Therefore, to better meet passenger
needs, routes should not be excessively short or long. The length of each route needs to
satisfy the following constraint:

lmin ≤ Lr < lmax (9)

(2) Headway
Setting the headway correctly is crucial. Too long a headway increases passenger

waiting time, leading to higher passenger time costs. On the other hand, too short a
headway results in a higher number of required vehicles, leading to increased operational
costs for bus operators. Therefore, the headway needs to satisfy the following constraint:

fmin ≤ fr < fmax (10)

(3) Non-repeating route stations
In the designed bus network, to avoid bus routes forming loops which increase

passenger travel costs and lead to resource waste, a constraint is set that each bus route
should contain non-repeating bus stations. This means that each bus station should only
appear once along each bus route.

Or
i ̸= Or

j ; i, j = 1, ..., S; i ̸= j; r = 1, ..., R (11)

(4) Non-linear coefficient
To avoid excessive detours in the established routes, reduce passenger travel time costs,

and improve the quality of bus services, the non-linear coefficient of routes is constrained
based on the “Urban Road Traffic Planning and Design Code” in this paper’s synchronous
optimization model. [

Lr

dr

]
≤ 1.4 (12)
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2.3.3. Synchronous Optimization Model for Both Network and Scheduling

Based on the above, the synchronous optimization model for both network and
scheduling in this paper is represented as follows:

Z = min(T + λF)
S.t :

fmin ≤ fr ≤ fmax
lmin ≤ lk ≤ lmax

lk = ∑S
i ∑S

j yr
ij.lij[

lr
dr

]
≤ 1.4

Or
i ̸= Or

j ; i, j = 1, ..., S; i ̸= j; r = 1, ..., R

(13)

The objective function in the synchronous optimization model constructed in this
paper is divided into two parts: passenger time cost and bus operation cost.

Passenger time cost includes: waiting time (Equation (1)), inter-stop time (Equation (2)),
dwell time (Equation (3)); bus operation cost includes: vehicle procurement cost (Equation (6)),
route operation cost (Equation (7)).

Constraints include: route length (Equation (9)), headway (Equation (10)), non-
repeating route stations (Equation (11)), non-linear coefficient (Equation (12)).

3. Model Solving

The synchronous optimization model proposed in this paper assumes that passengers
choose the shortest path when calculating the in-vehicle travel time cost in the objective func-
tion. However, there may be multiple shortest paths between the same origin–destination
(OD) stations. In such cases, it is essential to consider passengers’ choices among different
paths. Therefore, it is necessary to statistically analyze the number of shortest paths be-
tween each OD pair. The Yen algorithm can analyze reachable paths between the same OD
pair, count these paths based on their weights, and provide a sorted ranking of weights. In
this paper, the Yen algorithm is utilized to statistically analyze the shortest paths between
different OD pairs. During application, a flexible approach is taken to set the K value
(number of shortest paths to consider) by comparing the weights of adjacent shortest paths.
This allows for adaptable selection of the K value for different OD stations.

This paper proposes a synchronous optimization model that deals with a combinatorial
optimization problem. Such problems have a finite number of combination possibilities,
and the optimal solution can be found using an enumeration method. However, when there
are many decision variables, the computational complexity of the problem can become
extremely large, often exhibiting exponential growth. For example, when considering
an optimized bus network with N network sites, n dimensions, r routes, and a headway
range of R, the enumeration would require Nn * Rr iterations, resulting in a massive
computational load. This falls into the category of typical NP-hard problems. Due to the
high computational difficulty and complexity of such problems, intelligent optimization
algorithms are commonly used for solving them. Considering the characteristics of large-
scale bus network construction in this research, which involves a high number of site
dimensions and computational complexity, genetic algorithms are chosen as they offer
high operational efficiency and are widely applicable for solving large-scale combinatorial
optimization and non-linear optimization problems. Therefore, this paper employs a
genetic algorithm to solve the synchronous optimization model.

For the synchronous optimization problem of the bus network and scheduling dis-
cussed in this paper, relevant algorithm designs have been made for the synchronous
optimization model, which are specifically described as follows:

3.1. The Yen’s Shortest Path Algorithm-Based Traversal Algorithm

This paper considers the situation where passengers choose which route to take during
their travel. When calculating the total travel cost for passengers between various origin–
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destination (OD) stations, it is assumed that passengers always choose the shortest path.
However, in cases where there are multiple shortest paths between OD pairs, considering
passengers’ choices among these paths becomes necessary. Therefore, it is essential to
analyze and compute the shortest paths between each OD pair. To address this analytical
need, the Yen’s shortest path algorithm is selected to analyze the shortest path scenarios
between different OD pairs. The Yen algorithm, proposed by Jin Y. Yen in 1971 for solving
the KSP (K-Shortest Paths) problem, is based on the shortest path algorithm and computes
the first K-shortest paths between OD stations. It is suitable for calculating the single-source
K-shortest paths in directed acyclic graphs with non-negative weighted edges [38]. In this
paper, the basic process of the Yen algorithm-based shortest path traversal is as follows:

(1) Given the origin station o and destination station d, for the initial traversal, set the
value of K to 1. This will find the first shortest path P1 for the OD pair and the corresponding
weight Y1

od.
(2) When seeking the second shortest path P2 with K set to 2, the process is as follows:

1⃝ Update the shortest paths for each segment: Initially, set the weights of all segments
on the P1 path to infinity. Calculate the new shortest path for each segment by setting the
weights of the segments on the P1 path to infinity in sequence. Concatenate the resulting
new shortest paths with the original P1 path. The number of computations is equal to
the number of segments in the path. 2⃝ Initialize the candidate route set X. If the newly
obtained paths from the previous step are non-empty and meet the conditions of non-
repeating stations and being different from the previously selected path P1, add them to
the candidate route set X. Remove any duplicates from the candidate route set X. 3⃝ Select
the shortest route and update the candidate route set X. From the non-empty candidate
route set X, select the path with the minimum weight as the second shortest path P2, with a
weight of Y2

od. Remove this path from the candidate route set X. This process ensures that
the second shortest path is found while considering non-repeating stations and avoiding
duplication with the first selected path P1.

(3) When finding the i-th shortest path Pi with K set to i, the process is as follows: 1⃝
Update the shortest paths for each segment: Start by setting the weights of all segments
on the Pi−1 path to infinity. Calculate the new shortest path for each segment by setting
the weights of the segments on the Pi−1 path to infinity in sequence. Concatenate the
resulting new shortest paths with the original Pi−1 path. The number of computations is
equal to the number of segments in the path. 2⃝ Initialize the candidate route set X. If the
newly obtained paths from the previous step are non-empty and meet the conditions of
non-repeating stations and being different from the previously selected paths P1 to Pi−1,
add them to the candidate route set X. Remove any duplicates from the candidate route set
X. 3⃝ Select the shortest route and update the candidate route set X. From the non-empty
candidate route set X, select the path with the minimum weight as the i-th shortest path Pi,
with a weight of Yi

od. Remove this path from the candidate route set X. If there are multiple
paths with the same weight Yi

od, repeat the above process for each path.
(4) Compare the weight Yi

od of the i-th shortest path obtained with the weight Y1
od of

the first shortest path. If Yi
od equals Yi

od, set K to i + 1 and repeat step (3) until Yi
od is

greater than Y1
od. This process continues until the loop is terminated, resulting in the

number of shortest paths and their corresponding weights between the given origin and
destination stations.

3.2. Genetic Algorithm

The genetic algorithm (GA) was proposed by John Holland in the 1970s, and is an
intelligent optimization algorithm that applies the evolutionary principle of “survival of
the fittest” from nature to solving optimization problems. It is an iterative algorithm that
searches for the optimal solution and is known for its wide applicability, efficiency, and
good global performance [39].
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Combining the above-mentioned network and scheduling synchronization optimiza-
tion model, further designing a genetic algorithm for the research problem, the specific
design process is as follows:

1. Encoding of Solutions: The network and synchronization optimization model estab-
lished in this chapter is mainly for determining the stations, order, and departure
intervals of each bus route in the bus network. Therefore, it is necessary to encode
the stations, order, and departure intervals of each route as decision variables. The
encoding of solutions uses the floating-point encoding method, which is suitable for
genetic algorithm encoding with large ranges, high precision requirements, and large
genetic search spaces. It is particularly effective for the high-dimensional problem of
large-scale network stations in this study. The initial solution construction method in
this paper is as follows:

(1) Determination of Decision Variable Dimensions: When performing encoding opera-
tions for solutions, it is necessary to first determine the dimensions of the decision variables.
In the case of this study where the network stations and bus route departure intervals
are set as decision variables, the dimensions of the decision variables are determined by
the number of stations n and the number of routes K (corresponding to the respective
departure intervals for each route). The determination of the number of stations on each
route is based on factors such as the route length and average distance between stations.
Typically, the number of stations on a bus route is set between 15 and 30. The specific
number of stations should be set based on the actual design of the route length and average
station distance, with n denoting the number of stations. The determination of the number
of routes is typically based on the product of the number of stations on each route and is
usually within 1 to 2 times the difference between the total number of bus network stations
and the number of stations on each route. In this case, the number of routes is denoted as
K. Apart from network stations, the decision variables also include the setting of departure
intervals for each route, with dimensions consistent with the number of routes K. Therefore,
the dimension of decision variables in this study is set as: K ∗ n + K. During the actual
optimization process of the network, the final number of stations and routes should be
further determined by the transit network designer based on actual requirements.

(2) Selection of Route Stations After determining the number of stations and routes
in the network, the range of the number of bus routes and corresponding stations is also
set. To further improve computational efficiency and facilitate subsequent operations, the
stations for each route are selected to construct feasible initial solutions with good fitness.
The specific process is as follows: (a) Setting of First and Last Stations: The roulette wheel
selection method is used to select the first and last stations of the routes. The passenger
demand for each OD station is converted into a proportion of the total passenger demand,
and this proportion is used as the probability of setting the OD as the first and last station
of a route. K pairs of OD are selected based on these probabilities to serve as the first and
last stations of each route. (b) Setting of Intermediate Stations: After determining the first
and last stations of the routes, the distances between all other network stations and the
first and last stations are calculated. The station with the minimum sum of distances to
the first and last stations is set as an intermediate station. Then, the distances between the
remaining stations and the selected intermediate station and last station are calculated, and
the station with the minimum sum of distances is set as the next intermediate station. This
process continues until n-2 intermediate stations are selected for each route.

(3) Representation of Public Transit Network: After determining the dimensions
of decision variables and selecting route stations, this study represents the solution in
two parts to represent the public transit network. The first part consists of determining and
ordering the stations for each bus route, and the second part corresponds to the departure
intervals for each route. For example, the solution “12345678959678432518” represents a
network scheme composed of two bus routes with nine stations each. In this representation,
the first part “123456789” and “967843251”, respectively, represent the two routes as “1-2-3-
4-5-6-7-8-9” and “9-6-7-8-4-3-2-5-1”; the second part “5” and “8” represent the departure
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intervals for the two routes as 5 min and 8 min, respectively. The determination of stations
for each route in the network follows the selection process outlined in step (2). Additionally,
the departure intervals for each route are randomly generated within the range of 5 min to
15 min.

(4) This encoding method first determines the dimensions of the network, the number
of bus routes, and the number of stations for each route. By selecting the stations for
each route and randomly generating the corresponding departure intervals, it determines
the stations and departure intervals for each route in the initial network. As a result,
the constructed initial solutions are feasible solutions with relatively good fitness, greatly
reducing the complexity of computation. Furthermore, this encoding method ensures
the feasibility of solutions throughout the subsequent operations of the genetic algorithm,
eliminating the generation of infeasible solutions.

2. Population Initialization: Following the construction format of initial solutions in
step I, individuals are randomly generated for the population, with the random
generation repeated as per the set population size. The population is represented
as P =

{
xi
∣∣i = 1, 2, . . . ,µ

}
, where µ is the population size, and each individual is

represented as xi =
(
xi

1, xi
2, . . . , xi

n
)
, where n is the dimension of decision variables,

specifically, the sum of the number of stations for each route and the number of routes
in the network.

3. Fitness Evaluation: Take the decision variables determined during initialization and
input them into the synchronized optimization model for the network and scheduling.
Calculate the passenger time cost and public transportation operating cost under this
initial network, obtaining the objective function value. The model constructed in this
paper aims to minimize the passenger time cost and public transportation operating
cost. The fitness of each individual is evaluated based on the minimum value of the
objective function.

4. Selection: In this study, the roulette wheel selection method is used to select indi-
viduals in the population. The principle of this selection method is to calculate the
probability of an individual appearing in the next generation based on its fitness
value. Individuals are then selected to form the offspring population according to
this probability. The advantage of this method is that individuals with better fitness
values have a higher probability of being selected.

5. Crossover: After the selection operation is performed on the population, single-point
crossover is carried out using randomly generated crossover points.

6. Mutation: Individuals in the population are subjected to mutation operations based
on the mutation probability Pm. For the individuals undergoing mutation, a random
mutation position is selected, and mutation is performed using the two-point exchange
mutation method.

4. Example Analysis
4.1. Case Study Introduction
4.1.1. Data Introduction

(1) Site and OD Data
The case study in this paper focuses on five bus routes passing through the two stations

(Station 98 to Station 101) with the highest repeat traffic in a certain area of Guangzhou City.
The selected case includes a total of 134 stations in the network, with 102 stations in the
road network. Among these, there are 38 stations in Haizhu District, 7 in Baiyun District,
13 in Liwan District, 7 in Yuexiu District, 13 in Tianhe District, and 24 in Panyu District.
There are 18 stations that appear multiple times in the network, mainly located in Haizhu
District and Liwan District. All five selected routes pass through the road segment between
Station 98 and Station 101.

The passenger demand between each station is based on the passenger card swiping
data during the morning peak hours (7:00–9:00) of 25 April 2018, in Guangzhou City. There
are a total of 10,302 OD pairs among the selected stations, with a total of 19,938 passen-
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gers. Among the OD pairs with passenger demand exceeding 100 people, the departure
stations are mainly concentrated in Haizhu District and Yuexiu District, while the desti-
nation stations are mainly concentrated in Tianhe District, Panyu District, and Haizhu
District. Among these, the highest passenger demand is from Station 101 to Station 35, with
371 passengers.

(2) Revised Network Data
After refining the basic data, the next step is to further determine the dimensions

of the selected bus network solution. Upon analyzing the basic data of the five selected
bus routes in the optimized network case, it was found that the average distance between
stations in each route is 668 m, with an average of 26.8 stations and an average route length
of 17.32 km. Typically, urban bus route lengths are designed to be between 10 km and
30 km, with the number of stations set between 15 and 30. To meet the needs of passengers
and operators, the network designers aim to keep the number of routes unchanged and
try to maintain consistency in route length and number of stations with the original routes
during the optimization process. Therefore, the dimensions of the bus network solution are
determined as follows: 5 routes with 25 stations each.

Based on the above introduction, the dimension of solutions in this network and
scheduling optimization model is set to 130; 5 lines with 25 stops each, totaling 125 stops
in the network; and 5 min intervals for each line. The adjacency matrix dimension in the
actual–virtual public transport network is the sum of the road network stops and network
stops, totaling 227.

4.1.2. Parameter Settings

The next step will be to construct a synchronized optimization model for the bus
network and scheduling based on genetic algorithms, with a focus on determining the
model and algorithm parameters.

(1) Model Parameters
In this study, the conversion coefficient λ is set to 0.5, as passenger time cost and public

transportation operation cost are considered equally important during the optimization
process. Based on the average salary in Guangzhou in 2021 of 10,843 yuan, the value of ω
is set to 36.1 yuan/h. To unify passenger time cost and public transportation operation cost
in the objective function (Equation (13)) and avoid a significant gap between time cost and
operation cost, both are converted into a daily cycle for research purposes. According to
the Guangzhou Public Transport Development Annual Report in 2021, the average speed
of city roads in the central urban area of Guangzhou during weekdays is 30.57 km/h, and
the average speed of buses V is set to 30.57 km/h. Based on a single bus cost of 3 million
yuan and an average bus service life of 15 years, the daily vehicle procurement cost M is set
to 548.1 yuan/vehicle. After analyzing the vehicle operation data for the selected routes,
the average bus stop time Ts for the selected routes is set to 36 s. Therefore, the values
of the parameters in the synchronized optimization model proposed in this study are as
shown in Table 1 below:

Table 1. Synchronized optimization model parameters.

Parameters Value

Emphasis coefficient λ 0.5
Time and cost conversion factor ω 45.1 rmb/h

Average speed V 30.57 km/h
Unit mileage consumption cost N 2.8/km

Average dwell time Ts 36 s
Single − day vehicle acquisition cost M 548.1/vehicle

Minimum route length lmin 10 km
Maximum route length lmax 30 km

Minimum departure interval f min 5 min
Maximum departure interval f max 15 min
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(2) Algorithm Parameters
Based on the actual situation of selecting the line network in this case, and determin-

ing the decision variable dimension of this case as 130 based on the above analysis, the
relevant parameters of the genetic algorithm are determined according to the synchronous
optimization model characteristics of solving the line network of this case. The setting of
the population size: Setting the number of populations too small may result in large errors,
making the results unable to converge; setting it too large will increase the difficulty of
solving the problem. Generally, the population size is set to be 20 to 100 times the decision
variable dimension. In this case, the population size for the decision variable dimension
of the line network of this case is set to 5000. Setting the number of iterations: Through
multiple trial calculations, it was found that the objective values converged at around
150,000 iterations. To ensure the convergence of the results, this paper increases the number
of iterations to 200,000. Setting the crossover probability: In order to achieve the single-
point crossover method of exchanging only one gene segment as described in the previous
chapter, since the number of gene segments for this line network is 5, the crossover proba-
bility Pc is set to 0.2. Setting the mutation probability: Generally, the mutation probability
is set between 0.0001 and 0.1. In this paper, the mutation probability is set as Pm = 0.01.
We mitigate the impact of invalid solutions by constructing a penalty function.

Parameter Optimization: Regarding the setting of parameters such as population size,
number of iterations, mutation, and crossover probability in the designed genetic algorithm,
due to the high dimension and large computational load of optimizing the line network,
solving it once took nearly a day, and after 10 calculations, the optimization results showed
good performance. However, due to limited computing capabilities, this paper did not
deeply optimize the values of parameters in the algorithm. The specific values of the
genetic algorithm parameters designed to solve the synchronous optimization model in
this paper are shown in Table 2 as follows:

Table 2. Genetic algorithm-related parameters.

Parameters Values

population size 5000
number of iterations 200,000
crossover probability 0.2
mutation probability 0.01

Using the road network and demand data, model parameters, and algorithm parame-
ters mentioned above as the basic data, with the settings of each station and the departure
intervals of each route in the network as inputs, the synchronous optimization model
constructed in this paper will be solved using the relevant algorithm designed in Section 4.

4.2. Validation of Effectiveness

Based on the road network and demand data, as well as the set model and algorithm
parameters mentioned above, solve the synchronous optimization model of the network
and scheduling. Perform phased optimization on the network of this case. Compare and an-
alyze the synchronous optimization results with the phased optimization results to validate
the effectiveness of the synchronous optimization model and the designed algorithm.

4.2.1. Algorithm Effectiveness Analysis

This paper establishes the optimal layout scheme of the bus network among selected
stations based on the setting of weights between stations. Subsequently, synchronous
optimization is conducted on the trial bus network. Following the designed algorithm,
the optimization problem is solved continuously for 10 iterations, consistently yielding
the optimal solution for the trial case. The convergence of the designed genetic algorithm
occurs around 150,000 iterations, with subsequent results remaining unchanged. In the
iteration results, although the best objective function values and average objective function
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values in each iteration are not exactly equal, their values are quite close. Additionally, the
large y-axis values in the graph make the differences between the two close values appear
insignificant, causing the best objective function values and average objective function
values to look almost identical on the graph. The optimization process of the algorithm is
illustrated in Figure 2.
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4.2.2. Model Effectiveness Analysis

To further validate the effectiveness of synchronous optimization of the network and
scheduling, this paper also conducts phased optimization on the selected bus network. The
synchronous optimization results are compared and analyzed with the phased optimization
results to study the effectiveness of the synchronous optimization model for the network
and scheduling. The specific steps for phased optimization of the bus network and vehicle
scheduling are as follows:

(1) Consistent with the road network basic data and passenger demand data used
in synchronous optimization, optimize the bus network first with the lowest passenger
time cost as the objective, considering route length, non-repeating route stations, and
non-linear coefficient.

(2) Keep the optimized network unchanged, and then optimize the bus vehicle schedul-
ing with the lowest operating cost as the objective and departure interval as the constraint,
based on the optimized network.

Both phases of network optimization and scheduling setting use a genetic algorithm
for model solving. In the network optimization phase, the solution obtained is the stations
of the bus network, with the dimension of the solution set to match the number of network
stations, which is 125. In the scheduling optimization phase, the dimension of the solution
set is the number of bus routes, set to match the number of routes, which is five. Using the
genetic algorithm for solving in this manner, with the model parameters and algorithm
parameters consistent with synchronous optimization, the model was solved five times
for each phase, resulting in optimized layouts for the bus network and corresponding
departure intervals for each route after phased optimization. To ensure result accuracy, the
average of the passenger time cost and operating cost from the five optimization results is
taken as the phased optimization result.

By utilizing genetic algorithms to solve the synchronous optimization model, the final
optimized result yields an optimal objective function value of 250,835.3 yuan. The data
results for the corresponding five bus routes after synchronous optimization are shown in
Table 3.
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Table 3. Synchronous optimization result data table.

Route Number Route Stations Departure
Interval (min)

Fleet Size
Configuration

Route Length
(km)

Non-Linear
Coefficient

1
7-99-71-27-100-11-92-45-
97-49-53-95-43-69-70-78-

88-21-89-51-41-54-77-14-8
12 8 18.4 1.39

2
77-50-14-8-44-18-101-98-
62-17-60-37-24-6-23-25-

12-38-61-19-56-57-65-102-73
8 10 16.8 1.13

3
63-79-62-59-74-75-29-30-
52-32-13-81-82-94-93-36-

34-64-40-28-96-39-2-85-87
7 14 21.8 1.29

4
87-86-84-85-83-35-3-15-
40-22-72-31-55-1-26-80-

46-91-20-90-44-62-76-58-63
12 8 21.4 1.36

5
4-12-66-25-67-9-59-62-

10-48-33-5-98-101-18-16-
44-50-77-47-54-42-78-7-49

10 8 19.5 1.23

From the above chart, we can see the results of the optimization of the bus network and
scheduling. The length of each route in the network is constrained to be within the range of
10 km to 30 km; the departure intervals for the vehicles on each route meet the constraint
of 5 min to 15 min; the stations on each route in the network meet the non-repeating
station constraint; and the non-linear coefficient for each route is below 1.4. Therefore,
we conclude that the results of the optimization of the bus network and scheduling are
feasible. The comparison between the heatmap of repeated station frequencies before
and after optimization, as well as the comparison chart of the number of different routes
and corresponding repeated station numbers before and after optimization, are shown in
Figures 3 and 4, respectively.
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Figure 3. (a) Optimized heatmap of repeated station frequencies before optimization. (b) Optimized
heatmap of repeated station frequencies after optimization.
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From the above figure, we can see that in the bus network stations after synchronous
optimization: The number of stations existing in all five routes has decreased from two sta-
tions before optimization to zero stations. The number of stations existing in three routes
has decreased from five stations before optimization to two stations. The number of stations
existing in two routes has increased from 10 stations to 17 stations. The highly repeated
stations in the optimized network have significantly decreased, and the repeated stations in
the network are mainly concentrated on two routes, avoiding excessive route duplication
and the waste of bus resources, while meeting passengers’ transfer needs during travel.

5. Discussion

This article proposes a synchronous optimization model for the bus network and
scheduling, taking into account passengers’ choices of different routes during travel. Com-
pared to previous studies, this model further refines passengers’ waiting time costs and
comprehensively considers the total time cost for passengers. It also statistically analyzes
passengers’ choices of different routes to better reflect real-world scenarios. Synchronous
optimization is more effective than staged optimization, but there are still shortcomings
that need further improvement in future research. The improvements in future research
can be made in several aspects:

(1) Consideration of vehicle occupancy rates: The article assumes that passengers
can all board the target route’s vehicles while waiting and does not impose capacity
limits on buses. Subsequent research can introduce restrictions on the capacity of buses,
such that when buses reach their full capacity, passengers need to wait for the next bus.
This consideration can be incorporated into the optimization process to account for bus
occupancy rates.

(2) Integration between buses and rail transit: The article only focuses on bus route
deployment and does not optimize the relationship between bus routes and rail networks.
With rapid development in rail transit, it has a significant impact on bus passenger flows,
yet the study of the mutual influence between rail transit and buses is limited in this article.
Future research can further analyze travel data between buses and rail transit, utilize
bus operation data and subway ride data to study passenger flow changes, optimize the
connection between buses and rail transit, and make timely adjustments to bus networks
to maximize the use of public transit resources.

6. Summary

Based on the actual–virtual construction of the bus network and considering passenger
waiting and on-board time, this paper further takes into account the impact of passenger
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route selection during travel, and establishes a synchronous optimization model for the bus
network and scheduling. By conducting synchronous optimization and staged optimization
on the case network separately, the results indicate that synchronous optimization is more
effective than staged optimization in reducing passenger time costs and bus operation costs.
Passenger time costs decreased by 21.5%, bus operation costs decreased by 13.7%, and
overall bus system costs decreased by 18.0%. However, the computational complexity of
the proposed model increases rapidly with the number of stations. Therefore, it is currently
only suitable for optimizing bus routes in local urban areas. Future research will focus on
how to apply it to truly large-scale networks.

7. Patents

The research findings of this study have been used to apply for a Chinese inven-
tion patent.
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