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An alternative means for deriving equations of motion of complex systems is demon-
strated, Sincs the methnd is energy bassd, it is wseful for slastic svstems. Recause the
method can handle vectors expressed relative to rotating coordinate systems, it does
not tequire the introduction of coordinate transformations and thereby pr
eguations in 2 simple form. The article ghows that Kane’s method for rigid y
svstems is a special case of this alternative method. Two example problems show how
the algebra can be applied to rigid and flexible nonholonomic systems.
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INTRODUCTION

Many research ap p-in.a-'ar mesjuire the dysamic equations of motion for
manipulators. In complex manipmlator-cnvironment systems, i is necessary to
ulate Iia_lbtlw[dl.‘j the motior.of the manipwlator ia itz enviroament. Typical
iong performes] by NASA. Similarly,

sz
examples are Spece Shuitle fight simulal
simulation aids the design of complex systems. Although some simulation
Jgph....hows can be r-e[rf-rmm off-Yne, it is sometimas pecessary to simlate

wotion in resl time, as when simalation i a traindag gid for hninan operators,
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Anoilier apphcation of dynaimic equations i1s the control of manipuiators.
Many coniroi scheiiies have been proposed for increasing tie performaiice of
manipulators that require the computation of driving torque. Driving twrque
musi be compuied by the dynaniic equations. Many of the control aigorithis
require torque to be computed in real time.

‘There have been many alleais to solve manipuiaior dynainic equations in
real tome. Some researchers igniore terins such as the Coriotis and Centripeia
acceleravions. igioring terins has the advantage of reducing (e number of
compuiaiions but the disadvantage of being approximaie, Tie approgimation
may be unsatisfactory for some applications.

Anoilier method for solving dynamic equutions in ieal time is parallel
processing, a satisfaciory soiution for sotie cases, but cxcessive haidware
expenditure for oihets.

Recursive caicuiation oi dynaric equations redaces the computaiion time.
Recursion, a simpie process ihav utilizes the open chain struciure of a manipu-
laior io siimplily cotaputaiion, may noi be applicavie to systems that are ot
open chain siructures; hence its applicatility is iimmted.

Ciosed form reductions reduce ihe nusierical compiexity of soiving dynamic
equaiions. Closed [orm reductions usually requiie cossiierable expeiience and
staming. The eftort required for closed forai reduction can vary greatly among
tihe methods used for deriving the equations. For example, a method ihat
produces equations 1w ierias of mavix muitiplications (sucli as the siandarg
Lagrange method) is difficelt o reduce. A technique that produces equations
in terms of vecior operaiions like doi and cross producis is much easier to
reduce than the mairix formuladon. Either method of derivation produces ilie
same equaiions, bui each can produce the equatons i different initial forums.

As an example of vhis concept, cotisider soie of ihe techniques available for
deriving equations of rigid, open chain manipulators. One technique is to use
Lagrange's equations.' The method of, jagygnge begins by expressing the
scaiar energy quantties of a sysiein. Since Kinetic energy s a funciion of
absolute velocity, the presence of multipie rigid bodies makes it necessary to
introduce coordinate wansiormations. 'These transformations are coinplicated
wigonometric functions. Afier imiroducing ihe transionmnations, several partial
und totai derivaiives are computed. The trigonometry makes it diflicuit (if not
impossible) to simpify ihe equations. One significant advanwage of the
Lagrange techmigue I8 in not inciuding ihe forces ihai maintain system
constraints.

Anoiher populai iechnique utiizes Newton’s eguations. Aithough the
meiod can be derived from Lagrange’s equations, INewton's equations are
distinctive. The meihod is vsuaily based on vector equaiions and requires the
compuiation of absoluie acceleration. Unlike Lagrange's method, the tech-
itque need not iniroduce coordinate ransiormations at the ouiset; hence the
resulis are ofien expressed with vector dot and cross products. Tits vector
form aliows redaction by utilizing the special properties of vecior products. A
major disadvaantage of the technique is thai even constraint forces must be
included.
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A third technique popular in the studv of spacecraft dynamics is the method
of Thomas Kane? Kane’s method (also knmown as Lagrange’s form of
D’Alembert’s Princinle) is 2 vector formulation based on a modification of
Newton’s equations. Kane’s method is not energy based and requires the
computation of absolute velocity and acceleration as in Newton’s method.
Since the resulting eqizations are in vecrtor form, so they can be reduced easily.
C=e sdvantags of the method = that forces meintzining constraints do not
enter: therefore there are fewer mnknowps than in Newton’s method. The
method’s utilitv in deriving simplified dynamic equations was demonstrated
recently.® Although at first glance the method appears awkward, it is powerful
in the hands of an experienced user.

In the area of flexible (compliant) manipulators, many techniques are energy
based and are not as well developed as those for rigid systems. As expected,
the energy technigues deal with scalars and require introduction of coordinate
transformations before computation of partial and total derivatives. Two
advantages of energy methods are that boundary conditions arise in the course
of equation derivation and forces maintaining constraints are unimpoertant.

Vector-based Newton’s equation techniques have been used in the deriva-
tion of equations for flexible svstems. Application of Newton’s eqnations
aquire one to sum forces (stress) acting on an infinitesimal piece of the flexible
svstemn. For many researchers working in the area of flexible systems this is an
unnatural process.

A method follows for formulating equations of metion of flexible, open
chain manipulators using energy. The method differs from present techniques
in that the formulation does not reguire the introduction of coordinate
transformations. This is made possible through the proper modification of the
partial and total derivatives normally required. Because the method is energy
based, it should be natural for many researchers. The requited boundary
conditions arise during the derivation, and forces maintaining constraints do
not snter. Because the method is vector hased, the resulting equations should
be easv to simplifv. The method is applicable to six-degree-of-freedom
manipulators, which allows it to he nsed for the control and/or simulation of
practical manipulators.

EQUIVALERCE GF ENERGY AND KAME'S EQUATIONS

The technigue demonstrated in this article begins with energy concepts and
derives eguations of motion similar to those of Kane’s method. The
equivalence between these techniques is not new. It has been shown? that the
Passerello-Hnston equations can be used to compute Kane’s generalized
inertia forces given kinetic energy.

Consider a system with n degrees of freedom. It is often possible to define n
variablzs g that satisfy i} holonomic constraints. The g are called generalized
coordirates. The velocity of point P belonging to the system can be exprassed
s function of g, q, and time 1, where 4, denotes the time derivative of ¢;. It

3
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may be convenient to define n quantities w;, which are functions of g 2nd ..

G

L)

o

as:
'ﬁ‘;‘
Go=12 W+ X, for s=1,...,n. 1)
r=1

The u are called generalized spaade.? It puis” e possible to solve Eq. 1 for the
G, terms. Th means that matrix W is nonsingular.

¥ m simple norholoromic constrainte are applied o the system, ornly p
(p=n—m)of ﬂ'_. q: and x; 2re independent of sach other. These constraints
cen be expressed as:

u,=f,Anu.+B, for r=p+1,...,1. )
s=1

Cmece ske g independent e sre known (from the equations of motion), the
refations behween i and ¢, asd the roni:c-lonomiv consiraints ailow solution
(intcgration) for the a valuss of 4. TIW wntities A, B, W. and X are
functions of time and the n coordinates g

The Pazsersllo-Huston equations for a simple nonhclonemic system defined
above aps:

o~ (d 6KE 4KE =
= (O S B
:gl dt 34. aqs k=2p:+l KOk ()

where F¥ is Kars's generalized inertin force for generalized speed o,, and ¥E
is kinetic erergy. The connection between potential ensrgy and Kang's
generalizsd active force has also been cstablished ?

With the Passerello-HMusten Eqg. 3 one can hegin with energy terms and
arrive ot Kare’s equations. There are, however, severz! practical problems to
consider, First, because Eq. 3 requires the kinetic energy to be .pxp:'es:ed as a

scalar function, soordinate transformations must be intreduced immediately.
This makes the algebra reqi dred to compute the partial and total derivatives
excessive. Second, expressing the ensrgy in terms of ¢ rather than o erases
some of the advantages afforded by ‘{'m- 5 method.

The disadvantzges are so sig nificant that 2t hevgh Kare’s micthed does have
an encrgy baszc, theire is little merit in wtilizizg the relzti :':r.hm 2 7 the
rereainder of thie article. a method will be demonstrated that zllews manipula-
tion of energy termiz without the sericus shortcomings of Hag. 3.

VARATIONS CF VECTUR QUANTITIES

The present method iz based or Hemilton’s principle, svhich states that the
variation of the timee derivative of the Lagrangisn is zers. To Ei:rplf: meat the
tachnique, it is necessary to compute the variation of cacrgy. Crdinesily the
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operation of variation is defined only for sczlars {or mairices), but derivation
of equations without the introduct:on of coordinate transformaiic .a.qt;ircs
computation of variations of vectors expressed in rotatmg coordinate systems.
Seane of the basic definiticas have been published? and these are reviewed.

Variaiion of a Wizor

2

o conlpute what is hevein defined as the absolute variation of a vector, it is
necessary (o express the vector with compornens along diree noncoplanas,
staticnary ccordinate directions and cemypate the variation in each scalar
component. Thizs can be expressed as:

NSV =S 8(f)A, @)
i=1

where fl; wie ﬁ'v ed pencoplanas anit vectors it inertial refereace frame », and
ji are scalai functions

I the currer ':L tech -.p.cs that use vector notativa, whenever a variatioa is
computed the vecior terns are first '.‘X[.'.N ssed refative lo an inersial r2fereacs.
This requires the intreduction of cosrdinate wansicsras before variation.

Relazive Variation

Sienilarly, rslative variaﬂaus are compuicd 2w (he v t’icliiﬁ' ir the scalar
COMpOnenis ¢ f a vector expresseé 1elative 1o a voninerdal refer . Mathe-

maticaily this is

3
RaV — 3 Bug)F, &)}

i

where 1eference R is noginerial and g ave scalar functions.
Relative dl'ld absoiute variations diifer. Relative variations are ofien casier
o compute, but Hamilton's principle 1equices computing absolute vastations,

Reletiveg Yuriailens

T is possibic 0 relate relavive and stacluie variadons.*® If coordinate
systern R is rolaieg reiatve tw fraee N, the relative vadations ia these
coordinate sysiemms are relaied as:

Ngy =RV + NgR x ¢ (6)

MJ® i a vector of the possitle rotetions frame R can possess « If*"w“ ic franu:
N. Kane introduced veeter N{R when Giscussing compatible virtual displace-

ments® but did aot expousd ase of "G® for solviag praciical g ,)ruolc:rr.,s.
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Time Differentiation of Variations

The operations of reiative diferentiation and variation commuie only when
computed relative to the same rct'crence." Consider a vector V' expressed in
coordinate system . First compute the time derivative relative to a system B
and follow with the variation relatlve to a system A:

ARRT = A5(ADV + Bat x T
= ADAGV + (#8832 x W+ Ba% s 2a7
=BDASY +(48854) » V7
The operator ‘D) represents differentiation relatve to frame i,  _ = ' is
angular velocity of frame A as seen in B.
By reversing the order of appiication of the operaiors, Eq. 7 can be
expressed as:
5pAsV = BD(®sV + *46° x V)
=B5EDV + (BD4§%) x V + 44 x EDV ®)
=A5DV +(°D*§®)x V.
Combining Eqs. 7 and § and using 56" = — 26® yields:*

.E?DEJA s f-au'%ﬁA. (G)

Variation of a Dyadic

A dyadic 1 is defined as:

(10)

-3 3 1,85

i=1j=1

-

where Iy is a scalar and @ and b, are noncoplanar unit vectors fixed in
coordinate systems A and B. Vectors Aand B are normaliy not commutative.
Dyadics have special properties’ bui can be thought of as vectors whose
components are vectors. Dot and cross product are defined for dyadics, but
one must refer io the operators as operating on the left o the right. Consider
the variation relative to frame C' of a dyadic, expressed as:

3 3
“s7= ¥, ¥ {°8(1,d)16 + (L&) sh) (1)
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The variation is computed by treating the dyadic as a vector whose com-
ponents are also vectors. From Eq. 6, Eq. 11 becomes:

3 3
C5?= Z Z {(*8(I;a;) + €g* x (Ii;d:)]l;; £ (Ii;‘&i)[aai’} +€6% x {’;]} (12)

i=1j=1

which reduces to:

3
81=Y Y {(8I,)ab;+ 4 x Iab, — I, (B, x %)) (13)

i=1j=1

and finally becomes:

sl = ()f ) (sti,)a,-s,) +Cerx T-Tx <g®. (14)

i=1 j=1

Coenputing the Tota! Varfetion of Yastors

Let a position vector § relative to coordinate system A in a system with n
generalized coordinates be expressed as:

p=Y fd (15)

i=1

where d; are unit vectors fixed in coordinate system A, and f; are scalar
functions of the n generalized coerdinates and time, The wvariation of
relative (o frame A s coordonnées
généralisées

Asp= Z 2q, (59 (16)

if n generaiized speeds are defined as in Eq. i, the denvative of j in frame A
(the velocity of P in A) is:

- _ n éé n @
7= - (}__‘,1 W, + X,) + 2, an

If there are no nonhoionomic constraints, ail 8g, in Eq. 16 can be considered
arbitrary; hence another set of arbitrary variations u, can be defined as:

6q,= Y, Wad, (18)

s=1
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because W is nonsingular. Equation 16 can be written;

Asp= 2 2 wsu, ZAV Su, (19)

r= ls=l

where 2V is Kane’s partial velocity of point P in frame A for generalized
sped .. This fast spbstitetion can be verified by Eg. 17,
Now consider the case of » simple nonholonomic constraints given by Eq.

2. By substituring Eq. 2 into 1,velecity.can bs expresseds

Z f‘ aq’[wrs*’(’i wdAl-!)]u:"'

r=1s=1 j=p+1
(20)
- 3P ( ) op
W,;B; + X,
lz:t a‘Ir ,-;H ok at’
The variation of Eq. 3 can be expressed as:
S —iASu, forr=p+1,. (21)

Notice that the vector B does not contribute te the variation because the
variation is taken instantaneouslv. Since B is not a function of the variables u,.
it has no variation. This concept is discussed in Lanczos' under the topic of
rhecnomic nonholonomic constraints. Note that although B disappears from
Eq. 21, it does contribute to the problem. The equations of motion are
exoressed as p equations that can be integrated for the p independent wu.
fr=1 ,p). Egmaticns 2 (which rontain B) ars wsed tc solve for the
remaining .. then Eq. 2 are integrated for g,.
Substituting Eq. 21 into Eq. 19 results in:

a5=3 ¥ aq’[ (,Z W,,A,-,)]Su,

r=1s=1 =p+1

(22)
-5, ot

The term * V% is Kane’s nonholonomic partial velocity as demonstrated in Eq.
20.

These results can be summarized as follows. Suppose the time derivative of
a position vector § belonging to a system with p independent generalized
speed u; is written as a function of the u and time as V(u...., u,, 1), and the
ahsolute variation of the vector g (the virtual displacement) is required. The
virtual displacement must be an expression of all possible changes the vector
can experience independent of time in light of all constraints (holonomic and
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nonholonomic) imposed on the system. This can be expressed as:
g av
Acz
=), — & (23
121 ou )

where §; represents an arbitrary virtual quantity and V is defined in Eq. 17 for
holonomic systems and in Eq. 20 for a nonbolonomic system.

. . . . - .
The quantities “6% can be interpreted similarly. Suppose the angular velo-
city of frarne B relative @ A Js expressed as 2@%0u, ., & Since 48P e

n expression: of all possible rotations of frame B relative to A, it can he
written as:

5. (24)

Note that the guantities §; found in Fgs. 23 and 24 are identical. The formal
derivation of Eq. 24 is performed similarly to that of Eq. 23.

Example Prodiems

Twao examples demonstrate the concept discussed in this article, a simpler
examole can be found in Ref, 4. The method can be zpplied to complex
svstems such as a six.degree-of-freedom tobot in a similar manner. First
consider the problem of deriving the equations of motion of a three-dimen-
sional, » Jink, open-loop manipulator. Let initial reference frame 0 be attached
to the ground and moving frames 1 through n be attached to each of the
manipulator links.

Through proper definition of the inertia dyadic,” the kinetic energy of the
system is:

=%{i [°& - i . 0&i+n’i0"}i*_0‘7i*]} (25)

i=1

where T, is the inertia éyadic for body i, m; is mass of body i, i* is the mass
center of body i, and ° V™ is absolute velocity. Assuming only gravity loading,
the potential energy is:

PE== % G 7" (26)

7™ is the position of the mass center of body i, and g is the gravity vector.
Subtracting potential from kinetic and integrating, the functional in Hamil-
ton’s principle is obtained:

r=[[B508 Toatmev™ 004 ph]a @)
¢ Li=1
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The equations of motioi are obiained by setung ail arbilvary variations of
the functional to zero, hence the variation of f must be computed. One way to
do this is:

j {Z [%° - I - 16°6' + m® V'™ - °8° V" + (i8g) - p" + § - (faﬁ"')]} dt=0
(28)
Since the energy terins are scaiars, the variations in ali frames are identicai.
For example °8(° V'™ - °V™) is the same as ‘8(°V'" - °V'™). Distributing the
variation among the doited teins requires carefui observaiion of the frame oi
the variation since the individual seems are vectors. In Eq. 28 ihe fsi term s
varied 1 frame | because the ineciia dyadic is constani relative to irame i;
therefore, only ihe angular velocity vector coniribules to the variation. The
linear veioctiy term in £q. 28 is varied  ithe inerviai frame. The potential
energy tevni is varied in some arbiirarily selected frame j. ‘When the variation
is appiied (o ihe gravity vecior, there is a coniribution because the vector is
not fized i frame j.
The next siep is to reduce ail variadons of derivative lerms mio derivatives
oi variaiions by some of the ideniilies in the jast section. Equation 28 can be
expressed as:

:J'{Z[o‘;i,i,oDo§i+m‘_0"}i*_oDo ..*+(,0 Xg) pn*
t

4+ 8- (185" } di = (.

Using Green’s theorem, Eq. 29 can be wriiten:

J{Z[—°D(°"-fa)-°0‘ —OD(mO V™) - %85 + (P x §) - °F
i=1
g (/8 '*)]E'd,r:i). (30)

individuai equations (n of them) are extracied irom Eq. 30 by expressing
the variations as a function of n arbitrary virtual quantiiies. For exampie, with
n quantiies w;, as discussed in the lasi seciion, so that iinear and angular
veiocities of the system can be expressed as functions oi position, iime and wu;,
§' can be expressed as:

2 su,. (31)

[k o u- pi¥

The quantity ‘55" is equai to:

20087

2y, Su; (32)

-
Il
ol
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If the u; are chosen to be the n joint variables, it is easy to compute the
ternss in Eqs. 31 aad 22, This choice & not necessar ), however, and signiticant
simplifications can ceme with an alternative.” Once the variations are expres-
sed in terms of the n quantities u;, equations are extracted by collecting all
terms multiplying w, and setting the coilecton 1o zere for all J.

The resuliing g.q.mdcn:s are similar fe those from Kane’s t2chuique. Because
the terms appear in a high level form involvizg dot aad cross products, it is
possiviz 0 manipulate e fernms inio sigréficantly different fozges before any
coordinate transformations need to be computed. Significant differences from
Kane’s inethod are the researcher’s advuntag-- of manipulaling the variation i
different ¢oordinaie systems to find simpifications, and the meihod being

energy based, thereby compatibie with many cther techniques for elastic
systems.

Kinats Eaergy Taans for a Fledthds Booy

This exampie considers the kigetic energy terms far a systewn of several
flexibie bodies. The potentlal energy is siz 11,13 10 cempuie. Since (he totai
energy Is erzly the sum of energy of all bodies, consider the snergy
contribution of a single body B. As shown in Figure 1, let pP represent the
absclute position 91 a pardcie belonging to B. The time infegral of the kinetic

energy of & can e cupressed as

1
-{ KEdt= J' I lipADﬁ‘" - DpPddt (33)
t Juol

t

where A is an inertial reference frame.
The probles Secomes complicated when the vartation of kinetc ers2rgy is

lifeur2 1. A sngkoflegivis body.
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computed. The simplest way of writing the variation 1s:

F j KEdt = J' I p“Dp? - A8ADpPd dt = -[
t t Jvol

I pADADpP - A5pPd 0 dt.
vol
(34)

in the rigid body case, the quantity “83” is computed from Eq. 24. In
continuous elastic systems, there are an infinite number of u. Define the elastic
deflection of point p as vector ¢. and define points » on a neutral body so that
points n and p coincide when ¢ = 0. If a coordinate svstem is established in
body B and p? is written as the sum of vectors 7i and ¥ shown in Figure 1:

ABHP = Abi - 6T (35)

AsHi for ali n is a function of a ARIECHRMRES &t %%Ped;?e%aent u quantities. The
terms “85 in Eq. 35 are considered arbitrary, subjeci to boundary conditions.

Although Eq. 34 is compact, it may not be usefui. An aiternative form of
Eq. 34 foliows. Note the ease with which the equation is changed. Searching
for reductions typicaily requires expanding, redistributing, and precipitating
terms many times, looking for ideniities and common terms. Therefore the
ease with which equations are reduced is related to the ease of their manipuia-
tion.

Begin with the position vector defined as in Figure 1. The velocity of a
materiai point is:

APP=APR L AGB x § +BD§. (36)

The kinetic energy is:

1
KE = KEN+5_[ p[A3P x 8- A@P x §+°Di - *Dé
vol

(37)
+2(AV"-BDg+4V" . AGB x § + BD§ - 2638 X 7)) door.

The term KEy is the rigid body kinetic energy terms that wouid exist if the

body had no elastic dispiacement. The variation of kineiic energy can be
expressed as:

6KE = 5KE~+I p[Aa® x - '8(A3® x ) + D5 - "85
vol
+I§AV . AGB X §+ AV I5(AR5 X §)
. (38)
+j8Avu . BD6+A";'n . f&"Dﬁ

4 k3D - AGE < § 4+ EDF - FS(46 7 ¥ D)) dyar.
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The terms ‘3, /8, *8, ‘8, and "8 denote variations in five different coordinate
systems 1o illustrate that terms need not have their variations computed in the
same coordinate system. The reason one wouid introduce a variation in some
coordinate system other tnan an inertiai frame is because it may be easier to
evaluate variations in rotating coordinates, depending on the specific probiem.

Now consider the problem of manipwlating Eq. 38 into another form, to
demonsirate the ease of manipuiation. With the identity from Eq. 6 the
variation of kinetic energy is:

SKE = 5K5N+j Al(AGE X 5+ AV +BDg) - <6(A3P x i)
vol

+(BD3+2V" + 432 x §) - °68D8

+(A‘53x 5+BD6) . caA"}n

+(A‘BB % 6) . [16¢: X(A(;;B X 6)]

+AV .65 X (438 X §) (39)
+BDg - ké‘c X(A‘BB X §)

+BDi - "§° X PDi + AV - i x PDis

+ké’chD6 'ABBXI)‘

+A0Bx{- ioch"}n +BD6_ié'ch"}n] door.
T'his is easily reduced to:
SKE = SKEN"'I p[A‘-}P ” Ca(Aa—'B X §+ BD6+A‘“}u)_A"}n . csA"}a] door.
vol
(40)
Using the relations in Eq. 16, Eq. 40 can be wriiten:
8KE = 8KE~+I p[AVP - AS(AGE X 5+ PDi +A V™)
vol

+AVP.cgaxAPP
_A"}n . aGA"}u_A"}n . cé’a )(AV"] doot

=5KE~+I p[AVP . A3(AVP)+cg° - AVP X AVP
vol
—AV"‘GSA‘?"—CG.“'A‘?"XAV"]M (41)
=8KEN+I pLAVP - A5(AVP)
val

_A"}n 5 nsA"}n] dwl
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= [ LAV 454 77)] do
vol

wh

tical (o the results in Eq. 34.

CONCLUSIONS

The grocess den:onstrated in this article is an elizraative method for
accommodating rotating coordinaie systems and nonholonomic constrainis in
energy based formudations of equatione of moticn. The existing cnergy
methods accommodzts rotating coordicates by introducing wariakle ccor-
dinate trzusformations to express energy as scaler functions in inertis!
reference systems. When the emergy terms sre differsntiated, the coordina
transforms complicate the farmutation. The technigue doss no¢ require intro-
duction of tzansformations until the equations have been obtained. This results
in equations that assume a simplified form amenable to closed form reduction.

Przvious sresgy techniques epplied to nonholonomic systems roquired the
introdizction of matrices relzting the dependent and independant gencralized
cocrdinates. The process shown accommsdates norhclonomic constraints by
expresting velocity in terms of a subset of the generalized coordinate deriva-
tives. The subset chosea must satisfy identically all nonholonomic constraint
eguzticns, The variztion of position vectars are related to partial dartvatives of
the velocities, thereby expressing an arbitrary variation that automatically
satisfies all constraints.

By defining genera d coordinages,
caordinate derivatives, and time, the rasulting equationsfappear in a first osder
form ideal far compater integration.

The method can be used to desive Kane’s equations for rigid systemts, not in
itself a contribution since the Passerello-THusten eguetions verifed that Kane’s
method has an energy basis. The demonstrated process, however, does not
the prect i fated with the Passerelio-Huston equations
g equations usi
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