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5. Introduction to Robot Geometry and Kinematics

The goal of this chapter is to introduce the basic terminology and notation used in robot geometry
and kinematics, and to discuss the methods used for the analysis and control of robot
manipulators. The scope of this discussion will be limited, for the most part, to robots with
planar geometry. The analysis of manipulators with three-dimensional geometry can be found in

any robotics text!-

5.1 Some definitions and examples

We will use the term mechanical system to describe a system or a collection of rigid or flexible
bodies that may be connected together by joints. A mechanism is a mechanical system that has
the main purpose of transferring motion and/or forces from one or more sources to one or more
outputs. A linkage is a mechanical system consisting of rigid bodies called /inks that are
connected by either pin joints or sliding joints. In this section, we will consider mechanical

systems consisting of rigid bodies, but we will also consider other types of joints.

Degrees of freedom of a system

The number of independent variables (or coordinates) required to completely specify

the configuration of the mechanical system.

While the above definition of the number of degrees of freedom is motivated by the need to
describe or analyze a mechanical system, it also is very important for controlling or driving a
mechanical system. It is also the number of independent inputs required to drive all the rigid

bodies in the mechanical system.

Examples:
(a) A point on a plane has two degrees of freedom. A point in space has three degrees of
freedom.

(b) A pendulum restricted to swing in a plane has one degree of freedom.

ITn particular, two books offer an excellent treatment while keeping the mathematics at a very simple level: (a) Craig,
J. J. Introduction to Robotics, Addison-Wesley, 1989; and (b) Paul, R., Robot Manipulators, Mathematics,
Programming and Control, The MIT Press, Cambridge, 1981.
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(c) A planar rigid body (or a lamina) has three degrees of freedom. There are two if you consider
translations and an additional one when you include rotations.

(d) The mechanical system consisting of two planar rigid bodies connected by a pin joint has
four degrees of freedom. Specifying the position and orientation of the first rigid body
requires three variables. Since the second one rotates relative to the first one, we need an
additional variable to describe its motion. Thus, the total number of independent variables or
the number of degrees of freedom is four.

(e) A rigid body in three dimensions has six degrees of freedom. There are three translatory
degrees of freedom. In addition, there are three different ways you can rotate a rigid body.
For example, consider rotations about the x, y, and z axes. It turns out that any rigid body
rotation can be accomplished by successive rotations about the x, y, and z axes. If the three
angles of rotation are considered to be the variables that describe the rotation of the rigid
body, it is evident there are three rotational degrees of freedom.

(f) Two rigid bodies in three dimensions connected by a pin joint have seven degrees of
freedom. Specifying the position and orientation of the first rigid body requires six variables.
Since the second one rotates relative to the first one, we need an additional variable to
describe its motion. Thus, the total number of independent variables or the number of degrees

of freedom is seven.

Kinematic chain

A system of rigid bodies connected together by joints. A chain is called closed if it

forms a closed loop. A chain that is not closed is called an open chain.

Serial chain
If each link of an open chain except the first and the last link is connected to two other

links it is called a serial chain.

An example of a serial chain can be seen in the schematic of the PUMA 560 series robotZI,:lm
industrial robot manufactured by Unimation Inc., shown in Figure 1. The trunk is bolted to a
fixed table or the floor. The shoulder rotates about a vertical axis with respect to the trunk. The
upper arm rotates about a horizontal axis with respect to the shoulder. This rotation is the
shoulder joint rotation. The forearm rotates about a horizontal axis (the elbow) with respect to

the upper arm. Finally, the wrist consists of an assembly of three rigid bodies with three

2The Programmable Universal Machine for Assembly (PUMA) was developed in 1978 by Unimation Inc. using a set
of specifications provided by General Motors.
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additional rotations. Thus the robot arm consists of seven rigid bodies (the first one is fixed) and

six joints connecting the rigid bodies.

UPPER ARM
{INNER LINK)

SHOULDER

TRUNK

FOREARM
(OUTER LINK)

WRIST
(Gripper not shown)

Figure 1 The six degree-of-freedom PUMA 560 robot manipulator.

ELBOW
EXTENSION

SHOULDER
SWIVEL

Figure 2 The six degree-of-freedom T3 robot manipulator.
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Another schematic of an industrial robot arm, the T3 made by Cincinnati Milacron, is shown
in Figure 2. Once again, it is possiblT]to model it as a collection of seven rigid bodies (the first

being fixed) connected by six joints3.

Types of joints

There are mainly four types of joints that are found in robot manipulators:

* Revolute, rotary or pin joint (R)

* Prismatic or sliding joint (P)

* Spherical or ball joint (S)

* Helical or screw joint (H)
The revolute joint allows a rotation between the two connecting links. The best example of this is
the hinge used to attach a door to the frame. The prismatic joint allows a pure translation between
the two connecting links. The connection between a piston and a cylinder in an internal
combustion engine or a compressor is via a prismatic joint. The spherical joint between two links
allows the first link to rotate in all possible ways with respect to the second. The best example of
this is seen in the human body. The shoulder and hip joints, called ball and socket joints, are
spherical joints. The helical joint allows a helical motion between the two connecting bodies. A

good example of this is the relative motion between a bolt and a nut.

Planar chain

All the links of a planar chain are constrained to move in or parallel to the same plane.
A planar chain can only allow prismatic and revolute joints. In fact, the axes of the revolute joints
must be perpendicular to the plane of the chain while the axes of the prismatic joints must be
parallel to or lie in the plane of the chain.

An example of a planar chain is shown in Figure 3. Almost all internal combustion engines
use a slider crank mechanism. The high pressure of the expanding gases in the combustion
chamber is used to translate the piston and the mechanism converts this translatory movement
into the rotary movement of the crank. This mechanical system consists of three revolute joints
and one prismatic joint.

The example in Figure 3 is a planar, closed, kinematic chain. Examples of planar, serial

chains are shown in Figure 4 and 5.

3This is a convenient model. A more accurate kinematic model is required to model the coupling between the
actuator that drives the elbow joint and the elbow joint.

Robot Geometry and Kinematics -4- V. Kumar



Connectivity of a joint

The number of degrees of freedom of a rigid body connected to a fixed rigid body
through the joint.
The revolute, prismatic and helical joint have a connectivity 1. The spherical joint has a
connectivity of 3. Sometimes one uses the term “degree of freedom of a joint” instead of the
connectivity of a joint.
Crank shaft

Connecting
rod

Cylinder

Figure 3 A schematic of a slider crank mechanism

END-EFFECTOR
Link

. R
Link Joint

ACTUATORS

Figure 4 A schematic of a planar manipulator with three revolute joints
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END-EFFECTOR

<+— ACTUATORS

Figure 5 A schematic of a planar manipulator with two revolute and one prismatic joints

Mobility

The mobility of a chain is the number of degrees of freedom of the chain.
Most books will use the term “number of degrees of freedom” for the mobility. In a serial chain,
the mobility of the chain is easily calculated. If there are » joints and joint i has a connectivity f,

M=>f
i=1

Most industrial robots have either revolute or prismatic joints (f; = 1) and therefore the mobility
or the number of degrees of freedom of the robot arm is also equal to the number of joints.
Sometimes, an n degree of freedom robot or a robot with mobility » 1is also called an n axis
robot.

Since a rigid body in space has six degrees of freedom, the most general robots are designed
to have six joints. This way, the end effector or the link that is furthest away from the base can be
made to assume any position or orientation (within some range). However, if the end effector
needs to moved around in a plane, the robot need only have three degrees of freedom. Two
examples‘Dof planar, three degree of freedom robots (technically, mobility three robots) are

shown in Figures 4 and 5.

4Note that we do not count the opening and closing of the gripper as a degree of freedom. The gripper is usually
completely open or completely shut and it is not continuously controlled as the other joints are. Also, the gripper
freedom does not participate in the positioning and orienting of a part held by the gripper.
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When closed loops are present in the kinematic chain (that is, the chain is no longer serial, or
even open), it is more difficult to determine the number of degrees of freedom or the mobility of
the robot. But there is a simple formula that one can derive for this purpose.

Let n be the number of moving links and let g be the number of joints, with f; being the
connectivity of joint i. Each rigid body has six degrees if we consider spatial motions. If there
were no joints, since there are n moving rigid bodies, the system would have 6n degrees of
freedom. The effect of each joint is to constrain the relative motion of the two connecting bodies.
If the joint has a connectivity f;, it imposes (6-f;) constraints on the relative motion. In other
words, since there are f; different ways for one body to move relative to another, there (6-f;)
different ways in which the body is constrained from moving relative to another. Therefore, the
number of degrees of freedom or the mobility of a chain (including the special case of a serial

chain) is given by:

M=6n-3(6-1,)
i=1
or,
g
M=6ln-g)+3 @
i=1
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Figure 6 A planar parallel manipulator.
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In the special case of planar motion, since each unconstrained rigid body has 3 degrees of

freedom, this equation is modified to:

g
M =3(n-g)+3 /i (3)
i=1

Example 1
In Figures 4 and Figure 5, since n=g=3, Equation (3) reduces to the special case of Equation
(1). And since f1 =f; =f3 = 1, and M=g.
Example 2
In the slider crank mechanism shown in Figure 3, n=3 andg=4. Since it is a planar mechanism
we use Equation (2). All four joints have connectivity one: f} = f, = f3 =f4 =1, and M=1.
Example 3
Consider the parallel manipulator shown in Figure 6. Here, n = 7, g=9, and f;=1. According to
Equation (3), M =3. There are correspondingly three actuators in the manipulator. Contrast
this arrangement with the arrangement shown in Figures 4 and 5. The three actuators are
mounted in parallel in Figure 6. In Figures 4 and 5, they are mounted “sequentially” in a

serial fashion.

The Stewart Platform

The Stewart-Gough or the Stewart Platform5QGVice is a six degree of freedom (mobility six)
kinematic chain with closed loops. The kinematic chain consists of a base and a moving platform
each of which is a spatial hexagon. See Figure 7. Every vertex of the base hexagon is connected
to one vertex of the moving platform hexagon by one leg. Similarly, every vertex of the moving
hexagon is connected to a vertex of the base hexagon by a leg. There are six such legs. Each leg
has is a serial chain consisting of two revolute joints with intersecting axes, a prismatic joint and
a spherical joint. Typically the prismatic joints are actuated.

The mobility of a Stewart Platform can be easily verified to be six. Each leg has three links
and four joints. If we include the moving platform,

n=6x3+1=19.

SD. Stewart, “A Platform with Six Degrees of Freedom,” The Institution of Mechanical Engineers, Proceedings
1965-66, Vol. 180 Part 1, No. 15, pages 371-386.
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(a) A machine tool based on the Stewart Platform (Ingersoll Randg|
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(b) A schematic showing the six legs (left) and the RRPS chain (right).
Figure 7 The Stewart Platform

6M. Valenti, “Machine Tools Get Smarter,” Mechanical Engineering, Vol.117, No.11, November 1995.
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The connectivity of the revolute and the prismatic joint is one. The connectivity of the spherical

joint is three. Since there are 6x2 revolute joints, 6 prismatic joints and 6 spherical joints,

g
D fi=12+6+6x3=36
i=1

According to Equation (3),
M=6(19-24)+36=6
The Stewart Platform has actuators for all its six prismatic joints and it is therefore possible to

control all six degrees of freedom.
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(c) top view (axes 2-4 are numbered)

Figure 8 The Adept 1850 Palletizer
There are four degrees of freedom in this SCARA manipulator. Joint 1 is a sliding
joint that carries the manipulator arm up or down. Joints 2-4 are rotary joints with

vertical axes.
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5.2 Geometry of planar robot manipulators

The mathematical modeling of spatial linkages is quite involved. It is useful to start with
planar robots because the kinematics of planar mechanisms is generally much simpler to analyze.
Also, planar examples illustrate the basic problems encountered in robot design, analysis and
control without having to get too deeply involved in the mathematics. However, while the
examples we will discuss will involve kinematic chains that are planar, all the definitions and
ideas presented in this section are general and extend to the most general spatial mechanisms.

We will start with the example of the planar manipulator with three revolute joints. The
manipulator is called a planar 3R manipulator. While there may not be any three degree of
freedom (d.o.f.) industrial robots with this geometry, the planar 3R geometry can be found in
many robot manipulators. For example, the shoulder swivel, elbow extension, and pitch of the
Cincinnati Milacron T3 robot (Figure 2) can be described as a planar 3R chain. Similarly, in a
four d.o.f. SCARA manipulator (Figure 8), if we ignore the prismatic joint for lowering or raising
the gripper, the other three joints form a planar 3R chain. Thus, it is instructive to study the
planar 3R manipulator as an example.

In order to specify the geometry of the planar 3R robot, we require three parameters, /1, /5,
and /3. These are the three link lengths. In Figure 9, the three joint angles are labeled 0, 0,, and
03. These are obviously variable. The precise definitions for the link lengths and joint angles are
as follows. For each pair of adjacent axes we can define a common normal or the perpendicular
between the axes.

* The ith common normal is the perpendicular between the axes for joint i and joint i+1.

* The ith link length is the length of the i#4 common normal, or the distance between the axes
for joint i and joint i+1.

* The ith joint angle is the angle between the (i-1)t2 common normal and ith common
normal measured counter clockwise going from the (i-1)th common normal to the ith
common normal.

Note that there is some ambiguity as far as the link length of the most distal link and the joint
angle of the most proximal link are concerned. We define the link length of the most distal link
from the most distal joint axis to a reference point or a tool point on the end effecto Generally,
this is the center of the gripper or the end point of the tool. Since there is no zeroth common
normal, we measure the first joint angle from a convenient reference line. Here, we have chosen

this to be the x axis of a conveniently defined fixed coordinate system.

TThe reference point is often called the tool center point (TCP).
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Another set of variables that is useful to define is the set of coordinates for the end effector.
These coordinates define the position and orientation of the end effector. With a convenient
choice of a reference point on the end effector, we can describe the position of the end effector
using the coordinates of the reference point (x, y) and the orientation using the angle ¢. The three
end effector coordinates (x, y, ¢) completely specify the position and orientation of the end
effectorﬂ
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Figure 9 The joint variables and link lengths for a 3R planar manipulator

As another example, consider the three d.o.f. cylindrical robot in Figure 10. If we ignore the
lift freedom, the rotation of the base and the extension of the arm give us the two d.o.f. robot
shown in Figure 11 that we can call the R-P manipulator. It consists of a revolute joint and
prismatic joint as shown in the figure. 6;, the base rotation, and d,, the arm extension, are the two

joint variables. Note that there are no constant parameters such as the three link lengths in the 3R
manipulator. The joint variable 0, is defined as before. Since there is no zeroth common normal,

8The description of the position and orientation of a three dimensional rigid body is significantly more complicated.
For a spatial manipulator, a typical set of end effector coordinates would include three variables (x, y, z) for the
position, and three Euler angles (6, ¢, y) for the orientation.
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we measure the joint angle from the x axis which we have chosen to be horizontal. d, is defined
as the distance from joint axis 1 to the reference point on the end effector. As in the previous
example, the end effector coordinates are variables that completely specify the position and
orientation of the end effector. In the figure, they are (x, y, ¢).

Finally, we consider a Cartesian robot consisting of two prismatic joints at right angles. The
P-P chain is found in x-y tables, plotters and milling machines. A schematic is shown in Figure
12. The simplest spatial manipulator is based on the P-P-P chain, which has a third prismatic
joint. The three joint axes are mutually orthogonal. The Gantry robot in Figure 13 has this

geometry. If you ignore the vertical up/down degree of freedom it is a P-P manipulator.

Figure 10 The RT3300 cylindrical robot (Seiko)
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Figure 11 The joint variables and link lengths for a R-P planar manipulator
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_

Figure 12 The joint variables for a P-P planar manipulator

Figure 13 The G365 Gantry robot manipulator (CRS Robotics) on the left, and the Biomek
2000 Laboratory Automation Workstation (Beckman Coulter) on the right both have tooling
mounted at the end of a P-P-P chain.

The end effector of a manipulator that has only prismatic joints is constrained to remain in
the same orientation. Thus, the end effector coordinates for the P-P manipulator only include the
coordinates of the reference point on the end effector (x, y).

In summary, in each case, we defined a set of constant parameters called /ink lengths (I;) and

set of joint variables or joint coordinates consisting of either joint angles (0,) or displacements
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(d;). We also defined a set of variables called end effector coordinates. The link lengths are
constant parameters that define the geometry of the manipulator. The joint variables define the
configuration of the manipulator by specifying the position of each joint. The end effector
coordinates define the position and orientation of the end effector. If the joint coordinates specify
the configuration of the manipulator, they should also specify the position and orientation of the
end effector. Thus one should expect to find an explicit dependence of the end effector
coordinates on the joint coordinates. Although it may not be obvious, there is also a dependence
of the joint coordinates on the end effector coordinates. The next subsection will address this

dependence and analyse the kinematics of robot manipulators.

5.3 Kinematic analysis of planar serial chains

Kinematics is the study of motion. In this subsection, we will explore the relationship
between joint movements and end effector movements. More precisely, we will try to develop
equations that will make explicit the dependence of end effector coordinates on joint coordinates
and vice versa.

We will start with the example of the planar 3R manipulator. From basic trigonometry, the
position and orientation of the end effector can be written in terms of the joint coordinates in the
following way:

x=1;cos® +1,cos(8; +0,)+15cos(0; + 6, +6;)
y=1sin®, +1,sin(6; + 6, )+ 5 sin(6; + 6, +6;) (4)
0 =(6,+6,+65)
Note that all the angles have been measured counter clockwise and the link lengths are assumed
to be positive going from one joint axis to the immediately distal joint axis.
Equation (4) is a set of three nonlinear equationsﬂhat describe the relationship between end
effector coordinates and joint coordinates. Notice that we have explicit equations for the end

effector coordinates in terms of joint coordinates. However, to find the joint coordinates for a
given set of end effector coordinates (x, y, ¢), one needs to solve the nonlinear equations for 01,

92, and 93.

The kinematics of the planar R-P manipulator is easier to formulate. The equations are:

9The third equation is linear but the system of equations is nonlinear.
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x=d, cos6,

y=d,sin0, (5)

0=9
Again the end effector coordinates are explicitly given in terms of the joint coordinates.
However, since the equations are simpler (than in (4)), you would expect the algebra involved in
solving for the joint coordinates in terms of the end effector coordinates to be easier. Notice that
in contrast to (4), now there are three equations in only two joint coordinates, 01, and d>. Thus, in
general, we cannot solve for the joint coordinates for an arbitrary set of end effector coordinates.
Said another way, the robot cannot, by moving its two joints, reach an arbitrary end effector
position and orientation.

Let us instead consider only the position of the end effector described by (x, y), the

coordinates of the end effector tool point or reference point . We have only two equations:

x=d, cosH

6
y= dz sin 61 ( )
Given the end effector coordinates (x, ), the joint variables can be computed to be:
d, = +yx? + y2
(7)
0, = tan ™! (Zj
X

Notice that we restricted d, to positive values. A negative d> may be physically achieved by
allowing the end effector reference point to pass through the origin of the x-y coordinate system

over to another quadrant. In this case, we obtain another solution:

d2=—,2+y2

8
0, = tan_l(lj ®

X

In both cases (7-8), the inverse tangent function is multivalued“l.__ﬁ|1 particular,

tan(x) = tan(x + km), k=...-2,-1,0,1,2, ... )
However, if we limit 6; to the range 0<0,<2m, there is a unique value of 0, that is consistent with

the given (x, y) and the computed d, (for which there are two choices).

10In Appendix 1, we define another inverse tangent function called atan2 that takes two arguments, the sine and the
cosine of an angle, and returns a unique angle in the range [0, 27).
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The existence of multiple solutions is typical when we solve nonlinear equations. As we will
see later, this poses some interesting questions when we consider the control of robot
manipulators.

The planar Cartesian manipulator is trivial to analyze. The equations for kinematic analysis

arc:

x=d, y=d, (10)
The simplicity of the kinematic equations makes the conversion from joint to end effector
coordinates and back trivial. This is the reason why P-P chains are so popular in such

automation equipment as robots, overhead cranes, and milling machines.

Direct kinematics

As seen earlier, there are two types of coordinates that are useful for describing the
configuration of the system. If we focus our attention on the task and the end effector, we would
prefer to use Cartesian coordinates or end effector coordinates. T t of all such coordinates is
generally referred to as the Cartesian space or end effector space}ﬁlfhe other set of coordinates
is the so called joint coordinates that is useful for describing the configuration of the mechanical
Inkage. The set of all such coordinates is generally called the joint space.

In robotics, it is often necessary to be able to “map” joint coordinates to end effector
coordinates. This map or the procedure used to obtain end effector coordinates from joint
coordinates is called direct kinematics.

For example, for the 3-R manipulator, the procedure reduces to simply substituting the values

for the joint angles in the equations

x=1;cosO, +1,cos(8; +0,)+1cos(0; + 6, +6;)

y =1sin®; +1,sin(6; + 6, )+ 5sin(6; +6, +6;)

¢=(6,+6,+65)
and determining the Cartesian coordinates, x, y, and ¢. For the other examples of open chains
discussed so far (R-P, P-P) the process is even simpler (since the equations are simpler). In fact,
for all serial chains (spatial chains included), the direct kinematics procedure is fairly straight
forward.

On the other hand, the same procedure becomes more complicated if the mechanism contains

one or more closed loops. In addition, the direct kinematics may yield more than one solution or

11Since each member of this set is an n-tuple, we can think of it as a vector and the space is really a vector space. But
we shall not need this abstraction here.
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no solution in such cases. For example, in the planar parallel manipulator in Figure 3, the joint
positions or coordinates are the lengths of the three telescoping links (g1, g2, ¢3) and the end

effector coordinates (x, y, ¢) are the position and orientation of the floating triangle. It can be
shown that depending on the value of (g1, g2, ¢3), the number of (real) solutions for (x, y, ¢) can
be anywhere from zero to six. For the Stewart Platform in Figure 4, this number has been shown

to be anywhere from zero to forty.

5.4 Inverse kinematics

The analysis or procedure that is used to compute the joint coordinates for a given set of end
effector coordinates is called inverse kinematics. Basically, this procedure involves solving a set
of equations. However the equations are, in general, nonlinear and complex, and therefore, the
inverse kinematics analysis can become quite involved. Also, as mentioned earlier, even if it is
possible to solve the nonlinear equations, uniqueness is not guaranteed. There may not (and in
general, will not) be a uniqu t of joint coordinates for the given end effector coordinates.

We saw that for the R-P manipulator, the direct kinematics equations are:

x=d, cos

6
y=d,sin0, ©

If we restrict the revolute joint to have a joint angle in the interval [0, 27), there are two solutions

for the inverse kinematics:

dy, = (sz +y2 , 0= atan2[dl,ij, c=x=l1

2 dy
Here we have used the atan? function in Appendix 1 to uniquely specify the joint angle 6.
However, depending on the choice of G, there are two solutions for d,, and therefore for 0;.
The inverse kinematics analysis for a planar 3-R manipulator appears to be complicated but

we can derive analytical solutions. Recall that the direct kinematics equations (4) are:

x=1,cos0, +1,cos(8, +0,)+15cos(6, +0, +65) (4a)
y=1,sin@, +1,sin(0, +0,)+/;sin(0, +06, +05) (4b)
0=(8,+6, +6;) (40)

I2The only case in which the analysis is trivial is the P-P manipulator. In this case, there is a unique solution for the
inverse kinematics.
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We assume that we are given the Cartesian coordinates, x, y, and ¢ and we want to find analytical
expressions for the joint angles 01, 0,, and 03 in terms of the Cartesian coordinates.

Substituting (4¢) into (4a) and (4b) we can eliminate 03 so that we have two equations in 0,
and 0,:

x—I3cosh =1, cosO, +1,cos(6, +6,) (d)
y- 13 Sil’lq) = l] sin 6] + 12 Sin(e] + 92) (e)
where the unknowns have been grouped on the right hand side; the left hand side depends only

on the end effector or Cartesian coordinates and are therefore known.
Rename the left hand sides, x” =x -/3cos ¢, y' =y - [3 sin ¢, for convenience. We regroup

terms in (d) and (e), square both sides in each equation and add them:

(x"—1; cos0, )* = (I, cos(8, +6,))*
+

(y'~1;sin @, )* = (1, sin(6, +8,))*
After rearranging the terms we get a single nonlinear equation in 0y:

(= 21x")cos B + (= 21,y )sin 8, + (v2 + 2 + 12~ 12)=0 (f)
Notice that we started with three nonlinear equations in three unknowns in (a-c). We reduced the
problem to solving two nonlinear equations in two unknowns (d-e). And now we have simplified
it further to solving a single nonlinear equation in one unknown (f).

Equation (f) is of the type

Pcoso+ Qsina+R=0 (2)

Equations of this type can be solved using a simple substitution as shown in Appendix 2. There
are two solutions for 0, given by:

1 —(x'2 +y'2 +112 —122)

0, =y+0ocos (h)
211\/)('2 +y'2
where,
_yl xl
y=atan2 s ,
\/x'z+y'2 \/x2+y2
and o=xl1.
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Note that there are two solutions for 6;, one corresponding to 6=+1, the other corresponding to

=-1. Substituting any one of these solutions back into Equations (d) and (e) gives us:

cos(6, +62):—x ~heosdy
L

sin(91 + 92): —y _ I; Slnel
2

This allows us to solve for 8, using the atan2 function in Appendix 1:

0, = atan? y —llsmel,x — [ cos6, _p, )
h h
Thus, for each solution for 01, there is one (unique) solution for 0,.
Finally, 03 can be easily determined from (c):
0:=0-0,-0 0)

Equations (h-j) are the inverse kinematics solution for the 3-R manipulator. For a given end
effector position and orientation, there are two different ways of reaching it, each corresponding

to a different value of 6. These different configurations are shown in Figure 14.

REFERENCE
POINT
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Figure 14 The two inverse kinematics solutions for the 3R manipulator: “elbow-up”
configuration (6=+1) and the “elbow-down” configuration (6= -1)
Commanding a robot to move the end effector to a certain position and orientation is

ambiguous because there are two configurations that the robot must choose from. From a
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practical point of view, if the joint limits are such that one configuration cannot be reached this

ambiguity is automatically resolvedID

5.5 Velocity analysis

When controlling a robot to go from one position to another, it is not just enough to
determine the joint and end effector coordinates of the target position. It may be necessary to
continuously control the trajectory or the path taken by the robot as it moves toward the target
position. This is essential to avoid obstacles in the workspace. More importantly, there are tasks
where the trajectory of the end effector is critical. For example, when welding, it is necessary to
maintain the toollj] a desired orientation and a fixed distance away from the workpiece while
moving uniformly™ along a desired path. Thus one needs to control the velocity of the end
effector or the tool during the motion. Since the control action occurs at the joints, it is only
possible to control the joint velocities. Therefore, there is a need to be able to take the desired
end effector velocities and calculate from them the joint velocities. All this requires a more
detailed kinematic analysis, one that addresses velocities or the rate of change of coordinates in
contrast to the previous section where we only looked at positions or coordinates.

Consider the 3R manipulator as an example. By differentiating Equation (4) with respect to

time, it is possible to obtain equations that relate the the different velocities.

i ==10,5 1 (8, +05 )51, =15 (6, +6, + 65 5155
=06 +12(91 +6, )Clz +13 (91 +6, +6; )0123
4):(91 +6, +93)
where we have used the short hand notation:
s1=sin 0y, s;2=sin(0;+03), s123=-5In(0; +6,+ 63)
c1=c0s0;, cip=cos(0;+0,), cra3=cos(0;+6,+03)

éi denotes the joint speed for the ith joint or the time derivative of the ith joint angles, and x,
y,and ¢ are the time derivatives of the end effector coordinates. Rearranging the terms, we can

write this equation in matrix form:

3This is true of the human arm. If you consider planar movements, because the human elbow cannot be hyper
extended, there is a unique solution for the inverse kinematics. Thus the central nervous system does not have to
worry about which configuration to adopt for a reaching task.

14In some cases, a weaving motion is required and the trajectory of the tool is more complicated.
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x - (1131 +1y815 +133123) - (12312 +l33123) — 38123 e1
v |=| (hey+hep+hens)  (hop+hans)  Leps | 6; (1T)
b 1 1 1|6

The 3x3 matrix is called the Jacobian matrix!>and we will denote it by the symbol J. If you look
at the elements of the matrix they express the rate of change of the end effector coordinates with
respect to the joint coordinates:

ox ox Ox
90, 00, 06,
yo| 9 9y oy
90, 00, 06,
9 9o I
190, 00, 08, |

Given the rate at which the joints are changing, or the vector of joint velocities,

If the Jacobian matrix is non singular (its determinant is non zero and the matrix is invertible),
then we can get the following expression for the joint velocities in terms of the end effector

velocities:

p=Ja, q=J"p (12)
Thus if the task (for example, welding) is specified in terms of a desired end effector velocity,
Equation (12) can be used to compute the desired joint velocity provided the Jacobian is non

singular:

15The name Jacobian comes from the terminology used in multi-dimensional calculus.
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. des -1 . 1d
0, - (1151 +15515 +l33123) - (12S12 +135123) — 35123 x|
é2 = (1101 +hcp, +l30123) (12012 +130123) yein3 y

0, 1 1 1 )

Naturally we want to determine the conditions under which the Jacobian becomes singular.
This can be done by computing the determinant of J and setting it to zero. Fortunately, the
expression for the determinant of the Jacobian, in this example, can be simplified using

trigonometric identities to:

\J| =11, sin 6, (13)
This means that the Jacobian is singular only when 6, is either 0 or 180 degrees. Physically, this
corresponds to the elbow being completely extended or completely flexed. Thus, as long we
avoid going through this configuration, the robot will be able to follow any desired end effector

velocity.

5.6 Appendix

5.6.1 The ambiguity in inverse trigonometric functions

Inverse trigonometric functions have multiple values. Even within a 360 degree range they

have two values. For example, if

y =sinx

the inverse sin function gives two values in a 360 degree interval:

sin'ly = x, m-x
Of course we can add or subtract 21 from either of these solutions and obtain another solution.

This is true of the inverse cosine and inverse tangent functions as well. If

Y =COosX,

the inverse cosine function yields:

cos'ly =x, x

Similarly, for the tangent function

y =tanux,
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the inverse tangent function yields:

tan-ly =x, m+x
This multiplicity is particularly troublesome in robot control where an ambiguity may mean
that there is more than one way of reaching a desired position (see discussion on inverse
kinematics). This problem is circumvented by defining the atan? function which requires two
arguments and returns a unique answer in a 3607 range.
The atan2 function takes as arguments the sine and cosine of a number and returns the

number. Thus if ,

s=sinx;, ¢ =cCOSX

the atan2 function takes s and ¢ as the argument and returns x:

atan2 (s, c) =x
The main idea is that the additional information provided by the second argument eliminates the

ambiguity in solving for x. To see this consider the simple problem where we are given:
1B
$720 €72
and we are required to solve for x. If we use the inverse sine function and restrict the answer to

be in the interval [0, 27t), we get the result:

x=sinl3 _I o
2 6> 6

b

Since we know the cosine to be 5 > We can quickly verify by taking cosines of both candidate

solutions that the first solution is correct and the second one is incorrect.

n 3 st 43

COS ¢ =75 5 COS T =-"5

The atan2 function goes through a similar algorithm to figure out a unique solution in the range
[0,2).

13 =

atan2(2, ) ) = 6

The atan2 function is a standard function in most C, Pascal and Fortran compilers.
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5.6.2  Solution of the nonlinear equation in (g)

P coso+ Qsinak+R=0

Define 7y so that

P o
cos Y= P22 and siny= P22

Note that this is always possible. y can be determined by using the atan2 function:

) p
JP2+0? P +0?

Now (g) can be rewritten as:

y=atan?2

L R
cosycoso +sinysin Ol + ————==0
P*+0?

or
-R

This gives us two solutions for o in terms of the known angle v:

cos(o.—7y) =

_ -R
oL =7Y+0cCos N ——  |o=4%I
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