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An alternative means for deriving equations of motion of complex systerns is demon-
streied. Sioce the method is snerey based, it is veefu! for elastic systems, Pecause the
method can handle vectors expressed relative to rotating coordinate systems, it does
ot reguire the introduction of coordinate transformations and thereby produces
cguaiions in a simple form. The article shows that Kane’s method for rigid body
svstems is a special case of this alternative method. Two example problems show how
the algebra can be applied to rigid and flexible nonholonomic systems.
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Many research applicetions require the dymemic equations of motion for
manipulators. I complex manipnlator-environment systems, it is necessary to
simulate reatistically the motion of the manipulator in its environment. Typical
examples are Space Shuttle Aight simulations porformed by NASA. Similarly,
simulation aids the design of complex systems. Although some simulation

applications can be performed of-line, it is sometimas necessary o simulate
moticn in real time, a3 when simulation i= a wainiag aid for human aperatoers.
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Another application oi dynamic 2quations i1s the control of manipulators.
Many controf schemes have been pioposed for uicreasing the peiformaice of
manipuiators that require ihe compuiation of driving torgue. Driving (orgue
niust be computed by the dynamic equations. Many of (he conrol algorithms
require torque to be computed in real time.

‘There liave been many attemipls io solve manipulator dynamic cguations in
real time. Soine researchers ignote terms such as the Coriois and Centripetal
acceieraiions. ignoring terms has ihe advantage of reducing the number of
computations bui the disadvantage of being approximate, The approximation
may be unsatisiactory for some appiications.

Anoiher meihod for solving dymamic equaijons in real tume is parallel
processing, a satisfaciory sofuiion for some cases, but excessive nardware
expendiiure for others.

Recursive caicuiation of dynamic equalions reduces ihe compuiation time.
Recursion, a simpie process inat utilizes the open chain structare of a manipu-
lator to simplily computation, may not be applicable to systems that are not
open chain structures; hence iis appiicability is lintiteq.

Closed form reductions reduce tiie numericai complexity of soiving dynamic
equations. Closed form reductions usually require considerable expeiience and
stamina. The eifort required for ciosed iorin reduction can vary greatly among
the meihods used for deriving the equatons. For exampie, & meihod that
produces equanons 1n ierins of matrix muldplications (such as the standard
Lagrange method) is difficuit to reduce. A wechnique that produces equations
in ierms oi vecior operations like dot and cross producis is much easier to
reduce than the mawix formuiation. Either metiod of derivation produces the
same equations, but each can produce the equations in different initial forms.

As an exampie of this concept, consider some of ihe technigues availabie for
deriving equations of rigid, open chain manipulators. One technique is to use
;.ag;'l>arnge's equaﬁoqﬁé;mxnhﬂgT Origlfgi.hod ui‘.%gﬁyogflge_ begins by. expx:'essirfg the
scaiar energy quaniiiies of a sysiem. Since Kinetic energy is a function of
absuiute veiocity, the presence of multiple rigid bodies makes it necessary to
mtroduce coordinate transiormations. These tiansformadons are complicated
trigonometric functions. After introducing the iransformatons, several partial
and toiai derivaiives are compuied. The irigonomeiry makes ii Gifficult (if not
irmpossibie) to simplify the equations. One significant advaniage of the
Lagrange techniqee is in noi including the forces that maintain system
constraints.

Anotner popuiar technique wdiizes Newton's equations. Although the
meihod can be derived from Lagrange’s equaiions, INewton's equations are
distinfi¥e " The method is usuaily based on vecior equations and requires the
computation of absoilute acceleration. Unlike Lagrange’s meihod, the tech-
igaie need not miroduce coordinate iransformations at the outset; hence the
resulis are otien expressed with vector dot and cross products. This vecior
form aiiows reduction by utilizing ihe speciai properiies of vecior products. A
major disadvantage of the technique is thiat even constraint foices must be
included.
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A third technique noovlar in the studv of spacecraft dynamics is the method
of Thomas Kane.? Kane’s method (also known as Lagrange’s form of
D’ Alembert’s Principle) is a vector formulation based on a modification of
Newton’s equaticns. Kane’s method is not energy based and requires the
computation of absolute velocity and acceleration as in Newton’s method.
Since the resulting equations are in vector form, so they can be reduced easily.
One advantage of the methed is that forees mmﬂ*..".m*ng conatraints do oot
enter; therefore there are fewer unknowns than in Newton’s method. The
method’s utility in deriving simplified dynamic eaguations was demonstrated
recently.” Although at first glance the method appears awkward, it is powerful
in the hands of an experienced user.

In the area of flexible (compliant) manipulators, many techniques are energy
based and are not as well developed as those for rigid systems. As expected,
the energy techniques deal with scalars and reauire introduction of coordinate
transformations before computation of partial and total derivatives. Two
advantages of energy methods are that boundary conditions arise in the course
of equation derivation and forces maintaining coustraints are unimportant.

Vector-based Newton’s equation techniqgues have been used in the deriva-
tion of equations for flexible systems. Application of Newton’s eguations
require one to sum forces (stress) acting on an infinitesimal piece of the flexible
system. For many researchers working in the area of flexible systems this is an
unnatural process.

A method follows for formulating equations of motion of flexible, open
chain manipulators using energyv. The method differs from present techniques
in that the formulation does not require the introduction of coordinate
transformations. This is made possible through the proper modification of the
partial and total derivatives normally required. Because the method is energy
based, it shonld be natural for many researchers. The reauired bhoundary
conditions arise during the derivation, and forces maintaining constraints do
not enter. Becavse the method is vector based, the resulting equations should
be easy to simplify. The method is applicable to six-degree-of-freedom
manipulators, which allows it to be used for the control and/or simulation of
practical manipulators.

EQLIVALENCE OF SNERGY AND KANMES €DUJATIONS

The techniaue demonstrated in this article begins with energy concepts and
derives equations of motion similar to those of Kane’s method. The
equivalence between these techniques is not new. It has been shown? that the
Passerello-Huston equations can be used to compute Kane’s generalized
inertia forces given kinetic energy.

Consider a system with n degrees of freedom. It is often possible to define n
varisbles ¢, that satisfy all holonomic constraints. The g, ere called generalized
conrdinates. The veln ity of point P belonging to the system can be expressed
25 a function of ¢, 4 and time t, where ¢ denotes the time derivative of g;. It
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may be convenient to define n quantities u;, which are functions of ¢; and 4,

as:
I
o -
Gs= ). Weu, 1- X, for §= 15000 0% (
r=1i

2T
Y.

Thie 15 are called gencralized g It must be possible to solve FEg. 1 for the
; termas, This means thet mateiz W is nonsingular.

i m simple nonholenoniic constradats areeapphiedvito xtive mystemyvdnly p
(prskw- mj of the § and u; are independent of each oti:cr. These consiraints
carn be expressed as:

oS

u,=f,Anu.+B, for r=p+1,...,1. )
s=1

Ozice the p independent w are kuown {from e equations of motion), the
relations tetween u and ¢; and the nonholonoimic constraints allow solution
(intepration; oz the a valacs of g The quanlities A, B, W, and X are
functions of tinee and the n coerdinates g.

e Passercilo-Tuston equations for a siniple sonholonomic syusterm defined

o (d dKE aKE)( - )
= W + WiAwr 3
:gl (dt 3‘1. aqs k=2p:+l KOk ( )

where Fr is Kzne's gencralived Inertia force for generslized speed u,, and ;{E
is Kingtic epergy. The connectivn bstween potcntiz! cnergy and Iane’
generalized active force has also been estabiished.”

With the Passerelio-Tiuston Eq. 3 ome can begin with cnergy terms and
arrive at Hane’s equeticns. "‘l.uu are, however, several practical probieras to
consider. Fist, because Fq. 3 requires th:e kinetic energy o be cXpie ssed as a
scalar function, coordinate trensformations must be introduced 2 I‘:.:l".iiulute-y
This makes the algebra required o compuic the partial and total derivaiives
rcessive. Second, expressicg the energy in terms of ¢ rather than 1 erases

smae of Lht advaritages afforded by Im:u:e & method.

"“w drad""mabe, ave 50 ubm.ﬁudnt that aithough Kare's method does have

ail energy base, theve is Gitde meerit i utlizing the re ‘:tioﬂship'.s.2 in the
remegineer of therarticleva meihodowith-be demonsiraied that allovws mardpula-
tion of energy feryus without the sericus shoriconyiizgs of Eq. 3

(]

YARIATIONRS OF VECTOR GUANTITIES

The precent methed is based on Hamilton’s prinsiple. which stavas that rie
The preszat wethed i tased on Hamillon's principle, which staves that the
variation of ;[m, tﬁt‘l@@lﬁm"c of the Laerarglm s zero. To impicment the

techinique, it is necessary to compute the veriation of zaergy, Crdinarlly the



Machine Translated by Google

Everett: A Alernative Aigebrz for Flaxible Manipuiatars 657

operation of variation [s defined culy for scaiars (or matrices}, bat derivation
of cquations without the intredectivn of coordinace transformation requires
computation of variations of vectors expressed in rotating coordinate systems.

Some of the basic definiticns have been published® and these are reviewed.

WYartation of a Yector

To cormpute what is herein defined ss the absclute variation of & vecter, it is
recessary o express the vecior with components slong three ncngoplanar,
stationaiy coordinate directions and compute the variation in each scalar

component. This can be expressed as:

N5V = 7. BUiA; 4

, Mw

where i are fined noncoplanar unit vectors in inertial reference frame n, and
f; are scalar functions.

Ert dire veurrentetechniquessthetuseere atoronotation, swhenever «ar variation is
cornpuied the vector terns are flrsﬁ expressed relative to an inertial reference.
This requives the inwroduction of cocrdinate iransfornss defore variation.

Retative Variation

Siailariy, reiative variations are compuied as the variation in the scalar
cemporents of a vector expressed celative 10 a nonirertial refereance. Mathe-
ratically this is

ReV — ¥ Big)i (5)

t"] w

W

where reference R I neninertiel and g are scaiar fuactions.
x(elatwe and absolutc variations differ. Relative variations are oficn easier
e compute, but Hamilton’s principle cequires computing absolute variations.

Reiating Yerlations

it is possible to relate relative snd zheoluie variations.*® ¥ coordinate

ystem R s rotating relative to frame N, the relative variations in these

coordinate systems sre related as:
NsV =RV +NgR x V (6)
N3R is a vector of ihe possible yotations {rame K czn possess relative 1o frame

A K:me int udm@ﬁmﬂbﬁm when disc.ﬁ g compatible wirtual displace-
ments® but did not expoued vse of MI® for suiving practical problems.
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Time Differentiation of Variations

The operations of reiative mder-nnauun and variation comimnute only when
computed relative to the same reference.* Consider a vector V expressed in
coordinate system C. First compute the time derivative relative to 2 system R
and foilow wiih the variation relative to a system A:

ASBNT = AS(ADV +BgA x V)

-

ADAgV+‘/A88 A))( V""Ba-)AXASV ‘7)
=BDASV + (46854 » V

The operator ‘D representis differentiation reiative to frame i, a_ 4 #&* is
anguiar velocity of frame A as seen in B.
By reversing iie order of application of the operators, Eq.

expressed as:

7 can be

BDAsV =BD(BsV + 462 x V)
=B§BDV + (BD4§%) x V + 46 x EDV (8)
=488DV +(PD4§")x V.
Comibining ¥qs. 7 and § and using 26" = — 26® yields:*

BDH.@’A = 5}2514. (q)

Variation of a Dyadic

A dyadic T is defined as:

-3 3 1,85

i=1j=1

(10)

-

where I; is a scalar and & and 1) are noncopianar umi veciors fixed in
coordinate systems A and B. Vectors Aand B are normally not commutative.
Dyadics have special properties’ but can be thought of as vectors whose
componenis are vectors. iJot and cross product are defined for dyadics, but
one must refer to the operators as operating on the left or the right. Consider
the variation relative to frame C of a dyadic, expressed as:

3 3
“s7= ¥, ¥ {°8(1,d)16 + (L&) sh) (1)
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The variation is computed by treating the dyadic as a vector whose com-
ponents are also vectors. From Eq. 6, Eq. 11 becomes:
y paBHe Huist

csf= 3 Z {[*8(1,@) + 6 x (I;@))b; + (L,@)[ P65 + 68 x 51} (12)

i=1j=1
which reduces to:

3
°s1=Y, ¥, ((oly)ab; + S84 x Lah, — L,a(b, x “§%)) (13)

i=1 j=1

and finally becomes:

sl = ()f ) (sti,)a,-s,) +Cerx T-Tx <g®. (14)

i=1 j=1

Compuding tha Tote! Yariatiaa of Vectors

Let a position vector j relative lo coordinate system A in a system with n
generalized coordinates be expressed as:

3
= L fd, (15)

where d; are unit vectors fixed in coordinate system A, and f; are scalar
functiors of the n generalized coordinates and time. The variation of j
relative to frame A i5! 0606Le HHBIX K OOpAVHAT

Adp = 2: 2q, (5% (16)

if n generalized speeds are defined as in Eq. 1, the derivative of p in frame A
(the velocity of P in A) is:

. - ap ap
V= ,Z:.aq,(zw +X)+at a7

s=1
If there are no nonholonomic constraints, all 8¢, in Eq. 16 can be considered

arbitrary; hence another set of arbitrary variations du, can be defined as:

6q,= Y, Wad, (18)

s=1
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because W is nonsingular. Equation 16 can be written;

Asp= 2 2 wsu, ZAV Su, (19)

r= ls=l

where 2V is Kane’s partial velocity of point P in frame A for generalized
speed u,. This last substitntion can be verified by Eq. 17.

Now consider the case of m simple nonholonomic constraints given by Eq.
2. By substituting Eq. 2 into bk velocity.san.be expressed: ,

rzi 21 aq, [W,, * (,--%1 W,,A,,)]u, *

(20)
- 3P ( ) op
W,B; + X,
lz:t a‘Ir ,-;H ok at’
The variation of Eq. 3 can be expressed as:
éu,=iA,,8u, forr=p+1,...,n. (21)

Notice that the vector B does not contribute to the variation because the
variation is taken instantaneouslv. Since B is not a function of the variables u,,
it has no variation. This concept is discussed in Lanczos' under the topic of
rheonomic nonholonomie constraints. Note that although B disappears from
Eq. 21, it does contribute to the problem. The equations of motion are
expressed as p equations that can be integrated for the p independent u.
{r=1,....p) Eaunaticns 3 {which contain B) are ussd to solve for the
remainmg u,, then Eq. 2 are integrated for g,.
Substituting Eq. 21 into Eq. 19 results in:

a5=3 ¥ aq’[ (,Z W,,A,-,)]Su,

r=1s=1 =p+1

(22)
-5 ot

The term “ V¥ is Kane’s nonholonomic partial velocity as demonstrated in Eq.
20.

These results can be summarized as fc%ows Suppose the time derivative of
a position vector j belonging to a system with p independent generalized
speed u; is written as a function of the u; and time as V(uy,. .., u,, 1), and the
absolute variation of the vector § (the virtual dispiacement) is reguired, The
virtual |5u§placement must be an expressxon of all possible changes the vector
can experience independent of time in light of all constraints (holonomic and
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nonholonomic) imposed on the system. This can be expressed as:
AoF= 2 oo & (23)

where §; represents an arbitrary virtual quantity and V is defined in Eq. 17 for
holenomic systems znd i Eq. 20 for & norholonomic system.
The quantities “A® can be interpreted similarly. Suppose the angular velo-

-

citmafoframe B relsiive o A b axprossed as 2@y, g, ). Since 288 is
an gxpression of all possible roraiions of frame B relative t¢ A, it can he
written as:
. 2 34a"8
APP =Y 5. (24)
i=1 aul

Note that the quantities §; found in Eqgs. 23 and 24 are identical. The formal
derivation of Eq. 24 is performed similarly to that of Eq. 23.

Example Prablams

Two examnles demonstrate the concept discussed in this acticle. a simpler
FRAMRRIE.GAR 5. FaMnddn RSh, - IMexmebipd 6% s, appligd fqFomplex
systems, such as a six-degree-of-freedom robot in a similar manner. First
congider the problem of deriving the equations of motion of a three-dimen-
sional, n Jink, open-loop manipulator. Let initial reference frame 0 be attached
to the ground and moving frames 1 through n be attached to each of the
manipulator links.

Through proper definition of the inertia dyadic,” the kinetic energy of the
system is:

=%{i [°& - i . 0&i+n’i0"}i*_0‘7i*]} (25)

i=1

where f is the inertia dyvadic for body i, m; is mass of bodv i, i* is the mass

g SR . . . . :
center of body i, and ° V™ is absolute velocity. Assuming only gravity loading,
the potential energy is:

PE== % G (26)

7" is the position of the mass center of body i, and g is the gravity vector.
Subtracting potential from kinetic and integrating, the functional in Hamil-
ton’s principle is obtained:

r=[[B508 Toatmev™ 004 ph]a @)
¢

i=1
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The equations of motion are obiained by setilng ail arbitrary variaions of
the functional to zero, hence the variation of f must be computed. One way to

%M%@aﬂ paBeH Hy1t0, C 1eJoBareibHO,

HZ [%° - I - 16°6' + m® V'™ - °8° V" + (i8g) - p" + § - (fsﬁ")]} dt=0
(28)

Since the energy terms are scalars, the variations in all frames are identicai.
For example °8(° V™ - °V™) is the same as ‘8(°V'" - °V'™). Distributing the
variation among the dotted tenns requires carefui observation of the frame of
the variation since the individual terms are vectors. In Eq. 28 the fust tern is
varied In frame i because the ineriia dyadic is constant relative io frame i,
therefore, only the angular velocity vecicr coniribuies 1o the variaiion. The
linear veiocity term in Eq. 28 is varied in the ineriial franie. The potential
energy ierm is varied in some arbitrarily selecied frame j. When ihe variation
is applied io the gravity vector, there is a contribution because tiie vecior is
not fixed in frame j.

The next siep 1s to reduce ail variations ol derivaiive ierms inio derivatives
oi variations by some of the ideniities in the last section. Equation 28 can be
expressed as:

n
e J' {Z [O‘Bi " z s 0D06i+mio"}i* P 0D08p1*+(;9 X g) i h
¢ Li=1
- (sgn}a=0. 9
Using Green'’s theorem, £q. 29 can be wriiten:
n
- [{Z-opCat - 1y- 08 oD V™) - 55 +(5" x ) - °F
t Li=1
§ e i ~
8 1! de=9. (20)
individual equations (n of them) are exiracted from Eq. 30 by expressing
the variations as a function of n arbitrary virtual quantities. For exampie, with
n quantiiies u;, as discussed in ihe fast seciion, so that linear and anguiar

velocities of the system: can be expressed as functions of position, ime and ;,
g’ can be expressed as:

n 60‘5:
06" = Su;. 31
;Z:n o oM (31)
‘'ne quaniity ‘6~ is equal to:
po " “,’JD
ispi™ §_j 3DE™) S (32)

duy

1
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If the u; are chosen to be the n joint variables, it is easy to compute the
terzns it Egs. 31 aed 32. This choice is not necessary, however, and signincant
simpliiications can come with an aitertiaiive.’ Once the variations are expres-
sed in terms of the n quantities u;, equations are extracted by collecting all
terms multipiying u; and setting the colizeiion 1o z¢ro ioi all f.

The resuliing equations are symilar to those froni Kane’s iechnique. Because
the terms appear in a fiigh level form involving dot and cross producis, it is
possible to manipulate tie terms into significantly different fories befoie any
coordinate transformations need to be computed. Significant differences from
Kane's inethod are ihe rescarcher’s advantage of manipuiating the variation in
(ifferent coordinaie systems to find simplifications, and the micthod being
energy based, therevy comipaiible with many other techmiques for elastic
systems.

iinetic Energy Terms for & Flexitds Sody

This exampie considers the Kinetic energy terms for a system of several
fiexibie bodies. The potentiai energy is suiple to coitipute. Sirice the toiai
energy 1s merely the sem of energy of all bodics, consider the energy
contribution of a single body B. As shown in Figure 1, let p” represent the
absolute position of a particle belonging 1o B. The time integral of the kinetic
energy of B can be expiessed as

r

1
| KEai= ” = pADPP - *DpPd,gdt (33)
] t volz

where A is an inertial reference frame.
Tiie problem becomes conipiicated wiien ihe variation of kinetic energy is

Figore 1. A single floxible vody.
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computed. The siznpiest way of wriiing the variation is:

5 j KEdt = J' I p“Dp? - 282 DpPd,adt = —[ I pADADP® - A5pPdydl.
t t Jvol t Yool
(34)

[n the rigid body case, the quantity 48p° iz computed from Eg. Z4. ia
continuous elastic systems, there are an infinite number of u. Define the elastic
deflection of point p as vector ¢, and define points » on a neutral body so that
poinis # and p coincide when ¢ = 0. [ & coordinate sysiedm is establishied in
body £ and J¥ iz wrilten ge the swm of vectors / and & shown in Fgure 1:

ASHP = A7 -+ 4T (35)

Asit for all 2 is & funcdon of a fnite nuraber of independent u quantidesyTie
terms 83 in Eq. 35 are considered arbitrary, subjsct (0 boundary conditions.

Although Eq. 34 is comzpacy, it may 2ot be useful. An alternaiive form of
Fug. 34 follows. Note the sase with whicl the equatiov'n s charged. Searching
for reductions typic*ﬂiy rs:;ui:aﬁ expanding, radis Lubw::nb, and precipitating
fermng Ieany tInes, "mg for ideniitics and comme terms. Thevefore the
eaze with widch qu o are reduced is related to the ezee of thelr mauipula-

@on.

i with the pesiion vector defined as in Figure 1, The velocity of &
.crial point is:

APP=AV" +AGB X §+BD3. (36)
The kinetic crergy is:

1
KE = KEN+5_[ p[A3P x 8- A@P x §+°Di - *Dé
vol

(37)
+2(AV"-BDg+4V" . AGB x § + BD§ - 2638 X 7)) door.

The term EEy is the rigid body kinetic energy terms that would exisi if the
body had ao clastic dispiacement. The variation of kinetic cnergy can be
crpressed as:

6KE = 8KE~+I p[Aa® x - '8(A3® x ) + D5 - "85
vol
+I§AV . AGB X §+ AV I5(AR5 X §)
. (38)
+j6Avu . BD6+A";'n . f&"Dﬁ

- kSEDS - AGB X §4 EDD - S5 > §)) dor.
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The terms ‘8, /8, X8, ', and ™8 denote variations in five diflerent coordinate
systems to illustrate that terms need not have their variations computed in the
same coordinate system. T'he reason one would introduce a variation in some
coordinate system other than an inertial frame is because it may be easier to
evaluate variations in rotating coordinates, depending on the specific probiem.

Now consider the problem of manipulating Eq. 38 into another form, to

demopsfrate the ease of mampnlation, mmeigentity from Fq. 6 the
variation of kinetic energy is:

SKE = 5K5N+j Al(AGE X 5+ AV +BDg) - <6(A3P x i)
vol

+(PD+AV" + 432 x §) - °68D3

+(A‘53x 5+BD6) . caA"}n

+(43® x 8) - ['8° x (*&® x §)]

+AV .65 X (438 X §) (39)
+BDg - kge X(A‘BB X )

+BDi - ™6° x BD5+AV™ - Ig° x BD3

+56°x BDj - A3% x §

+A0Bx{- ié’ch"}n +BD6_ié'ch"}n] door.
This is easily reduced to:
SKE = SKEN"'I p[A‘-}P ” Ca(Aa—'B X §+ BD6+A‘“}u)_A"}n . csA"}a] door.
vol
(40)
Using the relations in Eq. 16, Eq. 40 can be written:
8KE = 8KE~+I p[AVP - AS(AGE X 5+ PDi +A V™)
vol

+AVP.GexAPP
_A"}n . aGA"}u_A"}n . cé’a )(AV"] door

=5KE~+I p[AVP . A3(AVP)+cg° - AVP X AVP
vol
—AV"‘GSA‘?"—CG.“'A‘?"XAV"]M (41)
=8KEN+I pLAVP - A5(AVP)
val

_A"}n 5 nsA"}n] dwl
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=] LAV - A3(AVP)] dyo
vol

which is identical to the results in Eq. 34.

CONCLUSIONS

The process demonstrated in this article is an alternative method for
accommodating roiating coordinate systems and nenholonemic constraints in
encrgy hased fermulations of equations of motion. The existing energy
methods accemmodate rotating coordinates 53 intreducing variable cocr-
dinate transformztions o oxpress energy as scalar functions in inertial
reference systems. When the energy terms are d,nﬂe,-.-h Hated, the coordinate
transforme compticate the foromulation. The technique doss not requirs intro-
duction of transformations until the equations have been obtained. This results
in equations that assume a simplified form amenable to closed form reduction.

Previous snergy techniguss applied to noanholonomic systems requirad the
introduction of matrices relating the dependent and ,Ld(."’f"d"ﬂn generalized
coordinates. The process chown accommaodates nonholonemic r'emstramts by
exprassing velocity it terms of 2 subszt of the generalized coordinate deriva-
tives. The subset chosen must satisfy identioslly all nonholonemic constraint
equations. The variation of position vectors are related o partia! derivatives of
the velocities, thereby expressing an arbitrary variation that automatically
satisfies all constraints.

By defining generalized speeds as functions of the generalized coordinates,
ceordinate r!en"lh"esi and time, the resulting equations 2ppear in a first crder
form ideal for computer integration.

The method can be used te derive Kane's equations for rigid systems, act in
itself a contribution since the Passerelle-Huston eguations vcnﬁzd that Kaag’s
method has an energy basis. The demonstrated process, however, does not

we ihe practicel diffomltize agsoci ; crellon-Huuton equations
for deriving equations using energy principles.
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