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An alternative means for deriving equations of motion of complex systems is demon-
straizd. Since the wethod is SNETEY based, it s weafel for elnstic S¥SICInS Resanse the
method can handle vectors cxprcsscd relative to rotating coordinate systems, it does
not require the introducticn of coordinate tramfomatlons and thereby prq% §
ow

equations in A simple formeidhmastiele shows that Kapele eje q’u’
S¥stemas is A %e@apase of this alternative method wo example n ems s
the al gebra can applied to rigid and flexible nonholonomic systems.
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INTRODUCTION

Many rescarch spplicatiors reqeire the dymamic equations of motion for
azanipalators. i complex manipulater-envircmment systems, it is necessary to
simuate realistically the maotion of the manipulator ir its cavitonment. Typical
exampies are Space Shaitle flight stinulations perfarmes by MASA. Similarly,
simulation aids the design of complex systemms. Althongh some simanation
applications can be performed off-line, it = sometimss neccasary to simulat
motion in zeal iime, as when sieadation is a3 traiving zid for hirman operators,
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Anothier applicavioni of dynamic equations 18 the control of masipulators.
Many contiol schemes frave beei proposed for increasing the performance of
mianipulators ihat require the computaiion of driving wique. Driving torque
must ve compaied by lile dynamic equations. Many of the control algorithms
require torque to be computed in real time.

There have been maiy atienrpts to solve manipulaior dynaiic eguations in
real tune. Soine researchiers igaore tenms such as the Corioiis and Centripeial
acceierabons. ignoing terms hes ihe advantage of redacing lhe nuinber of
coitiputatious but ihe disadvaiiage of belg approximate. The approximation
may be uisatistaciory for soiie applications.

Another ineihod for solving dynamic equations in jeal time is parallel
processing, a satsfactory soluiion fot somie cases, but excessive nardware
expenditure for others.

Recursive caicuiaion of dynanic equaiions reduces ithe computation time.
Recursion, a siinpie process ikai utilizes il open chain strdcture of a manipu-
laior io simpiify compatation, inay nct be applicabie to systems ihat are not
open chain stiuciuies; heice its applicability is lanited.

Ciosed forin reducuons reduce ihe numeiical complexivy of solving dynamic
equations. Closed form reductions usaally require considerable experience and
stamiria. The effort required foi ciosed formi reduction can vary greatly among
the meihods used for deriving the equations. For exampie, a method that
produces equations i ierms of matrix multiplications (such as the standard
Lagrange nietnod;j is difficuit o reduce. A technique thav produces eguations
in terms of vector operaions like dot and cross products is much easier o
reduce than ithe mairix torimulation. Either method of derivation produces the
saine equations, but each can produce the equations in difierent initial foris.

As ai exaniple of ihis concept, coisider scie of the techniques availabie for
deriving equations of rigid, open chain manipulators. One technique is to use
Lagrange’s equations.” The method of Lagiy MEC, Jgpins by expiessing the
scalai energy quainiiies of a system. Since Kineilc energy is a funciion of
absolute velocity, ihe presence of muliiple nigid bodies makes it necessary to
intioduce coordinae ransfomations. These transformations are complicated
trigonomentic functions. After introducing ihe translorimations, seveial partial
and iotal derivatives are coinpuied. The trigonometry inakes it difculi (if not
impossibie) to simplity the equations. One significant advantage of the
Lagrange techmigue s 16 not incicding the forces that maintain system
constraints.

Anotiier popular tectiniqae ulilizes Newton's equavions. Althoagh the
method can be derived irom Lagrange's equations, INewton's eguations are
distinctﬂfﬂ‘.eﬁfé“?ﬂ@thod 15 usually based on vecior equations and requiies the
coinputation of absOIMfE RERIFA NS UMikaOASfaske’s method, the tech-
nique need ot invrodice coordiaie wansiormations at ihe ouiset; hence the
results aie ofien expressed with vector dot and cross pioducts. This vector
form aliows reduction by utilizing tlic special properties oi vecior products. A
inajor disadvaniage of the teclinaque is that evei consirailil foices tilust be
included.
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A. third technique popular in the study of spacecraft dynasics is the method
cf Thomas Kane? Kane’s method falso known as lLagrange’s form of
D’Alembert’s Princiole) is a vector formulation based an a modification of
Newton’s eqnations. Kane’s method is not energv based and requires the
computation of absolute velocity and acceleration as in Newton’s method.
Since the resulting 2quations are in vector form, so they carn be reduced easily.
O adviantagecebahz micthad s that forces meintaining constraints <o not

recently.® Although at first glance the method appears awkward, it is powerful
in the hands of an experienced user.

In the area of flexible (compliant) manipulators, many technigues are energy
based and are not as well developed as those for rigid systems. As expected,
the energv techniques deal with scalars and reauire introduction of coordinate
transformations before computation of partial and total derivatives. Two
advantages of energy methods are that boundary conditions arise in the course
of equation derivation and forces maintaining constraints are unimpoertant.

Vector-based Newton’s equation techniques bave been used in the deriva-
tion of equations for flexible systems. Application of Newton’s equations
require one to sum forces (stress) acting op an infinitesimal piece of the flexible
system. For many researchers working in the area of flexible systems this is an
unnatural process.

A method follows for formulating equations of motion of flexible, open
chain manipulators using energy. The method differs from present techniques
in that the formulation does not require the introduction of coordinate
transformations. This is made possible through the proper modification of the
partial and total derivatives normally required. Recause the method s energy
based, it should be natural for many researchers. The required bhoundary
conditions arise during the derivation, and forces maintaining constraints do
not enter. Becanse the method is vector hased, the resulting equations should
be easv to simplifv. The method is applicahle to six-degree-of-freedom
maninylators, which allows it to he used for the control and/or simulation of
practical manipulators.

EQUIVALENCE GF TNERRY AND KANE'S EQUATIONS

The technigue demonstrated in this article begins with energy concents and
derives equations of motion similar to those cf Kane’s method. The
equivalence between these techniques is not new. It has been shown? that the
Passerello-Huston equations can be used to compute Kane’s generalized
inertia forces given kinetic energy.

Consider a system with n degrees of freedom. It is often possible to define n
variahles g; that satisfy all holomanic constraints, The ¢ ave called generalized
cocrdinates. The velocity of point P belonging (o the system can be expressed
35 a function of 45, ¢ and time 1, where § denotes the time derivative of . It
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may be convenient to define n quantities u;, wkich arc functions of G and q.

as:
2
Gs = ) W, - X, for s=1,...,n 1)
r=1

The u, are called generalized speeds.? It maust be possible to solve Eq. 1 for the
¢; terms. This means that matrix W is nonsingular.

X guapimgple nocholonomic constraints are applied to the system, only p
(p=n—m)of the ¢ and y, are independent of gachptber. These constraints
can be expressed as:

u,=f,Anu.+B, for r=p+1,...,1. )
s=1

Qngq,ghque indepepglent 4 are kaown {from the cquaticns of motion), the
refatiors betwesn o and §; and the nonholencreic consteaints allow solution
(intcgraticn} for the n values of g. The quantities A, B, W, and X are
funciicns Gf time 2ad the n coordinates g.

The Pesserellc-Huston equations for a simple nonholeonomic system defined
above are:

o (d dKE aKE)( )
= W + WiAwr 3
:gl (dt 3‘1. aqs k=2p:+l KOk ( )

erelized inertia force for generalized speed «,, and XE
h, connection he een l*tm’r‘tl'\i energy and Kane’s
on

how:

gcnerz‘.ir-cd t'w' h'("* has alsc been astablished.?
With the Pa s*.er°§‘ o-Huston E '; 3 ne can begin ~v1th energy tetms and
arrive at Kane’s squnatiors. There are, howsver, several practical problems to

censider, Flrw, becanse Fq. 2 requ ‘. s the kinetic energy 0 be « .nrﬂssed 25 A
scalar function, r‘oc\'c‘..n'he f"ar:f rmations must be introduced immediately,
This makes the alpsbra :ﬂqu to compute the partiz! and totzl derivatives
excessive. Second, expressing ‘be energy in terrns of g rather than i erases
some of the advantages afforded by Kane’s method.

The disadvantages are 5o significant that although Kane’s miethod :l1 €3 have
an energy bass, theie is little merit in utflizing the relationships.? In the
remainder of ‘h., article. a meotho d will b demonstrated that allows menipula-

tion of energy terms without the serious shiortcomiags of Eq. 3.

VAMATIONS OF VECTOR QUaANTITIES

The presert method s based on Hamilton’s yn rrl,le whick
variation of the time derivative of the Lagrangian s zero. To iemant the
echrigue, it i necessary to compute the variation of cnergy. Ordinanily ¢

statas that the
-
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operaticn of variaticn is defned only for scalars {or matrices), but derivation
of equations without the intreducticn cI ceordinaie wansforiation requizes
computation of variations of vectors expressed in rotating coordinate systems.
Some of the busic defunticns kave been published” and these are reviewed.

Varkaiion af 8 Vesior

To compute whet is herein defined as the absclute variation of a vector, it is
necessary 1o cx,. ‘ess the veclor with cowsponents along tires noncoplavar,
giationary coordicate dirsctions and compute the variation in cach scalar
compenent, This can be gxpressed au:

Neb =3 8(f)A, @)

i=1

where A are fixed noncopianar uiit vecious in inertial veference frame n, and
ji are scalar Yunctions.

B td téenicentacdiedques utrat notecvectertatiatatasia, wwhene vercaloudriation is
Lorrpx_ted the veclor tenus are fisst expressed relative w an inertial raference.

his requiras the introduction of cosrdinste tansforms variation.
Relasive Verintion
Sinilarly, refative vari:."sions are computed as the vartation ia the scalar
comporents of a vecior expressed relative te a pordnertial sefererce. Maihe-
maticelly this is
3
MV = 2, bugan (5)
i=1

where reference R s noninertial and g ave scaisr fanclions.
Relaiive a d absolute variations differ. I\ lative variations are often easier
o compute, but Hamiltons pricciple requices computing absolvte variztions.

Relating Veriztions

It is possible o relaie reistive wnd sbsoclate variations.*® If ccordinate
systern R s rotating iclative tc fravme N the relative variations ia these

ceordinate systen:s are reiaec as.
NgV = R8sV + NGR x V (6)

NIR 5 a4 vector of the ¢ ,)usu-blr: rodations frame R caa possess r2iative 1o frame
N. anc introduced vector MR when discussing cempaiible virtual displace-

menws® bui did cot expound use of VIR for solvicyg peactical problems.
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Time Differentiation of Variations

The operations of relative differentaiion and variation commute oniy when
coraputed relative 1o the same reference.® Consider a vecior V expressed in
coordinate system C. First compute the time derivative relative to a system B
and {otlow with the variation zelative lo 2 system A:

4880V = 45(A DV + 22t x V)

ADASV + {488 x W+ By 2a7 (7

il

=BDASY +(*6854)  V

The o vperator D represeats Jlfi reatiation relative to {rame i, is
angular v‘.:o».;, u( frame i s seziz in B.
By reversing the order of a pv fication of the operators, Bg. 7 cal

exguessed as:

g

BDAsV =BD(BsV + 462 x V)
=B§BDV + (BDAGF) x V+ 268 x BDV (8)

=A5BDV + (ED*§®)x V.

Combining Egs. 7 and & and using "5* = — 467 yields:*
.E?D.BaA = A(;)"%J)A. (G)

Variation of a Dyadic

8 dyadic 7 i deiivied as:
3 3 -
-3 ¥ 1@k, (10)

oiteve fy d& a scolar and 4; and & ave ncacoplanar unit vectoss fiwed in
ceordinate systems A and B. Ve z s .7 and I are normaily a0t commutative,
Dryadies have special properiies® an be thought f a8 vectors whose
compoenents sre vectors. Dot c.."ll-! cross p' roduct are deilned for dyadics, but
oae must sefer to the operators s sperating on the left or the rigiit. Consider
the variaticn relative ic frame C of a dyadie, exprassed as:

csi

3 3
L I °tL,aN6 + (a8} ()
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The vanation is computed by treating the dyadic as a vector whose com-
ponents are also vectors. From Eq. 6, Eq. 11 becomes:

3 3
C5?= Z Z {(*8(I;a;) + €g* x (Ii;d:)]l;; £ (Ii;‘&i)[aai’} +€6% x {’;]} (12)

i=1j=1

which reduces to:

3
81=Y Y {(8I,)ab;+ 4 x Iab, — I, (B, x %)) (13)

i=1j=1

and finaily becomes:

csf = ()f )3: (sti,)a,-s,) +SgAx T-Tx g (14)

i=

Coranwticg the Tots! Variatian of Yadtors

Let a position vector § relative to coordinate system A in a system with n
generalized coordinates be expressed as:

3
= X, fid, (15)

where d; are unit vectors fixed in coordinate system A, and f; are scalar
functicns of the m generalized cocrdinates and time. The variation of 3

refative {o frame A i coordenadas generalizadas

Asp= Z 2q, (59 (16)

if n generalized speeds are defined as in Eq. 1, the derivative of p in frame A
(the velocity of P in A) is:

7=7 éé(f_‘, W,,u,+X,)+§E. an

r=104¢, \;=1 at

If there are no nonholonomic constraints, all g, in Eq. 16 can be considered
arbitrary; hence another set of arbitrary variations du, can be defined as:

6q,= Y, Wad, (18)

s=1
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because W is nonsingular. Equation 16 can be written;

Asp= )_:l 21% W01, = 21 AV P bu, (19)

where 2V is Kane’s partial velocity of point P in frame A for generalized
speed u,. This last sebstitntion, can be verified by Fa. 17,

Now consider the case of m simple nonholonomic constraints given by Eq.
2. By cubstituting Eg, 2 inte 17, velocity can be expressed:

7=7 )ﬁﬂ‘z[w,,+( ¥ w,,A,,)]u,+

r=1 g=1 aQr j=p+1
(20)
n ap- ( n ) aﬁ
— W,;B + X, ) +—.
z&aq, lel e at
The variation of Eq. 3 can be expressed as:
S = i Adu, forr=p+1,...,n. (21)

Notice that the vector B does not contribute to the variation because the
variation is taken instantapeously. Since B is not a function of the variables u,,
it has no variation. This concept is discussed in Lanczos* under the topic of
rbeonomic ronbolonomic constraints. Note that although B disappears from
Eq. 21, it does contribute to the problem. The equations of motion are
exnrzssed as p eamations that can be integrated for the p independent i,
fr=1..,7). Eguationz 3 (whick centain B) a2z uwsed to solve for the
remaining u,, then Eq. 2 are integrated for g,.
Substituting Eq. 21 into Eq. 19 results in:

D) aég“,[wm’”(, 3 W) o

r=1s=1 =p+1

I

ASﬁ
(22)

= 2": AVE su,

ir=1

"The term # V%, is Kane’s nonholonomic partial velocity as demonstrated in Eq.
20.

These results can be summarized as follows. Suppose the time derivative of
a position vector p belonging to a system with p independent generalized
speed u; is written as a function of there'&u?é}g time as V(ui,..., U, t), and the
absolute variation of the vector g (the virtual displacement) is required. The
virtual displacement must be an expression of all possible changes the vector
can experience independent of time in light of all constraints (holonomic and
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nonholonomic) imposed on the system. This can be expressed as:

g vV

Agm
6F= ), — & (23)
121 ou

where & represents an arbitrary virtual quantity and V is defined in Eq. 17 for
holenomic systems and in Eq. 20 for & nonholonomic systam:,

The quantities *AF can be interpreted similarly. Suppose the angular velo-
city of frame B rolstive 1o A s guprassed 28 238z, . L 5, 1), Since 2% is
29 expression of all possible rotations of frame B relative 10 A, it can be
written as:

5. (24)

Note that the auantities & found in Eas. 23 and 24 are identical. The formal
derivation of Eq. 24 is performed similarly to that of Eq. 23.

Exarmpla Problans

Twa examples demaonstrate the cancept discussed in this article, a simpler
exzgmple can be found in Ref. 4. The method can he applied to complex
systems such as a six-degree-of-freedom robot in a similar manner. First
consider the problem of deriving the equations of moticn of a three-dimen-
sicnal, » link, open-leop manipulator. Let initial reference frame 0 be attached
to the ground and moving frames 1 through n be attached to each of the
maripulator links.

Throvugh proper definition of the inertia dyadic,” the kinetic energy of the
system is:

=%{i [°& - i . 0&i+n’i0"}i*_0‘7i*]} (25)

i=1

where [, is the inertia dvadic for body i, m: is mass of body i, i* is the mass

. i - . . . .
center of body i, and ° V" is absolute velocity. Assuming only gravity loading,
the potential energy is:

PE=-Y (& 5") (26)

B is the position of the mass center of body i, and § is the gravity vector.
Subtracting potential from kinetic and integrating, the functional in Hamil-
ton’s principle is obtained:

r=[[B508 Toatmev™ 004 ph]a @)
¢ Li=1
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The eguations of moiion are cbiained by seiting all artiirary variations of
the functional to zero, hence the variation of f must be computed. One way to
do this is: o

la variacién de

I{Z [%° - I - 16°6' + m® V'™ - °8° V" + (i8g) - p" + § - (fsﬁ"')]} dt=0
(28)

Since the energy terms are scalars, the varistions in all frames are idetical,
For example °8(° V'™ - °V™) is the same as ‘8(°V'" - °V'™). Distributing the
variation among the dotied lerms reguires carsful obzervaiicr of the frame of
the variation since the individual terms are vecicrs. In Eq. 28 the first term is
varied i frame i because the inerin dyadic Is consiant relative te frame
riserefcre, onty the angular welocity vecior cmuubuf,«,s ic the variation. The
lear veloeity ienw in Zq. 28 is varied in the inest l 1.' ame. The potenzial
energy termz is varied in some arl:ltr.ul.y selected frame ;. *Wiien the variation
15 applied io the gravity vector, there is a conrtribution bwaus., the vector is
wot fixed in frane j.

The next step is to reduace 2ll variations of derivative ‘.ew"m into derivatives
of variations by some of the {dentities i the [ast section, Equation Z8 can be
expressed as:

af=“2[°a*.1’2-°D°6‘+m.-"\7"*-°D° 8p+ (/"% §)- p
t \i=1

Using Green’s theoren, Eq. 28 can be written:

j {Z[_OD(O-H . f') . 001 OD(MDVI*) +{ -1"’x§) 5 061’

i=1

]
gy )]; 1=9. (30

Individual equations (w of them) sre satracied from Eg. 30 by expressing
the vanations as a fonction of n arbiurary virieai L,uant.ucs For exampile, with
n qu:av"'lilie‘: i, a5 discussed in the lzst section, so that finear and angalar
velosities of the systen: can be expressed as fanctions of position, titme and u;,
Y§ can Le expressed as:

uy. (€3

The yuantty '

igBit = s”‘ ’l}ﬁ )‘m.

=Y (32)
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If the u; are chosen to be the n joint variables, it is easy to compute the
terms io Fas. 31 and 32. This cioice is not necessary, bowever, aad significant
simplifications can come wiih an aiternative.’ Once the variations are expres-
sed in terms of the n quantities u;, equations are extracted by collecting all
verms maliipiving w; and setring the collection 1o zero Yor ail j.

The resuliing equaiions are similar o those from Kane's technique. Because
the terms appear in a liigh level form imvolving dot and cross products, ii is
possible 10 manipulate the ierms into significantiy different forms before any
coordinate transformations need to be computed. Significant differences from
Kaoe's methad are ihe researcher’s advantage of mampulaong the variation in
gifierent coordinaie systeins lo find simplifications, and the metiod being
eneigy based, lhereby comipatible with many other tecliniques for eiasuc
sysiems.

iKinatic Ecergy Terms for & Flendhio Roay

This exampie considers the kinetic energy verms for a system of several
flexibie bodies. The potemial cnergy is sunple o compuie. Since the totai
energy 15 merely the sam of eneigy of all bodies, consider the energy
contribution of a single body B. As shown in Figure 1, let p” represent the
absolute position of a paiticie bzionging 1o B. The time iniegral of the Kinetic
energy of B can ve expressed as

1
Jf KEde = J' I 3P DP” - VP deudt (33)
t t Juol

where A is an inertial reference frame.
The provlem becomes compiicaied wiien (he variation of Kinetic encrgy is

[Fgure 1. A single Bexibic hody.
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compused. The simplest way of writing the variation is:

5 j KEdt = J' I p“Dp? - 282 DpPd,adt = —[ I pADADP® - A5pPdydl.
t t Jvol t Yool
(34)

In the nigid body case, the quantiy 48p? is computed from Ey. Z24. in
continuous elastic systems, there are an infinite number of u. Define the elastic
deflection of point p as vector 4, and define points » on a neutral body so that
points n and p coincide whea &= 0. if a coordinate system is estabiished in
body B and $f is written as the sem of vectors 7 and § shown in Figure 1.

A“g-ip= 8ﬁ : /\1;

f‘o

(35)

A8t for alf w is a function of a AneHEASENIPiAdc peaiitdRSquantitics. The
terms 487 in £q. 35 are considered arbitrary, subject to boundary conditions.

Althcugh Eq. 34 is conmipact, it may not be useful. An uitcmative form of

4. 34 follows. Note the ease with which the equation is changed. Scarching
for reductions typically requires expanding, r.,d.su.'butné, aud precipitating
Lerts many tiines, lu\)l\hié for identities and comunon termis. Theretore the
case with which equations are reduced is reiaied o the case of their manipuia-
tion.

Begin with the position vector defined as in Figure 1, The velocity of a
nzaterial polat is:

APP=APR L AGB x § +BD§. (36)

The kinstic energy is:
1 - - - - - -
KE= KEN+§.[ p[26® x - 268 % 5+ 8D - BDé
vol

+2(AV" -BDG+AV" - AGB X § + BDi - 2638 X §)] doo.

The term KBy is the rigid bedy kinetic encrgy terms that wouid exist if the
body had no elastic displacenient. Tixe; vanation of Kinetc eneigy can be
expressed as:

6KE = 8KE~+I p[Aa® x - '8(A3® x ) + D5 - "85
vol

+I§AV . AGB X §+ AV I5(AR5 X §)
. . (38)
+j6Avu i BD6+Avn . ISBD!).

e LnFL-)U.A-BA') r)v_lre A-.:>, v))d"a‘.
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The terms ‘8, ', 3, ‘5, and "5 denote variations in five ditferent coordinate
systems to iliustrate that terms need not have their variations computed in the
same coordinate system. The reason one would introduce a variation in some
coordinate system other than an inertial frame is because it may be easier to
evaluate variations in rotating coordinates, depending on the specific problem.

Now consider the problem of manipulating Eq. 38 into another form, to
demonstrate the ease of manipwation. With the identity from ¥a. 6 the
variation of kinetic energy is:

SKE = 5K5N+j Al(AGE X 5+ AV +BDg) - <6(A3P x i)
vol

+(BD3+2V" + 432 x §) - °68D8

+(A‘53x 5+BD6) . caA"}n

+(A‘BB % 6) . [16¢: X(A(;;B X 6)]

+AV .65 X (438 X §) (39)
+BDg - ké‘c X(A‘BB X §)

+BDi - "§° X PDi + AV - i x PDis

+ké’chD6 'ABBXI)‘

+A(BBX g ioch"}n +BD6_ié'ch"}n] door.
This is easily reduced to:
SKE = SKEN"'I p[A‘-}P ” Ca(Aa—'B X §+ BD6+A‘“}u)_A"}n . csA"}a] door.
vol
(40)
Using the reiations in Eq. 16, Eq. 40 can be wntten:
8KE = 8KE~+I p[AVP - AS(AGE X 5+ PDi +A V™)
vol

+AVP.cgaxAPP
_A"}n . aGA"}u_A"}n . cé’a )(AV"] doot

=5KE~+I p[AVP . A3(AVP)+cg° - AVP X AVP
vol
—AV"‘GSA‘?"—CG.“'A‘?"XAV"]M (41)
=8KEN+I pLAVP - A5(AVP)
val

_A"}n 5 nsA"}n] dwl
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=] pLAV? - 48(AV?)] doo
vol
which is identical tc the results in Eq. 34,

CONCLUSIONS

The process demomstrated in this article is an altereative maethod for
accommedating rotating cocrdinate systems and noakclonomic consiraints in
energy based formulations of equations of motion. The existing energy
methods zccommedaie rotating coordinates by intreducing variable coor-
dinate trensformetions to oxpress eunesgy as scalar fumctions in inertial
reference sysiems. Whea the energy terms are differentiated, the coordinate
transforms complicats the formulation. The technique dess not requirs intro-
duction of transformations wnii! the equaticns have bien obtained. This results
in equations that assume a simplified form amenable to closed form reduction.

Previous ensegy tec['n'q:._ef agplied to nonholonomic systems required the
imtroducticn of matrices velating the dependent and indspendent generalized
coordinates. The provess shown accommodates nenkoloromic coustraints by
expressing vzlocity in terms of a subset of the gencralized covrdinate deriva-
fives. The subset chosen must sattsfy identicaily all nonholonomic constraiat
eguations. The variation of pesition vectors are related to partial derivatives of
the velacitiss, therebw expressing an arbitrary variation that automatically
satisfies all constraints.

By defining gencralized speeds as functions of the g.'rcrah(c". ‘roo*:lnatm,
coacrdinzts derivatives, and time, the resulting cq;iatmmfappc'r in 2 fust order

forn: ideal for computer integration.

The method can be used to derive Kzne’s equations for rigid systems, not in
itse!f a comtribution since the Passercla-Huston equations verified that Kane’s
method has an energy basis. The demonstrated process, however, does not
!’(.‘
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