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Abstract: By means of relaxation methods, residual stresses can be obtained by introducing a
progressive cut or a hole in a specimen and by measuring and elaborating the strains or displacements
that are consequently produced. If the cut can be considered a controlled crack-like defect, by
leveraging Bueckner’s superposition principle, the relaxed strains can be modeled through a weighted
integral of the residual stress relieved by the cut. To evaluate residual stresses, an integral equation
must be solved. From a practical point of view, the solution is usually based on a discretization
technique that transforms the integral equation into a linear system of algebraic equations, whose
solutions can be easily obtained, at least from a computational point of view. However, the linear
system is often significantly ill-conditioned. In this paper, it is shown that its ill-conditioning is
actually a consequence of a much deeper property of the underlying integral equation, which is
reflected also in the discretized setting. In fact, the original problem is ill-posed. The ill-posedness is
anything but a mathematical sophistry; indeed, it profoundly affects the properties of the discretized
system too. In particular, it induces the so-called bias–variance tradeoff, a property that affects many
experimental procedures, in which the analyst is forced to introduce some bias in order to obtain a
solution that is not overwhelmed by measurement noise. In turn, unless it is backed up by sound
and reasonable physical assumptions on some properties of the solution, the introduced bias is
potentially infinite and impairs every uncertainty quantification technique. To support these topics,
an illustrative numerical example using the crack compliance (also known as slitting) method is
presented. The availability of the Linear Elastic Fracture Mechanics Weight Function for the problem
allows for a completely analytical formulation of the original integral equation by which bias due to
the numerical approximation of the physical model is prevented.
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1. Introduction

When measuring the stresses generated by external loads acting on a component,
a technique to directly measure stresses is seldom available. Much more commonly, an indi-
rect measurement is pursued, for instance by recording the deformation fields produced by
the application of the external loads with respect to a configuration where it is (sometimes
implicitly) assumed that they are absent [1]. For example, strain gauges measure defor-
mations that are referenced to the moment they were glued; also, non-contact techniques
such as Digital Image Correlation (DIC) [2–6] or Electronic Speckle Pattern Interferometry
(ESPI) [7–9] measure changes in the displacement fields by comparing an initial and a final
state. Constitutive models of the material—usually elastic—are then used to reconstruct the
stresses. In the case of residual stresses, which act in the absence of external loads and pri-
marily arise to restore the compatibility of the displacement fields that develop during the
production process, the critical missing element is precisely an unstressed reference state,
and this absence is arguably the fundamental difficulty in measuring residual stresses [10].

Diffraction methods [11] address this issue by measuring the absolute spacing of the
crystal lattice planes and comparing it with a reference unstressed value, obtained for
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that specific material using appropriate techniques. This process yields the deformation
produced by the stresses, which then allows for their calculation using suitable constitutive
models. On the other hand, relaxation methods physically recreate an unstressed state by
removing or disconnecting a portion of the component’s domain [12–19]. This action sets
certain stress components to zero, causing measurable deformations that can be correlated
with the previously acting residual stress values. In other words, the process typically used
for stresses produced by external loads is metaphorically followed in reverse, measuring
the deformation produced by the removal of the stresses to be measured.

For technological reasons, it is often impossible to access the entire deformation field,
which would allow for the pointwise determination of the complete stress fields. Instead,
only measurements of certain deformation components within a subdomain of the analyzed
specimen as the cut or removal process progresses are available. When using strain gauges,
each grid provides an approximately pointwise measurement of a single deformation
component. In the case of full-field techniques, the deformation measured is, at best, that
of the external surfaces of the component, with a limited spatial resolution that depends on
the specific measurement instrument.

Thanks to Bueckner’s superposition principle [20], it is still possible to reconstruct the
stresses by proceeding as follows. It is assumed that the residual stresses to be measured
belong to the span of an appropriate functional basis [21] (often piecewise constant func-
tions or polynomials). Then, the linearity of the elastic problem is leveraged to generate
the deformation histories that correspond to the chosen stress basis. Finally, this linear
relationship is inverted to obtain the required stresses from the measured deformations.

In the general case, the fact that deformations produced by relaxation methods can
be computed by summing the individual contributions from each point-wise value of the
stress field is represented by an integral equation, whose typical form is the following:

ε(h) =
∫ h

0
A(h, z) σ(z) dz (1)

where h characterizes the geometrical properties of the domain disconnection (such as the
length of a cut), while z acts as a spatial coordinate in the specimen. In fact, Equation (1)
states that, for a given cut length h, the deformations produced are a weighted sum—with
weights denoted as A(h, z)—of the residual stresses that have been relaxed by the cut,
as the component compliance depends point by point on the location where the stresses
are removed [17,22–24]. A(h, z) is usually called the influence function, calibration function,
or kernel of the problem; in a discrete setting, it becomes what is commonly referred to as
the calibration matrix of the problem. Clearly, the actual form of Equation (1) depends on
the specific problem, although this mathematical structure is generally maintained.

As is well known in the literature on residual stresses, determining stresses from
deformations through Equation (1) is a problem that significantly challenges the accuracy of
the measurement instruments used, as the resulting calculation is often extremely sensitive
to input errors [25]. Formally, one would say that the problem is very ill-conditioned.

The authors pointed out in [26,27] that the ill-conditioning of the problem is actually
just a symptom of another distinct (and arguably more important) mathematical property
called ill-posedness, which is notably known to afflict Equation (1) by the mathematical
literature. Its main characteristic consists of a lack of continuity of the solution from the
initial data, which, from a practical standpoint, results in solutions having potentially infinite
errors obtained from measurement instruments with finite confidence intervals.

In the previous works by the authors [28–31], the discussion was focused on the hole-
drilling method, where the equation coincides exactly with Equation (1). In this paper, it is
shown that an important class of residual-stress-measurement techniques borrowed from
fracture mechanics—falling under the name of crack compliance methods—suffers from the
same effects, although the equation upon which they are based may appear to be slightly
different from Equation (1). In this regard, the work aims to improve the understanding of
the mathematical foundations on which the method is based.
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The work is organized as follows:

• In Section 2, crack compliance methods and their fundamental equations are intro-
duced, drawing on some basic concepts of fracture mechanics and thus arriving at the
equation of the problem concerning the reconstruction of residual stresses.

• In Section 3, the obtained equations are used to run some numerical experiments that
expose the peculiar features of ill-posedness.

• In Section 4, the practical consequences for the analyst who must navigate ill-posedness
in a residual stress measurement are discussed.

2. Theoretical Background
2.1. Crack Compliance Methods

One of the most intuitive ways to mechanically disconnect a portion of a compo-
nent for a residual stress analysis is arguably to introduce a cut, which creates two new
surfaces on which the traction vector is forced to be null. The corresponding residual-stress-
measurement technique was originally called the crack compliance method [16], and only in
subsequent years it became known as the slitting method [32]. If the problem’s linearity
holds, Bueckner’s superposition principle [20] holds as well, so the deformation fields
generated by the cut are equivalent to those generated by applying tractions of opposite
signs to those originally acting on the created surfaces (Figure 1).

(a)

(b)

Figure 1. A classical application of Bueckner’s superposition principle. A cut is introduced in a
specimen in a region where tensile residual stresses are present. This action generates displacement
fields that are equivalent to those obtained with the simple elastic boundary problem depicted in the
figure, where the applied tractions are simply reversed in sign. (a): Naming of geometrical variables:
crack length a, spatial coordinate x and specimen width W. (b): Equivalent boundary value problem,
color-coded by the magnitude of displacements along the crack face normal. Tractions are represented
as red arrows.

Thanks to the broad availability of finite element (FE) analyses, the state of the art for
relaxation methods has evolved to directly generate the calibration matrix of the problem
in discrete form through numerical simulations—as in Figure 2—even though this devel-
opment may have sometimes led to overlooking the original mathematical nature of the
problem. Given their great accuracy, strain gauges are usually placed on the front or back
face to record strains at the specimen surface, instead of adopting displacement-measuring
devices. Anyway, regardless on whether displacement or strain measurements are actually
employed, a linear system is obtained. As explained in [26,27], what one obtains is simply
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a discrete realization of an integral equation like Equation (1), which then retains all its
fundamental issues.

Before FE analyses became the standard for constructing calibration matrices, crack
compliance methods had the huge advantage of allowing for the use of theoretical results
from fracture mechanics to formulate the solving equations of the problem [33,34]. In fact,
the solution fields corresponding to a plane crack in a semi-infinite or rectangular domain
are among the most common results of fracture mechanics [35], which can be used to obtain
an equation like Equation (1) without resorting to numerical computations.

For example, for a given crack face normal traction σ(x), the stress intensity factor
(SIF) for a 2D boundary value problem containing a crack of length a can be computed
through the following equation [35]:

KI(a) =
∫ a

0
h(a, x) σ(x) dx (2)

where h(a, x) is a weight function (WF) that can be shown to depend only on the geometry
of the cracked body. As shown by Rice [36], if KI(a) and the crack face displacement
v(a, x)—measured from the undeformed crack surface—are known for a given Mode I
loading, then h(a, x) can effectively be computed as

h(a, x) =
E′

KI(a)
∂v(a, x)

∂a
(3)

Recall that E′ depends on whether plane stress or plane strain conditions are assumed.
As h(a, x) is readily available—at worst, through a series expansion—for many 2D

geometries, one can employ Equations (2) and (3) to write down the relation between the
desired residual stresses and other measurable quantities. For example, as a longer crack is
progressively introduced, one may measure the SIF through a technique of choice (such as
the photoelastic method [33]) and correlate it with σ(x) through Equation (2), which has
itself a very similar mathematical structure to Equation (1). As a matter of fact, they are
both Volterra integral equations of the first kind [37].

Alternatively, one can measure the crack mouth opening displacement (CMOD)
2v(a, 0) and correlate it with the residual stresses by proceeding as follows. From
Equation (3), one has

v(a, 0) ≜ v0(a) =
1
E′

∫ a

0
h(s, 0)KI(s) ds (4)

By substituting KI(s) from Equation (2) and rearranging:

v0(a) =
1
E′

∫ a

0
h(s, 0)

∫ s

0
h(s, t) σ(t) dt ds (5)

v0(a) =
1
E′

∫ a

0

∫ s

0
h(s, 0) h(s, t) σ(t) dt ds (6)

Then, one can define
ψ(a, x) ≜ h(a, 0) h(a, x) (7)

and write
v0(a) =

1
E′

∫ a

0

∫ s

0
ψ(s, t) σ(t) dt ds (8)

which is another integral equation relating σ(x) and the measurable quantity v0(a), albeit
slightly more complex than Equation (2). The kernel function ψ(a, x) has units of 1/Length
and retains some properties of weight functions, including having an integrable singularity
at x = a.

Equation (8) does not require FE analyses to identify residual stresses—as ψ(a, x) is
usually available—and is of high practical significance, since crack opening displacement-
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measuring devices are widely available instruments in laboratories that perform fracture
mechanics experiments. Despite the apparent differences with Equation (1) and its fully
analytical formulation, the next section shows that this problem is still ill-posed.

x

x

x

x

σ

σ

σ

σ

a

v0
1 2 3 4

a

1 2 3 4v0

a

1 2 3 4v0

a

1 2 3 4v0

Figure 2. Standard procedure used to build the calibration matrix in a discretized version of
Equation (1). For each element of the chosen stress basis—which in this case spans the set of
piecewise constant stress distributions—the corresponding displacements or strains arising from
a hypothetical run of the same measuring process are simulated and recorded as columns of the
calibration matrix. Then, leveraging the superposition principle of linear elasticity, the displace-
ments/strains corresponding to any element of the chosen stress space can be simulated through
a linear combination of the columns of the calibration matrix. Each element of the stress basis is
represented with a different color.

2.2. Ill-Posedness

A peculiar characteristic of Equation (8) is that it acts as a low-pass filter with respect
to oscillations of σ(x) along its domain. This is also intuitive from a physical perspective.
The value of the CMOD is minimally affected by the short-scale variations in the stresses
applied on the crack faces, as Saint Venant’s principle [38] ensures that boundary conditions
with the same resultant actions on a given dimensional scale generate deformation fields
whose differences are confined to a comparably sized region. Consequently, tractions with
highly oscillatory behavior influence the CMOD primarily through their values averaged
at longer dimensional scales, without locally self-equilibrated peaks affecting the result.

This intuitive statement has a formal mathematical explanation, too. The Riemann–
Lebesgue lemma (see [39]) ensures that, if ψ(a, x) is integrable on its domain, then

lim
N→∞

∫ a

0
ψ(a, t) sin (Nt) dt = 0

∀a ∈ [0, amax]
(9)

Similarly, by applying Lebesgue’s dominated convergence theorem [40], a further
integration of a vanishing function can be shown to converge to zero as N → ∞, so that

lim
N→∞

∫ a

0

∫ s

0
ψ(s, t) sin (Nt) dt ds = lim

N→∞
vN(a, 0)

∀a ∈ [0, amax]
(10)

This seemingly abstract mathematical feature has huge practical implications. For any
positive real number k, by taking a sufficiently large N, we can generate a residual stress
distribution σδ(x) = k sin (Nx) that has an arbitrarily low (yet non-null) effect vδ(a, 0) on
the measured CMOD. Due to the problem linearity, this implies that the measured samples
can be perturbed by an arbitrarily low quantity vδ(a, 0) and obtain another solution that
differs from the true one by k sin (Nx), which, in turn, can be made arbitrarily high through
the initial choice of k.

The resulting effect is an infinite sensitivity with respect to the input errors: through
arbitrarily low measurement perturbations, the solution error cannot be bound by any
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inequality. A mathematical problem that shows this effect is referred to as an ill-posed
problem. Yet, as explained in Section 3, the problem is seldom analytically solved in infinite-
dimensional function spaces, as the usual solution procedure involves a discretization
phase that is then followed by numerical computations.

– Refinement of the discretization scheme

Solution error

BiasVariance

+

?

Figure 3. Pictorial representation of the bias–variance tradeoff, typically faced by the residual stress
analyst when choosing the discretization scheme. As the number of degrees of freedom allowed in
the basis spanning the stresses increases, the variance of the solution (light green curve) increases in
terms of sensitivity to measurement errors. In an attempt to reduce this sensitivity by limiting the
degrees of freedom, a bias (blue curve) is introduced into the solution. If both the variance and the
bias were observable, the discretization scheme that generates the “best” solution (i.e., the minimum
of the turquoise curve) could be chosen; however, bias is not directly observable.

By acquiring a finite number of measurement points and representing the solution
with a finite number of coordinates, only a finite-dimensional approximation of the original
problem is being solved. In this new problem, the sensitivity to error cannot be infinite—the
dimensional scale of the oscillations allowed in the solution cannot decrease indefinitely—
but it can be high enough to challenge the accuracy of the measurement instruments used.
Then, the problem is said to be ill-conditioned, which in this case is only a consequence of
the discretization of an ill-posed problem.

Nonetheless, the most distinctive feature of an ill-posed problem is the varying level
of ill-conditioning, which depends on how much the discretized problem closely resembles
the original problem. The more it does, the more the obtained problem is ill-conditioned; to
tame the ill-conditioning, it is tempting to take coarser discretization with just a few degrees
of freedom, but that leads to the solution of a biased problem. Eventually, a so-called bias–
variance tradeoff is defined, depicted in Figure 3 and discussed in Section 4 through the
proposed numerical experiment.
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3. Numerical Investigations

In order to pair the theoretical discussion with a hands-on numerical example, the fol-
lowing tensile residual stress distribution is assumed to be present in a long plate of width
W such as the one depicted in Figure 1:

σ(x) =


525 − 5850 x

W
x

W ≤ 0.125
−275 + 550 x

W 0.125 < x
W ≤ 0.875

5325 − 5850 x
W

x
W > 0.875

(MPa) (11)

A plot of the assumed stress distribution is reported in Figure 4. Equation (11) is
obtained by carrying out a hypothetical four-point bending test significantly past the yield
point of a material having a perfectly plastic constitutive model, and then by removing
the applied load, leaving the residual stresses with the task of maintaining the planarity of
the section. The problem consists of reconstructing the residual stress distribution in the
interval 0 < x

W ≤ 0.75 through the crack compliance method by introducing a cut in the
plate and measuring the CMOD while the cut advances.

0.00 0.25 0.50 0.75 1.00
x
W

600

400

200

0

200

400

600

(x
) (

M
Pa

)

True solution

Figure 4. Residual stress distribution used in the proposed numerical experiment, defined by
Equation (11).

The influence function for this problem is taken from [41], which reports it as a
truncated series expansion:

h(a, x) =
1√
2πa

5

∑
k=1

[
F
( a

W
, k
)(

1 − x
a

)k− 3
2
]

(12)

where F
( a

W , k
)

is a dimensionless algebraic function, whose coefficients are tabulated in the
book. The corresponding kernel function ψ(a, x) = h(a, 0)h(a, x) of the integral operator in
Equation (8) is reported in Figure 5. By including Equations (11) and (12) in Equation (8),
one obtains the theoretical CMOD 2v0(a) as a function of the length a of the cut that has
been introduced in the specimen, as shown in Figure 6.
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Figure 5. Plot of the kernel function ψ(a, x), used to calculate the CMOD from knowledge of the
residual stresses along the introduced crack, through a double integration. Having units of 1/Length,
it is normalized by 1/W. The kernel function is defined on the triangular domain 0 ≤ x < a < W,
and it has an integrable singularity along its diagonal x = a. The X and Y coordinates are normalized
by the specimen width; in the plot, both a and x are limited to 0.75 W, consistently with the proposed
numerical experiment. The surface plot is color-coded according to the Z coordinate.

0.00 0.25 0.50 0.75
a
W

1.5

1.0

0.5

0.0

0.5

1.0

v 0 W

×10 3

Figure 6. Normalized CMOD that corresponds to the residual stress distribution defined by
Equation (11), following a progressive cut of normalized length a/W < 0.75 in a long plate in
plane strain. Since the introduced cut has a non-null thickness, a negative CMOD is allowed and
does not automatically generate crack closure. The specimen is color-coded by the magnitude of
displacements along the crack face normal.

As ψ(a, x) is available in closed form, Equation (8) allows for the calculation of the
CMOD corresponding to any distribution of relaxed residual stresses σ(x) through a double
integration of a function, an operation that can also be carried out by hand, analytically.
Yet, the practical problem lies in measuring v0(a) and finding σ(x), which involves an
inversion of the operator defined by Equation (8). Unfortunately, with a few rare exceptions,
an analytical expression of this inverse relationship—that is, a closed-form expression
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that allows for the determination of σ(x) from v0(a), is generally not available. As a
consequence, the scheme of Figure 2 is also adopted here.

A finite-dimensional stress space spanned by a suitable basis is chosen, then the
calibration matrix for the discretized problem is computed by evaluating the CMOD
corresponding to the elements of the stress basis at a fixed number of cut lengths. The only
difference with the usual state of the art of the slitting method is that here this operation
can be carried out analytically, without resorting to FE analyses. In formal terms, if
β = [β1(z), β2(z) . . . βn(z)] is the chosen n-dimensional basis and a = [a1, a2 . . . am] is the
vector of m cut lengths where the CMOD is probed, one can define a matrix

Aij =
∫ ai

0

∫ s

0
ψ(s, t) β j(t) dt ds (13)

so that, for a given residual stress distribution σ(x) = ∑n
j=1 σjβ j(x), the following rela-

tion holds:

v(ai, 0) =
∫ ai

0

∫ s

0
ψ(s, t) σ(t) dt ds

=
∫ ai

0

∫ s

0
ψ(s, t)

(
n

∑
j=1

σjβ j(t)

)
dt ds

=
n

∑
j=1

σj

∫ ai

0

∫ s

0
ψ(s, t) β j(t)

=
n

∑
j=1

Aijσj

(14)

By recording the measured CMODs in an array v = [v(a1, 0), v(a2, 0) . . . v(am, 0)] and
collecting the coordinates of the residual stress distribution with respect to the chosen
basis σ = [σ1, σ2 . . . σn], a linear system is obtained, which represents the discretization of
Equation (8):

Aσ = v (15)

Finally, Equation (15) is generally solved in a least-squares sense by looking for the
solution that best approximates the recorded measurement samples. In fact, it is fairly
common to exploit the statistical advantages of having more sampling points than strictly
necessary [16].

In this analysis, two different stress spaces are employed, owing to their wide applica-
tion in the residual stress community: the space of piecewise constant functions and the
space of polynomials, which, respectively, are usually referred to as the Integral Method [21]
and the Power Series Method [42]. To explore the bias–variance tradeoff, a fixed number of
32 probed cut lengths is assumed, while the stress basis dimension is varied between 1
and 32; for the Integral Method, this is performed by increasing the number of calculation
intervals, whereas for the Power Series Method, this is performed by adding higher-order
terms in the polynomial expansion.

Just for the numerical calculations, a W = 20 mm is adopted, while the standard error
of the CMOD measuring instrument is assumed to be 1µm. The true CMOD—evaluated
through the direct application of Equation (8)—is then sampled at the probed cut lengths
and perturbed with a i.i.d. Gaussian noise having a standard deviation equal to the assumed
error. In total, 1000 random perturbations of the true CMOD are sampled, and an equal
number of results in terms of identified residual stresses is obtained. Moreover, for each
discretization scheme, two additional solutions are computed:

• The ideal solution, which is the one corresponding to perfect, errorless CMOD measurements.
• The best solution, which is the element of the chosen stress basis that best approximates

the true solution in a least-squares sense.
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All the results are collected in Figures 7 and 8, respectively corresponding to the
application of the Integral Method and the Power Series Method.
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True solution
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Ideal solution
Solution example

Mean of results
±2  dispersion

Figure 7. Results of the numerical experiments, obtained by employing the finite-dimensional
stress space consisting of piecewise constant functions. In total, 1000 random perturbations of the
theoretical CMOD corresponding to σ(x) defined by Equation (11) are generated, then the residual
stress solutions are identified by inverting the linear system reported in Equation (15). The best
solution is the one that best approximates the true solution; the ideal solution is the one that would
be obtained with errorless measurements. For low-dimensional discretizations, the variance of
the obtained solution is small, but the stress space itself is not able to represent the true solution,
thereby introducing a bias; moreover, the ideal solution does not even match the best one. For high-
dimensional discretizations, the ideal solution converges to the true one, but the distribution of
obtained solutions has a practically unusable variance.
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Figure 8. Results of the numerical experiments, obtained by employing the finite-dimensional stress
space consisting of polynomials. In total, 1000 random perturbations of the theoretical CMOD
corresponding to σ(x) defined by Equation (11) are generated, then the residual stress solutions
are identified by inverting the linear system reported in Equation (15). The best solution is the one
that best approximates the true solution; the ideal solution is the one that would be obtained with
errorless measurements. For low-dimensional discretization, the variance of the obtained solution is
small, but the stress space itself is not able to represent the true solution, thereby introducing a bias;
moreover, the ideal solution does not even match the best one. For high-dimensional discretizations,
the ideal solution converges to the true one, but the distribution of obtained solutions has a practically
unusable variance.

4. Discussion

Figures 7 and 8 illustrate the clearest symptom of the ill-posedness of an inverse
problem. When the number of degrees of freedom in the finite-dimensional discretization
is low, the sensitivity to errors is small, and the solutions are substantially independent of
measurement noise. However, the chosen basis is not capable of correctly representing the
true solution, so the obtained result shows a bias—potentially dangerous when structural
safety is involved—relative to the exact result. As noted in [27], the situation does not
change even when the obtained solution is interpreted as the best representation of the
exact result within the chosen basis, which, in the case of the Integral Method, would
coincide with the average of the true solution over a calculation subinterval. As shown
in the figures, even the solution corresponding to errorless measurements is biased with
respect to the best representation of the exact result in the chosen finite-dimensional space.
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In an attempt to reduce bias, the number of degrees of freedom may be increased so that
the finite-dimensional solution is a practically reasonable approximation of the original infinite-
dimensional space. Nonetheless, in turn, this yields an inversion process that is extremely
sensitive to measurement errors, hence a solution variance that makes every obtained result
practically unusable. This has long been known in the literature, also concerning other
relaxation methods that do not necessarily require the introduction of a crack-like cut in the
specimen [43–45]. In intuitive terms, having more degrees of freedom makes the discretized
problem closer to its originally ill-posed counterpart, which has an infinite sensitivity to input
errors. Note that this effect does not depend on imperfect knowledge of the integral operator—
as is the case when it is estimated numerically [46]—because in this example, the operator of
the direct problem is known analytically. This is the main reason why the crack compliance
method is particularly instructive in these aspects; nonetheless, similar considerations could
have been made for the layer-removal method [13] and for Sachs boring method [12], whose
integration kernel is analytically known.

As is depicted in Figure 3, the greatest issue concerning ill-posedness is that bias is
not observable. By computing multiple solutions—as performed in this case—one can
note the variability in the solution with respect to the input error. Due to the linearity of
Equation (15), the input errors can also be theoretically propagated through the inversion
procedure. However, one can never know the bias that is being introduced by the chosen
solution procedure; for example, a given constant solution may equally correspond to an
actually constant true residual stress solution or to an arbitrarily varying distribution that
causally yields the same discretized solution.

This aspect is particularly dramatic for constructing confidence intervals for the so-
lution. Only the confidence intervals relative to the ideal solution (i.e., corresponding to
perfect measurements) can be constructed, but the practical interest of this construction
is essentially null, as it is not even guaranteed that the ideal solution coincides with the
best approximation of the true solution in the chosen space. The risk is that, in an effort to
achieve narrower confidence intervals, the analyst may implicitly choose to increase the
bias of the obtained solution, without this being apparent in the results.

There exist also alternative techniques that aim to regularize the problem; that is,
to reduce the variance of the solution. The most notable one is arguably Tikhonov regu-
larization [47–49]. However, neither of these techniques are immune to the bias–variance
tradeoff, as discussed in [26,27]. As a matter of fact, they also introduce a bias into the
solution, which cannot be quantified a priori.

There is only one solution to the issues generated by the ill-posedness of an inverse
problem and its resulting bias–variance tradeoff: obtaining additional information through
physics, which is capable of establishing a priori that the solution must have a specific
form and/or meet certain well-defined constraints. Note that this piece of information
cannot be deduced by the mathematical equations alone. Only in that case, by assuming a
finite-dimensional solution space that adheres to those conditions, no bias is introduced,
and any quantification of uncertainties can be considered rigorous. This is equivalent
to asserting that the sensitivity to error should not drive the choice of the discretization
scheme; rather, it should be the opposite. Physical assumptions determine the discretization
scheme, which then yields its corresponding sensitivity to input errors and establishes
requirements for the measurement instruments. If these requirements are impossible to
meet, the measurement is not feasible from an engineering standpoint.

For example, if something allows the stress analyst to assert that the distribution
of residual stresses is reasonably linear through the thickness—possibly caused by the
restoration of far-field incompatibilities in the displacement field of a slender beam—there
is no bias in assuming that the solution belongs to the space of first-degree polynomial
functions, and the variance associated with such a low number of degrees of freedom is
generally rather limited.
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5. Conclusions

The main points of the article are outlined below:

• The ill-posedness of the problem of reconstructing residual stresses from measure-
ments of crack opening displacement following a progressive cut introduced in the
specimen is demonstrated and clearly distinguished from its more general property of
being ill-conditioned.

• Through a numerical example, the typical indicator of an ill-posed problem, namely
the bias–variance tradeoff, is presented, together with its potentially devastating
consequences on the ability to rigorously quantify uncertainties. Therefore, it is
extremely important to recognize its presence and avoid actions that only seemingly
improve the quality of the solution.

• As stressed in the authors’ previous works, it is again underlined that no mathematical
machinery can permanently overcome the infinite sensitivity to input errors that is
inherent to ill-posed problems. The solution is to be found in the physics of the
problem, aiming at pieces of information that would allow one to tame the solution
variance without introducing significant and, above all, uncomputable biases.
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