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Abstract: This article presents a transfer-learning-based method to improve the synthesized speech
quality of the low-resource Dungan language. This improvement is accomplished by fine-tuning a
pre-trained Mandarin acoustic model to a Dungan language acoustic model using a limited Dun-
gan corpus within the Tacotron2+WaveRNN framework. Our method begins with developing
a transformer-based Dungan text analyzer capable of generating unit sequences with embedded
prosodic information from Dungan sentences. These unit sequences, along with the speech features,
provide <unit sequence with prosodic labels, Mel spectrograms> pairs as the input of Tacotron2 to
train the acoustic model. Concurrently, we pre-trained a Tacotron2-based Mandarin acoustic model
using a large-scale Mandarin corpus. The model is then fine-tuned with a small-scale Dungan speech
corpus to derive a Dungan acoustic model that autonomously learns the alignment and mapping
of the units to the spectrograms. The resulting spectrograms are converted into waveforms via the
WaveRNN vocoder, facilitating the synthesis of high-quality Mandarin or Dungan speech. Both
subjective and objective experiments suggest that the proposed transfer learning-based Dungan
speech synthesis achieves superior scores compared to models trained only with the Dungan corpus
and other methods. Consequently, our method offers a strategy to achieve speech synthesis for
low-resource languages by adding prosodic information and leveraging a similar, high-resource
language corpus through transfer learning.

Keywords: Dungan language speech synthesis; text analysis; transfer learning; low-resource
language; tacotron2

1. Introduction

Speech synthesis (text-to-speech (TTS) conversion) is widely used in smart homes,
navigation systems, and audiobook applications. Globally, there are approximately 6000 lan-
guages, most considered low-resource. While significant progress has been made in speech
synthesis for major languages like Mandarin, English, and French, the voice quality of TTS
for low-resource languages, such as Tibetan and Dungan, remains suboptimal. In recent
years, there has been a surge in research focused on low-resource language speech synthesis,
as evidenced by numerous studies [1-6]. However, research on Dungan language speech
synthesis still needs to be completed. The Dungan language, which is a variant of the
Shanxi-Gansu dialects within the Chinese dialect spoken in Central Asia, is classified as a
low-resource language due to its limited usage, dwindling number of speakers, and scarcity
of linguistic materials [7,8]. Given that Russian has become the official language of Central
Asia, creating a comprehensive speech corpus with linguistic knowledge for high-quality
Dungan speech synthesis presents a significant challenge. Although we implemented a
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DNN-based Dungan speech synthesis [9,10], the synthesized speech quality was not high
due to the limited training corpus.

Speech synthesis technologies encompass unit selection-based concatenative speech
synthesis [11], hidden Markov model (HMM)-based statistical parametric speech synthesis
(SPSS) [12], and deep learning-based speech synthesis [13,14]. While deep learning has
significantly advanced speech synthesis technology, methods such as long short-term
memory (LSTM) and bidirectional LSTM [15,16] have addressed temporal information
limitations. Moreover, end-to-end speech synthesis models [17] like Tacotron [18] and
Tacotron2 [19] have demonstrated the ability to map text directly to speech. When trained
with large-scale text-to-speech pairs, these models produce synthesized speech using high-
quality vocoders such as the Griffin-Lim algorithm [20], WaveNet [21], and WaveRNN [22].
However, such systems require substantial training corpora. For low-resource languages,
the lack of training corpus makes it difficult for end-to-end models to learn the prosodic
structure of sentences, resulting in a lack of prosodic changes in synthesized speech, which
affects its naturalness, posing challenges for speech synthesis of low-resource languages.

Cross-language transfer learning [23-25] has been employed to mitigate the issue
of insufficient training corpora for speech synthesis in low-resource languages. This
technique entails training a language model using a combination of a large corpus from a
high-resource language and a smaller corpus from a low-resource language, followed by
adapting this model to the low-resource language. Transfer learning in speech synthesis
has proven to be an effective strategy for producing speech in low-resource languages by
harnessing the capabilities of a high-resource language acoustic model [26,27].

In our prior research on Tibetan speech synthesis [28-32], we determined that inte-
grating prosodic information through transfer learning-based techniques enhances the
quality of synthesized speech for low-resource languages such as Tibetan. Building on
this insight, the present study implements a sequence-to-sequence (seq2seq) approach for
Dungan language speech synthesis, leveraging transfer learning and prosodic information
within the Tacotron2+WaveRNN framework. This method entails utilizing a Dungan text
analyzer to extract prosodic labels from Dungan sentences for model integration, employ-
ing a Tacotron2-based Mandarin acoustic model, and fine-tuning the Dungan language
acoustic model with a limited Dungan speech corpus. The primary contributions are
delineated below:

*  Front-end: We have implemented a complete text analyzer for the Dungan language,
encompassing modules for text normalization, word segmentation, prosodic boundary
prediction, and unit generation based on transformer technology. This analyzer
can produce initials and finals as speech synthesis units with prosodic labels from
Dungan sentences.

*  Back-end: We have achieved seq2seq Dungan language speech synthesis by adapting
a pre-trained Mandarin acoustic model within the Tacotron2+WaveRNN framework.
This was accomplished by replacing Tacotron2’s location-sensitive attention with
forward attention, enhancing convergence speed and stability.

The rest of the article is organized as follows. We first present our transfer learning-
based Dungan speech synthesis framework under Tacotron2+WaveRNN in Section 2. The
experimental setup and results are presented in Section 3, while the results are discussed in
Section 4. Finally, a brief conclusion and outline for future work are provided in Section 5.

2. Models and Methods

The proposed framework of transfer learning-based low-resource Dungan speech
synthesis, which is shown in Figure 1, including a feature extraction module, a pre-trained
Mandarin acoustic model, a transfer learning-based Dungan acoustic model training mod-
ule, and a WaveRNN vocoder-based speech synthesizer.
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Figure 1. The framework of Tacotron2+WaveRNN-based Dungan speech synthesis.

The feature extraction module extracts acoustic features such as Mel Spectrogram from
speech signals and speech synthesis units sequence from sentences. We have developed a
complete Dungan language text analyzer to extract speech synthesis units with prosodic
features to map Dungan sentences onto unit sequences. Given that both the Mandarin
and Dungan languages utilize initials and finals as their core speech synthesis units, the
resulting unit sequence incorporates these elements and pertinent prosodic information,
including syllable tones and sentence-level prosodic boundary labels.

Since Tacotron2 is one of the most popular encoder-to-decoder speech synthesis
frameworks, and the WaveRNN vocoder can generate natural speech, we use Tacotron2
to train acoustic models and WAVRNN to convert spectrogram to waveform for both the
Dungan language and Mandarin. The Mandarin acoustic model is pre-trained with a
large-scale Mandarin corpus, while the Dungan language model is transferred from the
Mandarin acoustic model with a small-scale Dungan corpus.

In the speech synthesis stage, the WaveRNN vocoder generates Dungan or Mandarin
speech from the input of Dungan or Chinese sentences. The text analyzer first generates
the context-dependent labels from the input sentence. Then, the speech synthesis unit
sequences (initials and finals with their prosodic information) are fed into the Mandarin or
Dungan acoustic model to generate the Mel spectrogram. The WaveRNN vocoder is finally
used to generate the speech waveforms from the Mel spectrogram. We use a home-grown
Chinese text analyzer for Chinese text analysis.

2.1. Text Analyzer of Dungan Language

Unlike the prevalent seq2seq speech synthesis techniques designed for major lan-
guages that solely utilize the <phoneme sequence, speech> pair for training acoustic
models, our approach employs a unit sequence incorporating prosodic labels such as the



Appl. Sci. 2024, 14, 6336

40f17

tone of each syllable and the prosodic boundary of a sentence, serving as the “phoneme
sequence”. Consequently, it becomes essential to devise a comprehensive text analyzer
capable of extracting a sentence’s unit sequences and their prosodic labels. To this end,
leveraging our in-house Chinese text analyzer, we developed a Dungan language text
analyzer, as illustrated in Figure 2. The process begins with normalizing and segmenting
the input Dungan sentence to determine the word boundary. A prosodic boundary analysis
follows this to identify both the prosodic word and prosodic phrase boundary. In the final
stage, the initials and finals of Dungan characters are derived through a transformer-based
characters-to-unit conversion process.

Dungan sentence

!

Text normalization

e ¢
Dictionary i
Word segmentation
e —
—
Prosody prediction
Rule library
e — +
Character-to-unit
conversion

J'_/

Dungan unit sequence with context-dependent labels

Figure 2. Procedure of Dungan text analysis.

2.1.1. Speech Synthesis Unit of Dungan language

Despite utilizing a different writing system, Dungan represents a dialectal pronun-
ciation of Mandarin outside of China. The Dungan language is written in Cyrillic script,
resembling Slavic languages like Russian, so the Dungan language is phonetic characters
with sequential spelling, following a structure similar to Chinese [33-35]. The spelling
order for Dungan characters consists of initials, finals, and tone, as depicted in Figure 3.

Initial Final Tone
1y yH 2

Figure 3. Structure of a Dungan character.

This article uses initials and finals as the speech synthesis unit. The Dungan char-
acter comprises 25 initials (including the zero initial) and 32 finals, as shown in Table 1.
Like Mandarin, the Dungan language’s tones are crucial in distinguishing semantics and
emotions [36]. Dungan features four tones, excluding the light tone, namely the level
tone (21), rising tone (24), falling-rising tone (53), and falling tone (44), each denoted by the
numbers 1 to 4, respectively.
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Table 1. The initials and finals of Dungan Language.

/bl e/, /m/, /8], /v/, 12/, /c/, /s/, 74/, 1t /n/ /1
/zh/, /ch/,/sh/, /x/, /i, /a/. /x/, g/, /K/, /ng/, /h/, [/

/ii/, /iii/, /i/, /u/, /y/, /a/, /ia/, /ua/, /e/, /ue/, /ye/, /iE/
finals /ap/, /ai, /uai/, /ei/, /ui/, /ao/, /iao/, /ou/, /iou/, /an/, /ian/
/uan/, /yan/, /aN/,/iaN/, /uaN/, /uN/, /iN/, /yN/

initials

2.1.2. Text Normalization

Any input sentence may contain numerical forms of time, date, abbreviations, and
special proprietary nouns. Before converting a sentence into a sequence of phonetic
symbols, it is essential to use text normalization to transform non-standard text into a
unified phonetic symbol. Therefore, we implemented a rule-based text normalization to
identify non-Dungan characters. We developed a set of Dungan text normalization rules
based on Chinese text normalization rules [37] and employed the add-restore method to
normalize the Dungan characters according to [38].

2.1.3. Word Segmentation

Word boundaries play a significant role in predicting prosodic boundaries. Thus, it
is essential to identify the word boundaries of a sentence post-normalization. Dungan
sentences exhibit clear distinctions between words and syllables, making segmentation
relatively straightforward. We employed a maximum matching-based word segmentation
algorithm to extract Dungan words from the input sentence. We compiled a Dungan word
dictionary comprising 49,293 words to facilitate this process. The longest word spans eight
characters in this dictionary, while the shortest is a single character. The dictionary primarily
encompasses core Dungan terms, as referenced in sources like “Common Dictionary of
Dungan Language” [39], “A Survey on Tungan Language in Central Asia” [40], “A Survey
of Dungan Language” [41], and additional searchable Dungan terms available online.

2.1.4. Prosodic Boundary Prediction

Our approach utilizes initials and finals, along with their prosodic labels, as the input
unit sequence for the acoustic model. Thus, extracting the prosodic structure from Dun-
gan sentences is crucial for synthesizing high-quality speech. Like Mandarin, Dungan’s
prosodic hierarchy can be segmented into prosodic words, prosodic phrases, intonation
phrases, and sentence pauses. The boundary of intonation phrases can be easily identified
using Dungan punctuation marks. In this study, we employed a BiLSTM with a condi-
tional random field (BiLSTM_CRF)-based method, as illustrated in Figure 4, to predict the
boundaries of prosodic words and phrases [42].

o O O O O

CRF
layer

| BiLST™M
layer

Word
embedding

Prosodic boundary
Table

xolToul#2  ku HM #3 343 inl mounl#2 H#4

Figure 4. The framework of BLSTM_CRF-based Dungan Prosodic Boundary Prediction. The input is
a Dungan sentence with prosodic information.

We employed four distinct prosodic word-position labeling sets (#1, #2, #3, #4) to
categorize Dungan words into prosodic phrases. Specifically, #1 was utilized to denote the
prosodic words, #2 designated the prosodic phrases, #3 marked the termination of a Dungan
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word, and #4 indicated a pause within a sentence. The labeling process incorporated phrase
and prosodic information derived from Dungan text, which was tagged manually. During
this phase, linguists sporadically reviewed and amended selected sentences. We attained a
high level of consistency with linguistic experts through iterative corrections.

Despite the BILSTM’s capability to learn context-dependent information, its indepen-
dent classification decisions are constrained by strong dependencies across the output label.
To address this, we employ a CRF layer that considers neighboring tags, as illustrated in
Figure 4. For a normalized input sentence X = {x1,xp,- - - , X, } containing n words and a
tag sequence of sentence y = (1,2, .- .,Yn), €ach word is represented as a d-dimensional
vector by word2vec. We define its prediction score s(X, i) to be as follows:

n n
S(Xr ]/) = Z Pi,y,- + 2 Ayi,ym (1)
i=1 i=0
where P is the matrix of scores output by the BLSTM network. P; . corresponds to the score
of the y; tag of the ith word in a sentence. A is the transition scores matrix of the CRF layer,
and Ay, y,,, corresponds to the score from tagy; to tag y; 1.
In the training, we maximize the following log-likelihood functions:

log(p(y | X)) =s(X,y) —log| Y X&) 2)
yeYx

where Yy represents all possible tag sequences for an input text X.
In the decoding, the optimal sequence y* is given as follows:

* = argmaxs(X, )
=g <3>

2.1.5. Transformer-Based Character-to-Unit Conversion

Mandarin and Dungan employ the same Pinyin system for pronunciation labeling.
Consequently, the character-to-unit conversion in Dungan parallels that of Mandarin. This
study introduces a transformer-based approach [43] to derive the Dungan unit, as illustrated
in Figure 5, to enhance the accuracy of Dungan character-to-unit conversion. The encoder
and decoder are formed by stacking the same essential layers with N = 6. Each underlying
layer consists of two sublayers. The first sublayer is the multi-head attention layer. The
decoder has a layer of hidden multi-head attention (masked multi-head attention).

shi3 ban3#2 kail hual#2,#4 hail tang1#2 di ni#3
xi3#3 yil shang1#2.4#4

i
i Transformer
i

Linear

Normalize
Feed forward
Normalize

Normalize Multi-head-
attention
Feed forward N N
[ Nomalize -
Normalize
Masked
Multi-head- multi-head-
attention Encoder attention Decoder

i i
| i 6an3#2 1ol xyal#2,#4 xol Tonl#2 xn  shi3 ban3#2 kail hual#2,#4 hail tang1#2 di ni#3 |
Hin#3 w343 finl wonl#2.44 Xi3#3 yil shangl#2.#4

Figure 5. The framework of Transformer-based Dungan character-to-unit conversion. The input is
a Dungan sentence with prosodic information (left) and its corresponding Pinyin sequence (right).
The output is the Pinyin sequence with prosodic information.
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2.2. Transfer Learning-Based Dungan Acoustic Model

We implement the Dungan acoustic model by fine-tuning a pre-trained Mandarin
acoustic model, as illustrated in Figure 6.

Target acoustic model

Character
embedding

Wt

Decoder
Finetuning parameters

Acoustic O,
parameters

5 Conv Layers
I Past_net
Linear projection

2-layer LSTM

Mandarin Phoneme
S (55557

Forward
Attention

Bidirectional
LSTM
3 Conv
Layers

Character
embedding

Pre-n

Orgt

Stap Token
Acoustie

Dungan Phoacrne
S (S455-51) parameters
Encoder Decoder

Acoustic parameters
Dungan text analysis
extraction
S |
Dungan |
corpus Transfer leamning |

Figure 6. Procedure of training the Dungan language acoustic model with transfer learning.

2.3. Pre-Trained Tucotron2-Based Mandarin Acoustic Model

The Mandarin acoustic model is initially trained using a large-scale Mandarin corpus.
Our proprietary Chinese text analyzer extracts these sentences’ initials, finals, and associ-
ated prosodic labels. The extracted acoustic features encompass the Mel spectrogram from
the large-scale Mandarin corpus within the Tacotron2 framework.

Given the similar pronunciation between the Dungan language and Mandarin, we
employ the mapping-transfer learning method [44] to obtain a Dungan (target language)
acoustic model by transferring knowledge from Mandarin (source language), which can be
formulated as follows:

fow: X =Y 4)

where 0 is the parameters of the acoustic model, W denotes learnable symbol embeddings,
and ) represents the space of Mandarin. X is the text space for the Dungan language.

Xe = {{si}y | visi € £,T N} ®)

where L is the unit set for the Dungan language, S; is the ¢-th unit of Dungan unit sequence,
and T is the length of the unit sequence.

In the encoder, we input a Dungan unit sequence represented by character embed-
dings. This is passed through a stack of three convolutional layers, followed by batch
normalization and ReLU activations. Subsequently, the output from the final convolutional
layer is fed into a bidirectional LSTM layer to generate the Dungan unit features.

Mapping-based transfer learning involves mapping instances from 6, and ;¢ into a
new acoustic parameter space. In this process, we can directly use W, and 6, decoded
from the Mandarin acoustic model by the decoder. 6, and 6o+ can take embeddings as
input and generate speech. However, because ss;c and stot come from different symbol
sets, i.e., Lsrc # Ligt, the same concept cannot be directly applied to Wy, and Wig. To
address this issue, Dunggan units are embedded in Wi, to facilitate relearning during the
transmission process.

We adopt the forward attention mechanism, which uses cumulative attention weights
to calculate the context vector.
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The decoder is an autoregressive recurrent neural network that predicts a 6 from
the encoder input Dungan unit sequence one frame at a time. We can use 0, learned
from the Mandarin acoustic model to initialize 8¢ in the new acoustic parameter space.
The output from the initial timestep is first processed through a Pre-net consisting of
two fully connected layers. This output is combined with the forward attention context
vector and passed through a pair of LSTM layers. The combination of the LSTM outputs
and attention context vectors undergo three distinct linear transformations to predict the
target spectrogram frame, stop token, and estimated residual. Subsequently, the predicted
acoustic features are subjected to five convolutional layers, generating a residual to enhance
the reconstruction of the Dungan acoustic model.

3. Results
3.1. Evaluation on Transformer-Base Dungan Character-to-Unit Conversion

The text analysis in the front end affects the quality of speech synthesis in the back
end, so we evaluated the Dungan text analyzer, where the character-to-unit conversion
module is the most critical factor affecting the quality of synthesized speech. To assess
the viability of the transformer-based Dungan character-to-unit conversion module, we
utilized a dataset comprising 10,783 sentences in the Dungan language transcribed using
Mandarin Pinyin. The dataset’s Dungan language and Mandarin Pinyin representations
are isomorphic, encapsulating textual attributes like tone and prosodic boundaries inherent
to the Dungan language. In our research, we allocated 10% of the total 10,783 sentences
to serve as the test set, another 10% as the validation set, and the remaining 80% were
designated as the training set. The hyperparameters associated with the Transformer are
detailed in Table 2. We employed precision, recall, and F1 measures as evaluation indices, as
illustrated in Table 3. The outcomes from the evaluation process affirmed that the proposed
Dungan character-to-unit module is suitable for subsequent speech synthesis evaluation.

Table 2. The hyperparameters of Transformer-based Character-to-unit conversion model.

Parameter Value
Attention layers Ny 6
Heads 8
Batch size 32
Hidden 513
Dropout 0.1
Learning rate 0.0001

Table 3. The results of Transformer-based Dungan character-to-unit conversion.

Precision Recall F1

90.12 89.91 90.01

3.2. Evaluation on Transfer Learning-Based Dungan Acoustic Modols
3.2.1. Corpus

In the experiment, we utilized recordings of nine female and thirty-one male speakers
from the Tsinghua Chinese 30-hour database [45] (totaling 13,389 sentences) as the Man-
darin corpus. For the Dungan corpus, we selected five male speakers’ recordings (923 per
person, totaling 4615 sentences and 6 h). The Dungan corpus encompasses all initial and
final pronunciations of the Dungan language. The average sentence length is 18 syllables,
with an average duration of 10 s. All recordings were converted to a monochannel 16 kHz
sampling frequency with 16-bit quantization accuracy.
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3.2.2. Experimental Setup

Three kinds of TTS frameworks, including Tacotron+Griffin-Lim, Tacotron2+WaveNet,
and Tacotron2+WaveRNN, were compared in the experiments. Some hyperparameters of
the frameworks are provided in Table 4.

Table 4. Model hyperparameters of Tacotron and Tacotron2.

Model Tacotron Tacotron2 Forward-Attention Tacotron2
Vocoder Griffin-Lim WaveNet WaveRNN
Embedding Phomeme (256) Phomeme (512) Phomeme (512)
Encoder Pre-net FEN (256, 128) - FFN Phomeme (512, 256)
CNN (512) CNN (256)
Encoder core CBHG (256) Bi-LSTM (512) Bi-LSTM (256, 512)
Post-net CBHG (256) CNN (512) CNN (512)
Decoder RNN GRU (256, 256) - LSTM (512, 256)
Decoder Attention Additive (256) Locatl(zrlzsge)nmtlve Forward (256)
Attention RNN GRU (256) LSTM (1024, 1024) LSTM (256)
Pre-net FEN (256, 128) FEN (256, 256) FFN (256, 128)
Parameter 7.6 x 10° 28.9 x 10° 23.7 x 10°

All three frameworks comprise a front-end text analyzer module, an acoustic model
training module, and a vocoder. The text analyzer module transforms Dungan or Chinese
sentences into a Pinyin-represented unit sequence, including initials, finals, and their tones
and prosodic boundary labels. In the acoustic model training module, we derive the log
magnitude spectrogram from the speech signal using Hann windowing with an 80 ms
frame length, 12.5 ms frameshift, and a 2048-point Fourier transform.

For the Tacotron+Griffin-Lim framework, acoustic models are trained using an output
layer reduction factor of ¥ = 3 and the Adam optimizer with a decaying learning rate. The
learning rate commences at 0.001 and is subsequently reduced to 0.0005, 0.0003, and 0.0001
after 5, 20, and 50 epochs, respectively. A straightforward loss function is employed for the
seq2seq decoder (Mel spectrogram) and the postprocessing network (linear spectrogram).
The training batch size is set to 32, with all sequences padding to a maximum length by
reconstructing the zero-padded frames. The Griffin-Lim algorithm is utilized as the vocoder
for Mel spectrum-to-speech conversion.

For the Tacotron2+WaveNet-based framework, we train the acoustic models using the
standard maximum-likelihood training procedure, which involves feeding the correct output
instead of the predicted output on the decoder side. This was completed with a batch size
of 32. The Adam optimizer was utilized with parameters set as follows: f = 0.9, B = 0.999,
€ = 107°. The learning rate was initialized at 10~3 and then exponentially decayed to 10~°
after 50,000. Additionally, we applied L2 regularization with a weight of 10~°. For the Mel
spectrum-to-speech conversion, the WaveNet was employed as the vocoder.

In our Tacotron2+WaveRNN-based transfer learning framework, we initially employ a
large-scale Mandarin corpus to pre-train a Mandarin acoustic model for subsequent model
transfer. This pre-trained model is then used to train the Dungan acoustic model via transfer
learning from the Mandarin-Dungan corpus. For vocoding, we utilize the WaveRNN for
Mel spectrum-to-speech conversion. Given that parameter settings significantly impact
model accuracy and robustness, we optimized these parameters through iterative training
and updates.

Each TTS framework implements a monolingual speech synthesis for Mandarin or Dun-
gan and a bilingual one based on transfer learning. We trained several models across three
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TTS frameworks to assess the synthesized speech’s quality and clarity. In our experiment,
10% of the utterances were randomly allocated to the test set, another 10% were designated
for the development set, and the remaining utterances constituted the training set.

Dungan Monolingual Speaker-Dependent Model

We trained the Dungan Monolingual Speaker-Dependent (DSD) acoustic model us-
ing recordings from five male speakers, each contributing 923 sentences, totaling 4615
sentences and spanning 6 h. We then compared the quality and clarity of synthesized
speech across three frameworks: DSD-Tacotron+Griffin-Lim, DSD Tacotron2+WaveNet,
and DSD-Tacotron2+WaveRNN.

Mandarin Monolingual Speaker-Dependent Model

We utilized recordings from nine female and thirty-one male speakers (Tsinghua
Chinese 30-h database, consisting of 13,389 sentences) to train the Mandarin Monolingual
Speaker-Dependent (MSD) acoustic model. We compared the synthesized speech quality
and clarity across three frameworks: MSD-Tacotron+Griffin-Lim, MSD-Tacotron2+WaveNet,
and MSD-Tacotron2+WaveRNN.

Mandarin and Dungan Bilingual Speaker-Dependent Model

We utilized recordings from five Dungan male speakers (923 sentences per individual,
summing up to 4615 sentences, equivalent to 6 h) as the training data to transfer the Man-
darin acoustic model to the Dungan acoustic model to realize a Dungan Speaker-Dependent
(MDSD) acoustic model and a Mandarin Speaker-Dependent (MDSM) acoustic model. We
then compared the quality and clarity of synthesized speech across six frameworks.

e  MDSD-Tacotron+Griffin-Lim
e  MDSM-Tacotron+Griffin-Lim
e  MDSD-Tacotron2+WaveNet

e  MDSM-Tacotron2+WaveNet

e  MDSD-Tacotron2+WaveRNN
e  MDSM-Tacotron2+WaveRINN

3.2.3. Objective Evaluations

We employed the Mel-cepstral distortion (MCD) [46], Band A Periodicity Distortion
(BAP) [47], Root mean squared error (RMSE) [48] and Voiced/Unvoiced error (V/UV) [47]
to evaluate the various models objectively. The results for the DSD and MSD acoustic
models are presented in Table 5 and Table 6, respectively. Similarly, the MDSM and MDSD
results are displayed in Table 7 and Table 8, respectively.

Table 5. Objective results of DSD acoustic model for Dungan.

Model Tacotron+Griffin-Lim Tacotron2+WaveNet  Tacotron2+WaveRNN
MCD (dB) 9.675 9.572 9.502
BAP (dB) 0.189 0.187 0.170
FO0 RMSE (Hz) 32.785 32.692 32.087
V/UV (%) 9.867 9.721 9.875

Table 6. Objective results of MSD acoustic model for Mandarin.

Model Tacotron+Griffin-Lim Tacotron2+WaveNet  Tacotron2+WaveRNN
MCD (dB) 5.460 5.291 5.036
BAP (dB) 0.174 0.171 0.169
FO RMSE (Hz) 14.629 13.986 13.647

V/UV (%) 5.619 5.793 5.762
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Table 7. Objective results of MDSD acoustic model for Dungan.
Model Tacotron+Griffin-Lim Tacotron2+WaveNet  Tacotron2+WaveRNN
MCD (dB) 7.523 7.419 7.395
BAP (dB) 0.178 0.175 0.174
FO0 RMSE (Hz) 26.891 26.753 26.617
V/UV (%) 7.774 7.693 7.607
Table 8. Objective results of MDSM acoustic model for Mandarin.
Model Tacotron+Griffin-Lim Tacotron2+WaveNet  Tacotron2+WaveRNN
MCD(dB) 5.339 5.241 5.108
BAP (dB) 0.174 0.173 0.171
FO RMSE (Hz) 13.775 13.326 13.092
V/UV (%) 5.542 5.472 5.481

In the context of low-resource Dungan speech synthesis, the quality of attention align-
ment between the encoder and decoder significantly influences the quality of synthesized
speech. Misalignments are primarily evident in readability, skipping, and repetition. Con-
sequently, we employ the Diagonal Focus Rate (DFR) and Word-Level Intelligibility Rate
(IR) [49] to assess readability in low-resource languages, as illustrated in Table 9. The DFR
represents the attention map between the encoder and decoder, serving as an architectural
metric. The IR measures the percentage of test words pronounced correctly and clearly by
humans, a standard metric for assessing the quality of low-resource speech generation.

Table 9. Readability of synthesized Dungan speech.

Model IR (0/0) DFR (0/0)
DSD-Tacotron+Griffin-Lim 82.93 79.64
DSD-Tacotron2+WaveNet 86.67 82.43
DSD-Tacotron2+WaveRNN 89.41 84.39
MDSD-Tacotron+Griffin-Lim 95.03 91.14
MDSD-Tacotron2+WaveNet 96.69 94.43
MDSD-Tacotron2+WaveRNN 98.47 97.39

3.2.4. Subjective Evaluation

For subjective evaluations, 30 sentences were randomly selected from the test set.
We conducted three tests: mean opinion score (MOS), degradation mean opinion score
(DMOS), and AB preference to assess the quality of synthesized speech. We recruited
20 native Mandarin speakers and 10 native Dungan international students (who understood
Chinese) as participants. These participants received training before the formal evaluation.
Mandarin participants evaluated the Mandarin acoustic models of MSD and MDSM,
whereas Dungan participants assessed the Dungan acoustic models of DSD and MDSD.
During the MOS test, participants rated the naturalness of synthesized speech on a 5-point
scale. The average MOS scores for synthesized Dungan and Mandarin speech are presented
in Figures 7 and 8.

In the DMOS test, each model’s synthesized utterance and corresponding original
recording comprised a pair of speech files. These pairs were randomly played to the
subjects, with the synthesized speech preceding the original. The participants were tasked
with meticulously comparing the two files and rating the similarity of the synthesized
speech to the original on a 5-point scale. A score of 5 indicated that the synthesized
speech was similar to the original, whereas a score of 1 signified a significant disparity.
Figures 9 and 10 display the average DMOS scores for synthesized Dungan and Mandarin
speech, respectively.
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Figure 9. The average DMOS scores of synthesized Dungan speech under 95% confidence intervals.
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Figure 10. The average DMOS scores of synthesized Mandarin speech under 95% confidence intervals.

In the AB preference test, each pair consisted of two identical sentences. The synthe-
sized utterances were played in a randomized order. Participants were instructed to listen
and evaluate which utterance had superior quality or indicate “neutral” if no preference
was discerned. The synthesized Dungan and Mandarin speech preference outcomes are
presented in Tables 10 and Tables 11, respectively.

Table 10. Subjective AB preference score (%) of Dungan with p < 0.01.

DSD-Tacotron+ DSD-Tacotron2+ DSD-Tacotron2 MDSD-Tacotron+ MDSD-Tacotron2 TM?SD;+ Neutral
Griffin-Lim WaveNet +WaveRNN Griffin-Lim +WaveNet acotron eutra
WaveRNN
1 12.7 229 52.6 - - - 11.8
2 29.5 32.0 27.6 - - - 10.9
3 - - - 17.7 - 69.9 124
4 - - - 3.2 70.8 11.3
5 - - - - 17.1 72.1 10.8
Table 11. Subjective AB preference score(%) of Mandarin with p < 0.01.
MSD-Tacotron+ MSD- MSD-Tacotron2+ MDSM-Tacotron+ MDSM- MDSM-
Griffin-Lim Tacotron2+ WaveRNN Griffin-Lim Tacotron2+ Tacotron2+ Neutral
WaveNet WaveNet WaveRNN
1 - 24.54 63.56 - - - 11.9
2 - 19.98 67.42 - - - 12.6
3 - - - - 11.8 71.9 16.3
4 - - - 144 - 75.1 10.5
5 - - - - 10.7 79.6 9.7

4. Discussion

In objective evaluations, although the Tacotron+Griffin-Lim-based TTS framework
maps linguistic features to acoustic features frame by frame through the monolingual Dun-
gan corpus, the synthesized Dungan speech needs to improve its quality and readability.
However, the forward attention and fine-tuned acoustic model can enhance readability
and reduce training time. Consequently, the transfer learning-based Tacotron2+WaveRNN
framework’s acoustic model outperforms others. The objective results of the MDSD acous-
tic model surpass those of the DSD acoustic model. This is because Dungan is a variation
of China’s Northwestern dialect, which shares many internal similarities. Given the pro-
nunciation similarities between Mandarin and Dungan, the same symbol represents their
exact pronunciations. Therefore, we conclude that adding a Mandarin corpus and using
transfer learning can improve the quality and readability of synthesized Dungan speech.

All subjective evaluations align with objective assessments in various aspects. The
transfer learning-based Tacotron2+waveRNN framework yields superior speech quality,
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particularly regarding the naturalness and readability of synthesized speech. With the
addition of the Mandarin corpus, the quality and readability of synthesized Dungan speech
using the transfer learning-based TTS frameworks surpass those monolingual corpus-
trained TTS frameworks. This is further validated by the AB preference test, which confirms
that our proposed TTS frameworks offer improved quality and readability compared to the
speech synthesized by the monolingual acoustic model.

5. Conclusions

This study extends our prior research by implementing a transfer learning-based Man-
darin speech synthesis and a low-resource Dungan speech synthesis under the
Tacotron2+WaveRNN framework. We also developed a comprehensive Dungan text an-
alyzer. Objective and subjective experiments revealed that the transfer learning-based
Dungan speech synthesis under the Tacotron2+WaveRNN framework outperformed alter-
native methods and the monolingual Dungan speech synthesis framework. Furthermore,
transfer learning did not compromise the speech quality and readability of the synthe-
sized low-resource Dungan speech. Therefore, our approach holds significant potential for
developing speech synthesis systems for low-resource minority languages.

Numerous breakthroughs have been achieved in TTS based on deep neural networks.
We have noticed that some new speech synthesis methods [50-52] have been proposed
recently. Motivated by recent advancements in auto-regressive (AR) models employing
decoder-only architectures for text generation, several studies, such as VALL-E [53] and
BASE TTS [54], apply similar architectures to TTS tasks. These studies demonstrate the
remarkable capacity of decoder-only architectures to produce natural-sounding speech.
These studies demonstrate the remarkable capacity of decoder-only architectures to produce
natural-sounding speech. Future research will focus on using these new methods to
improve the quality of Dungan language speech synthesis, reduce the Dungan corpus size,
and achieve speech synthesis for Dungan languages using a larger corpus. Additionally,
multitask learning will be explored to realize speaker-independent scenarios and enhance
the emotion of synthesized Dungan speech.
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